$\ell\text{-adic}$ images of Galois for elliptic curves over $\mathbb Q$

Jeremy Rouse

VaNTAGe seminar June 22, 2021

Acknowledgements

• The work I'm going to speak about is joint with Drew Sutherland and David Zureick-Brown.

Definitions

• Let
$$G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}).$$

• If
$$E/\mathbb{Q}$$
 is an elliptic curve, let
 $E[n] = \{Q \in E(\overline{\mathbb{Q}}) : nQ = 0\} \simeq (\mathbb{Z}/n\mathbb{Z})^2.$

• If *n* is a positive integer, define $\rho_{E,n}: G_{\mathbb{Q}} \to \operatorname{Aut}(E[n]) \simeq \operatorname{GL}_2(n).$

Mazur's Program B

• If ℓ is a prime, let $\rho_{E,\ell^{\infty}} : G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{Z}_{\ell}) = \varprojlim \mathrm{GL}_2(\ell^k).$

• Let
$$\rho_E : G_{\mathbb{Q}} \to \operatorname{GL}_2(\hat{\mathbb{Z}}) = \varprojlim \operatorname{GL}_2(n).$$

B. <u>Given a number field</u> K and a subgroup H of $\operatorname{GL}_2 \widehat{\mathbb{Z}} = \prod_p \operatorname{GL}_2 \mathbb{Z}_p$ <u>classify</u> <u>all elliptic curves</u> $E_{/K}$ whose associated Galois representation on torsion points <u>maps</u> $\operatorname{Gal}(\overline{K}/K)$ <u>into</u> $H \subset \operatorname{GL}_2 \widehat{\mathbb{Z}}$.

Prime level

• If E/\mathbb{Q} is an elliptic curve, ℓ is an odd prime, and $\rho_{E,\ell}$ is not surjective, the image is contained in a maximal subgroup of $\operatorname{GL}_2(\ell)$. The options are:

(i) Borel subgroups, those of the shape
$$\left\{ \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \right\}$$
,

(ii) Normalizers of Cartan subgroups. Cartan subgroups are subgroups isomorphic to $\mathbb{F}_{\ell}^{\times}\times\mathbb{F}_{\ell}^{\times}$ or $\mathbb{F}_{\ell^2}^{\times}.$

(iii) Exceptional subgroups (projective image A_4 , S_4 or A_5).

Results

Theorem (Serre, 1972)

If $\ell \geq 17$ is prime, the image of $\rho_{E,\ell}$ cannot be contained in an exceptional subgroup.

Theorem (Mazur, 1978)

The largest prime ℓ for which $\rho_{E,\ell}(G_{\mathbb{Q}})$ is contained in a Borel subgroup is 163.

Theorem (Bilu-Parent-Rebolledo, 2013)

If $\ell \geq 17$, the image cannot be contained in the normalizer of a split Cartan subgroup.

Applications of Galois representations - 1/4

• Suppose ℓ is an odd prime and $a^{\ell} + b^{\ell} = c^{\ell}$ with $abc \neq 0$. Let

$$E: y^2 = x(x-a^\ell)(x+b^\ell).$$

• This elliptic curve has full 2-torsion. Level-lowering gives that if $\rho_{E,\ell}$ is irreducible, it must arise from a modular form of level 2. This contradiction proves Fermat's last theorem.

• There are a number of other applications of this technique: proving that 0, 1, 8 and 144 are the only perfect powers in the Fibonacci sequence, solving generalized Fermat equations, etc.

Applications of Galois representations - 2/4

• Let p be an odd prime and suppose that $N \in \{2, 3, 7\}$ is a quadratic non-residue mod p. Let $K = \mathbb{Q}(\sqrt{(-1)^{(p-1)/2}p})$ and σ the non-trivial automorphism of K.

• Suppose that E/K is an elliptic curve with a cyclic *N*-isogeny $\lambda : E \to E^{\sigma}$ defined over *K* so that $\lambda(E[N]) = (\ker \lambda)^{\sigma}$.

Theorem (Shih, 1978)

Assume the notation above. Then $K(E[p])/\mathbb{Q}$ is Galois. If $\rho_{E,p}(G_K) = \{g \in \operatorname{GL}_2(p) : \operatorname{det}(g) \in (\mathbb{F}_p^{\times})^2\}$, then $\operatorname{PSL}_2(\mathbb{F}_p)$ is a quotient of $\operatorname{Gal}(K(E[p])/\mathbb{Q})$.

Applications of Galois representations - 3/4

• Properties of the Weil pairing imply that $\mathbb{Q}(\zeta_n) \subseteq \mathbb{Q}(E[n])$. When are they equal?

Theorem (González-Jiménez, Lozano-Robledo, 2016)

If E/\mathbb{Q} is an elliptic curve and $\mathbb{Q}(E[n]) = \mathbb{Q}(\zeta_n)$, then $n \leq 5$.

Theorem (Daniels, Lozano-Robledo)

If E is an elliptic curve and $\mathbb{Q}(E[n]) = \mathbb{Q}(E[m])$ is an abelian extension of \mathbb{Q} with $m \neq n$, then $m, n \in \{1, 2, 3, 4, 6\}$.

Applications of Galois representations - 4/4

• Suppose that E/\mathbb{Q} is an elliptic curve, $\alpha \in E(\mathbb{Q})$, and ℓ is a prime number. What is the density of primes p for which the order of $\alpha \in E(\mathbb{F}_p)$ is coprime to ℓ ?

• The order is determined by the image of $\omega_{E,\ell^{\infty}}$: $\mathcal{G}_{\mathbb{Q}} \to \mathbb{Z}_{\ell}^2 \rtimes \mathrm{GL}_2(\mathbb{Z}_{\ell}).$

• If *E* does not have CM, $\ell = 2$ and $\alpha + T$ is not twice a point in $E(\mathbb{Q})$ for any $T \in E(\mathbb{Q})_{\text{tors}}$, then the density of odd order reductions is $\geq 1/224$.

Definition

- Let *H* be a subgroup of $GL_2(N)$ containing -I. The modular curve Y_H parametrizes elliptic curves with *H*-level structure.
- An *H*-level structure on E/\overline{k} is an equivalence class $[\iota]_H$ where $\iota : E[N] \to (\mathbb{Z}/N\mathbb{Z})^2$ is an isomorphism. We say $\iota \sim \iota'$ if $\iota = h \circ \iota'$ for some $h \in H$.
- The curve Y_H can be compactified by adding cusps X_H^{∞} and one obtains a smooth projective curve $X_H = Y_H \cup X_H^{\infty}$.

Properties of modular curves (1/2)

• The curve X_H is geometrically connected if and only if det : $H \to (\mathbb{Z}/N\mathbb{Z})^{\times}$ is surjective.

• Suppose E/k is an elliptic curve with $j(E) \neq 0$, 1728. Then, there is an isomorphism $\iota : E[N] \to (\mathbb{Z}/N\mathbb{Z})^2$ such that $(E, [\iota]_H) \in Y_H(k)$ if and only if the image of $\rho_{E,N}$ is contained in a subgroup of $GL_2(N)$ conjugate to H.

• If $H \subseteq H'$ are two subgroups, there is an induced morphism $X_H \to X_{H'}$ sending *H*-level structures to *H'*-level structures.

Properties of modular curves (2/2)

- The curve X_H has good reduction at primes not dividing N.
- If J_H is the Jacobian of X_H , Hecke operators act as endomorphisms of J_H .

Theorem (R, Sutherland, Voight, Zureick-Brown)

If det : $H \to (\mathbb{Z}/N\mathbb{Z})^{\times}$ is surjective, every simple factor of J_H is isogenous to J_f , for some weight 2 newform f for $\Gamma_0(N^2) \cap \Gamma_1(N)$.

Subgroup labels

• Let *H* be an open subgroup of $\operatorname{GL}_2(\hat{\mathbb{Z}})$. We define the level of *H* to be the smallest positive integer *N* so that *H* contains all $M \in \operatorname{GL}_2(\hat{\mathbb{Z}})$ with $M \equiv I \pmod{N}$.

• We assign a label to H of the form N.i.g.n, where N is the level of H, $i = [GL_2(\hat{\mathbb{Z}}) : H]$, g(H) = genus of X_H , and n is a tiebreak.

- We identify H with its image under $\operatorname{GL}_2(\hat{\mathbb{Z}}) \to \operatorname{GL}_2(N)$.
- From Faltings's theorem, we know $X_H(\mathbb{Q})$ is finite if $g(H) \ge 2$.

Non-split Cartan subgroups (1/2)

• Let $\ell > 2$ be a prime and ϵ be a quadratic non-residue modulo ℓ .

• The ring $(\mathbb{Z}/\ell^n\mathbb{Z})[\sqrt{\epsilon}]$ is a free $\mathbb{Z}/\ell^n\mathbb{Z}$ -module of rank 2. This gives an embedding $(\mathbb{Z}/\ell^n\mathbb{Z})[\sqrt{\epsilon}]^{\times} \to \operatorname{GL}_2(\ell^n)$. The image is a non-split Cartan subgroup.

• Let $N_{ns}(\ell^n)$ be its normalizer. Concretely,

$$N_{ns}(\ell^n) = \left\{ \begin{bmatrix} a & b\epsilon \\ \pm b & \pm a \end{bmatrix} : a, b \in \mathbb{Z}/\ell^n \mathbb{Z}, (a, b) \neq (0, 0) \right\}.$$

Let $X^+_{\mathrm{ns}}(\ell^n) = X_{N_{ns}(\ell^n)}$.

Non-split Cartan subgroups (2/2)

Theorem (Chen, 2004)

Up to isogeny,

$$J(X^+_{\mathrm{ns}}(\ell^n))\simeq\prod_f J_f$$

where the product runs over all weight 2 newforms for $\Gamma_0(\ell^{2r})$, $0 \le r \le n$ with trivial character and the sign of L(f, s) equal to -1.

Arithmetically maximal

- We say H ⊆ GL₂(Â) of level N is arithmetically maximal if
 det(H) = Â[×],
 - *H* contains an element conjugate to $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ or $\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$ in $\operatorname{GL}_2(N)$, and
 - X_H(ℚ) is finite but X_K(ℚ) is infinite for every K properly containing H.

• Our focus is on understanding $X_H(\mathbb{Q})$ for prime-power level H.

Modular curves example (1/3)

• The subgroup $N_{\rm ns}(5)$ is an index 10 maximal subgroup of ${
m GL}_2(5).$

• It has label 5.10.0.1. The corresponding modular curve $X_{ns}^+(5)$ has genus zero and is isomorphic to \mathbb{P}^1 .

• If E/\mathbb{Q} is an elliptic curve and $j(E) \neq 0, 1728$, then $\rho_{E,5}(G_{\mathbb{Q}}) \subseteq N_{\mathrm{ns}}(5)$ if and only if there is a rational number t so that

$$j(E) = \frac{2^{12}5^4(t-10)(t^2+5t+10)^3}{(t^2-20)^5}$$

Modular curves example (2/3)

- The subgroup $H = \left\langle \begin{bmatrix} 3 & 4 \\ 0 & 12 \end{bmatrix}, \begin{bmatrix} 10 & 19 \\ 13 & 0 \end{bmatrix} \right\rangle \subset GL_2(25)$ is an index 5 subgroup of $N_{ns}(5)$.
- It has label 25.50.2.1. The corresponding modular curve is

$$X_H: y^2 = 25x^6 + 20x^5 + 50x^4 + 50x^3 + 25x^2 + 50x - 15.$$

• The Jacobian J_H is isogenous to J_f , where f is the newform with LMFDB label 625.2.a.a. This means that J_H/\mathbb{Q} has analytic rank 2.

Modular curves example (3/3)

- The two points at infinity on X_H are rational, and their images on the *j*-line are j = 0 and $j = 2^4 \cdot 3^2 \cdot 5^7 \cdot 23^3$.
- If E/\mathbb{Q} is an elliptic curve with $j(E) = 2^4 \cdot 3^2 \cdot 5^7 \cdot 23^3$, then $\rho_{E,5^{\infty}}(G_{\mathbb{Q}})$ has index 50 in $\operatorname{GL}_2(\mathbb{Z}_5)$.

Theorem (Balakrishnan, Dogra, Müller, Tuitman, Vonk)

The only rational points on X_H are the two points at infinity.

2015 results about $\ell = 2$

Theorem (R, Zureick-Brown, 2015)

Let E/\mathbb{Q} be a non-CM elliptic curve, $H = \operatorname{im} \rho_{E,2^{\infty}}(G_{\mathbb{Q}})$ and $\overline{H} = \langle H, -I \rangle$. Then, either

- $[\operatorname{GL}_2(\mathbb{Z}_2):\overline{H}] \leq 48$ or
- j(E) is in the following list:

Results for $\ell = 3$

Theorem (R, Sutherland, Zureick-Brown)

Let E/\mathbb{Q} be a non-CM elliptic curve, $H = \rho_{E,3^{\infty}}(G_{\mathbb{Q}})$. Then,

- X_H is a genus zero modular curve with infinitely many rational points, or
- $H \subseteq N_{ns}(27)$.

• In the first case, the index can be as large as 72 and the level as large as 27.

• We have a complete classification of ${\rm im}~\rho_{E,3^\infty}$ for non-CM elliptic curves with a cyclic 3-isogeny.

3-adic images for non-CM E/\mathbb{Q}

Results for $\ell = 5$

Theorem

Let E/\mathbb{Q} be a non-CM elliptic curve, $H = \rho_{E,5^{\infty}}(G_{\mathbb{Q}})$. Then,

- X_H is a genus zero modular curve with infinitely many rational points, or
- $j(E) = 2^4 \cdot 3^2 \cdot 5^7 \cdot 23^3$ or $2^{12} \cdot 3^3 \cdot 5^7 \cdot 29^3/7^5$, or

• $H \subseteq N_{ns}(25)$.

• The second *j*-invariant listed above comes from an exceptional point on 25.75.2.1.

Results for $\ell = 7$

Theorem

Let E/\mathbb{Q} be a non-CM elliptic curve, $H = \rho_{E,7^{\infty}}(G_{\mathbb{Q}})$. Then,

- X_H is a genus zero modular curve with infinitely many rational points, or
- $j(E) = 3^3 \cdot 5 \cdot 7^5/2^7$, or
- H is contained in a group with label 49.147.9.1 or 49.196.9.1, or
- $H \subseteq N_{ns}(49)$.

• The *j*-invariant above arises for an elliptic curve E/\mathbb{Q} that does not have a cyclic 7-isogeny, but for which E/\mathbb{F}_p does for all primes *p* of good reduction.

Results for $\ell = 11$

Theorem

Let E/\mathbb{Q} be a non-CM elliptic curve, $H = \rho_{E,11^{\infty}}(G_{\mathbb{Q}})$. If $H \neq \operatorname{GL}_2(\mathbb{Z}_{11})$, then either

•
$$H=N_{
m ns}(11)$$
, or

•
$$j(E) = -11^2$$
 or $-11 \cdot 131^3$, or

•
$$H \subseteq N_{\rm ns}(121)$$
.

• In the last case, the height of j(E) is larger than about $10^{10^{200}}$

Results for $\ell = 13$

Theorem (BC, BDMTV, K, Z)

Let E/\mathbb{Q} be a non-CM elliptic curve and $H = \rho_{E,13^{\infty}}(G_{\mathbb{Q}})$. Then

- X_H is a genus zero modular curve with infinitely many rational points, or
- H has label 13.91.3.2 and

$$j(E) = 2^{4} \cdot 5 \cdot 13^{4} \cdot 17^{3}/3^{13} \text{ or}$$
$$-2^{12} \cdot 5^{3} \cdot 11 \cdot 13^{4}/3^{13} \text{ or}$$
$$13 \cdot 929 \cdot 150593365056^{3}/305^{13}$$

General method

- We enumerate the arithmetically maximal subgroups H of $\operatorname{GL}_2(\mathbb{Z}_\ell)$.
- For most such H, we compute a model for X_H .
- We find all the rational points on X_H .

Fast point counting on modular curves over \mathbb{F}_q

- In 2015, David Zywina gave a method for counting points on X_H/\mathbb{F}_p without having an equation for X_H .
- We produce a refinement of that method that counts the points on X_H/\mathbb{F}_q that runs in time $\tilde{O}(q^{1/2})$ that doesn't require computing Hilbert class polynomials.
- This method allows us to compute the numerator of the zeta function for X_H/\mathbb{F}_p even if the genus of X_H is moderate.

The analytic rank of J_H

- If $H \leq \operatorname{GL}_2(N)$, the simple isogeny factors of J_H have the form J_f , where f is a newform for $\Gamma_1(N^2)$ and character χ of conductor dividing N.
- Combining the fast point counting code with tabulation of newforms allows us to compute the decomposition of J_H .
- We have computed the analytic rank of J_H for every arithmetically maximal H of level ℓ^n with $\ell \leq 37$.

A genus 3 curve

• Let $X : -x^3y + x^2y^2 - xy^3 + 3xz^3 + 3yz^3 = 0$. This curve has label 27.36.3.1. There is an automorphism $\iota : X \to X$ interchanging x and y.

• The quotient $X/\langle \iota \rangle$ is a rank one elliptic curve *E*. From the previous slide, $J_X \sim E \times A$ with A/\mathbb{Q} having rank zero.

• We therefore have a map $\tau : X(\mathbb{Q}) \to J_X(\mathbb{Q})_{\text{tors}}$ given by $\tau(P) = P - \iota(P)$. We compute $J_X(\mathbb{Q})_{\text{tors}}$ and take preimages to find $X(\mathbb{Q})$.

Canonical models of modular curves (1/2)

- We use a variety of tricks to compute canonical models of higher genus modular curves by finding a basis for the space of holomorphic differentials on X_H .
- For a non-hyperelliptic curve of genus ≥ 3 , the canonical ring $\bigoplus_{d\geq 0} H^0(X_H, \Omega^{\otimes d})$ is generated in degree 1.
- We find the map from X_H to the *j*-line by representing E_4 and E_6 as ratios of elements in the canonical ring.

Canonical models of modular curves (2/2)

• We show that E_4 is a ratio of an element of weight k and weight k - 4 in the canonical ring if

$$k \geq \frac{2e_{\infty} + e_2 + e_3 + 5g - 4}{2(g - 1)}$$

• We use this method to compute the canonical models for $X_{ns}^+(27)$, 27.729.43.1, $X_{ns}^+(25)$, and 25.625.36.1.

• We can show that the modular curves corresponding to 27.729.43.1 and 25.625.36.1 have no points over \mathbb{Q}_3 and \mathbb{Q}_5 , respectively.

Cases we can't handle: $X_{\rm ns}^+(27)~(1/2)$

- This curve has genus 12, and 8 rational CM points.
- Its Jacobian factors as a product of two simple abelian varieties of dimensions 6, each with analytic rank 6.

• There is a genus 3 modular curve X_H defined over $\mathbb{Q}(\zeta_3)$ so that $X^+_{ns}(27) \to X_H \to X^+_{ns}(9)$.

Cases we can't handle: $X_{ns}^+(27)$ (2/2)

• We computed the canonical model for X_H . It has at least 13 points on it over $\mathbb{Q}(\zeta_3)$.

• We found a $D \in \text{Div}^0(X_H)$ whose image in J_H has order 3 and used this to construct an étale cover of X_H .

• Each twist of the 9 twists of this étale cover maps to an elliptic curve over $\mathbb{Q}(\zeta_3)$, but one such elliptic curve has rank 2.

Cases we can't handle: $X_{\rm ns}^+(25)$

• We computed the canonical model for this curve. It has 8 rational CM points.

• The Jacobian factors as a product of three abelian surfaces, and one dimension 8 abelian variety.

• If there were a map from $X_{\rm ns}^+(25) \to C$ for a genus two curve C, we could probably use that to provably find the rational points on $X_{\rm ns}^+(25)$.

Cases we can't handle: 49.147.9.1

- This curve is a degree 7 cover of $X_{\rm ns}^+(7) \simeq \mathbb{P}^1$. We have a simple plane model of degree 7.
- Point searching finds a single rational point above j = 0.

• The Jacobian is irreducible with analytic rank 9. The torsion subgroup is trivial, and the curve does not have any automorphisms over \mathbb{Q} .

Cases we can't handle: 49.196.9.1

• This curve is a degree 7 cover of $X_{\rm sp}^+(7) \simeq \mathbb{P}^1$. We have a simple plane model of degree 7.

• Point searching finds a single rational point above j = 0.

• The Jacobian has analytic rank 9 and factors as the product of two abelian varieties of dimension 3 and 6. The torsion subgroup is trivial, and there are no automorphisms defined over \mathbb{Q} .

Cases we can't handle: $X_{\rm ns}^+(17)$ (1/3)

• Pietro Mercuri and René Schoof computed a canonical model for the genus 6 curve $X = X_{ns}^+(17)$.

• By Chen's result, if $f \in S_2(\Gamma_0(17^2))$ is a newform with sign -1, then A_f is a factor of J(X).

• Thus, there is a map $X_{ns}^+(17) \to E$ where $E: y^2 + xy + y = x^3 - x^2 - 199x - 510$.

• The degree of $X_0(289) \rightarrow E$ is 72. What's the degree of $X^+_{\rm ns}(17) \rightarrow E?$

Cases we can't handle: $X_{ns}^+(17)$ (2/3)

• Using a Math. Comp. paper of Cremona from 1995, we compute that the degree is 9.

• We can guess the induced map on differentials $\phi^* : \Omega_E \to \Omega_X$ and using this produce the morphism $\phi : X \to E$.

• We have
$$E(\mathbb{Q}) \cong \mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} = \langle P, T \rangle$$
.

• The Mordell-Weil sieve shows that if $Q \in X(\mathbb{Q})$ and $\phi(Q) = kP + rT$, then either $(k, r) \in \{(-2, 0), (-1, 0), (-1, 1), (0, 0)\}$ or $|k| > 6.9 \cdot 10^{40}$.

Cases we can't handle: $X_{\rm ns}^+(17)$ (3/3)

- We can use the non-trivial torsion subgroup to construct an étale double cover $Y \rightarrow X$.
- \bullet This Y has genus 11 and the five-dimensional "new" piece is irreducible.

• The map $Y \to E$ ensures that J(Y) has a rational 2-torsion point. Can we use this to compute the rank of J(Y)?

• We develop new methods to count points on X_H/\mathbb{F}_q and compute the decomposition of $J(X_H)$.

• We provably find all the rational points on X_H for all ℓ -power level arithmetically maximal subgroups, with the following exceptions:

 $X_{\rm ns}^+(27)$, $X_{\rm ns}^+(25)$, $X_{\rm ns}^+(49)$, $X_{\rm ns}^+(121)$, 49.147.9.1, and 49.196.9.1.