ℓ-adic images of Galois for elliptic curves over

Jeremy Rouse

VaNTAGe seminar June 22, 2021

Acknowledgements

- The work I'm going to speak about is joint with Drew Sutherland and David Zureick-Brown.

Definitions

- Let $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.
- If E / \mathbb{Q} is an elliptic curve, let $E[n]=\{Q \in E(\overline{\mathbb{Q}}): n Q=0\} \simeq(\mathbb{Z} / n \mathbb{Z})^{2}$.
- If n is a positive integer, define $\rho_{E, n}: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}(E[n]) \simeq \mathrm{GL}_{2}(n)$.

Mazur's Program B

- If ℓ is a prime, let $\rho_{E, \ell \infty}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)=\underset{\longleftrightarrow}{\lim } \mathrm{GL}_{2}\left(\ell^{k}\right)$.
- Let $\rho_{E}: G_{\mathbb{Q}} \rightarrow \operatorname{GL}_{2}(\hat{\mathbb{Z}})=\underset{\longleftarrow}{\lim } \operatorname{GL}_{2}(n)$.
B. Given a number field K and a subgroup $H \quad$ of $G L L_{2} \widehat{\mathbb{Z}}=\prod_{p} G L_{2} \mathbb{Z}_{p}$ classify all elliptic curves E / K whose associated Galois representation on torsion points maps $\operatorname{Gal}(\bar{K} / K)$ into $\mathrm{H} \subset \mathrm{GL}_{2}$ 化.

Prime level

- If E / \mathbb{Q} is an elliptic curve, ℓ is an odd prime, and $\rho_{E, \ell}$ is not surjective, the image is contained in a maximal subgroup of $\mathrm{GL}_{2}(\ell)$. The options are:
(i) Borel subgroups, those of the shape $\left\{\left[\begin{array}{ll}* & * \\ 0 & *\end{array}\right]\right\}$,
(ii) Normalizers of Cartan subgroups. Cartan subgroups are subgroups isomorphic to $\mathbb{F}_{\ell}^{\times} \times \mathbb{F}_{\ell}^{\times}$or $\mathbb{F}_{\ell^{2}}^{\times}$.
(iii) Exceptional subgroups (projective image A_{4}, S_{4} or A_{5}).

Results

Theorem (Serre, 1972)

If $\ell \geq 17$ is prime, the image of $\rho_{E, \ell}$ cannot be contained in an exceptional subgroup.

Theorem (Mazur, 1978)

The largest prime ℓ for which $\rho_{E, \ell}\left(G_{\mathbb{Q}}\right)$ is contained in a Borel subgroup is 163.

Theorem (Bilu-Parent-Rebolledo, 2013)

If $\ell \geq 17$, the image cannot be contained in the normalizer of a split Cartan subgroup.

Applications of Galois representations - 1/4

- Suppose ℓ is an odd prime and $a^{\ell}+b^{\ell}=c^{\ell}$ with $a b c \neq 0$. Let

$$
E: y^{2}=x\left(x-a^{\ell}\right)\left(x+b^{\ell}\right)
$$

- This elliptic curve has full 2-torsion. Level-lowering gives that if $\rho_{E, \ell}$ is irreducible, it must arise from a modular form of level 2. This contradiction proves Fermat's last theorem.
- There are a number of other applications of this technique: proving that $0,1,8$ and 144 are the only perfect powers in the Fibonacci sequence, solving generalized Fermat equations, etc.

Applications of Galois representations - 2/4

- Let p be an odd prime and suppose that $N \in\{2,3,7\}$ is a quadratic non-residue mod p. Let $K=\mathbb{Q}\left(\sqrt{(-1)^{(p-1) / 2} p}\right)$ and σ the non-trivial automorphism of K.
- Suppose that E / K is an elliptic curve with a cyclic N-isogeny
$\lambda: E \rightarrow E^{\sigma}$ defined over K so that $\lambda(E[N])=(\operatorname{ker} \lambda)^{\sigma}$.

Theorem (Shih, 1978)

Assume the notation above. Then $K(E[p]) / \mathbb{Q}$ is Galois. If $\rho_{E, p}\left(G_{K}\right)=\left\{g \in \operatorname{GL}_{2}(p): \operatorname{det}(g) \in\left(\mathbb{F}_{p}^{\times}\right)^{2}\right\}$, then $\operatorname{PSL}_{2}\left(\mathbb{F}_{p}\right)$ is a quotient of $\operatorname{Gal}(K(E[p]) / \mathbb{Q})$.

Applications of Galois representations - 3/4

- Properties of the Weil pairing imply that $\mathbb{Q}\left(\zeta_{n}\right) \subseteq \mathbb{Q}(E[n])$. When are they equal?

Theorem (González-Jiménez, Lozano-Robledo, 2016)

If E / \mathbb{Q} is an elliptic curve and $\mathbb{Q}(E[n])=\mathbb{Q}\left(\zeta_{n}\right)$, then $n \leq 5$.

Theorem (Daniels, Lozano-Robledo)

If E is an elliptic curve and $\mathbb{Q}(E[n])=\mathbb{Q}(E[m])$ is an abelian extension of \mathbb{Q} with $m \neq n$, then $m, n \in\{1,2,3,4,6\}$.

Applications of Galois representations - 4/4

- Suppose that E / \mathbb{Q} is an elliptic curve, $\alpha \in E(\mathbb{Q})$, and ℓ is a prime number. What is the density of primes p for which the order of $\alpha \in E\left(\mathbb{F}_{p}\right)$ is coprime to ℓ ?
- The order is determined by the image of $\omega_{E, \ell^{\infty}}: G_{\mathbb{Q}} \rightarrow \mathbb{Z}_{\ell}^{2} \rtimes \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$.
- If E does not have $\mathrm{CM}, \ell=2$ and $\alpha+T$ is not twice a point in $E(\mathbb{Q})$ for any $T \in E(\mathbb{Q})_{\text {tors }}$, then the density of odd order reductions is $\geq 1 / 224$.

Definition

- Let H be a subgroup of $\mathrm{GL}_{2}(N)$ containing - l. The modular curve Y_{H} parametrizes elliptic curves with H-level structure.
- An H-level structure on E / \bar{k} is an equivalence class $[\iota]_{H}$ where $\iota: E[N] \rightarrow(\mathbb{Z} / N \mathbb{Z})^{2}$ is an isomorphism. We say $\iota \sim \iota^{\prime}$ if $\iota=h \circ \iota^{\prime}$ for some $h \in H$.
- The curve Y_{H} can be compactified by adding cusps X_{H}^{∞} and one obtains a smooth projective curve $X_{H}=Y_{H} \cup X_{H}^{\infty}$.

Properties of modular curves (1/2)

- The curve X_{H} is geometrically connected if and only if det : $H \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$is surjective.
- Suppose E / k is an elliptic curve with $j(E) \neq 0,1728$. Then, there is an isomorphism $\iota: E[N] \rightarrow(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $\left(E,[\iota]_{H}\right) \in Y_{H}(k)$ if and only if the image of $\rho_{E, N}$ is contained in a subgroup of $\mathrm{GL}_{2}(N)$ conjugate to H.
- If $H \subseteq H^{\prime}$ are two subgroups, there is an induced morphism $X_{H} \rightarrow X_{H^{\prime}}$ sending H-level structures to H^{\prime}-level structures.

Properties of modular curves (2/2)

- The curve X_{H} has good reduction at primes not dividing N.
- If J_{H} is the Jacobian of X_{H}, Hecke operators act as endomorphisms of J_{H}.

Theorem (R, Sutherland, Voight, Zureick-Brown)

If det : $H \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$is surjective, every simple factor of J_{H} is isogenous to J_{f}, for some weight 2 newform f for $\Gamma_{0}\left(N^{2}\right) \cap \Gamma_{1}(N)$.

Subgroup labels

- Let H be an open subgroup of $\mathrm{GL}_{2}(\hat{\mathbb{Z}})$. We define the level of H to be the smallest positive integer N so that H contains all $M \in \mathrm{GL}_{2}(\hat{\mathbb{Z}})$ with $M \equiv I(\bmod N)$.
- We assign a label to H of the form N.i.g.n, where N is the level of $H, i=\left[\mathrm{GL}_{2}(\hat{\mathbb{Z}}): H\right], g(H)=$ genus of X_{H}, and n is a tiebreak.
- We identify H with its image under $\mathrm{GL}_{2}(\hat{\mathbb{Z}}) \rightarrow \mathrm{GL}_{2}(N)$.
- From Faltings's theorem, we know $X_{H}(\mathbb{Q})$ is finite if $g(H) \geq 2$.

Non-split Cartan subgroups (1/2)

- Let $\ell>2$ be a prime and ϵ be a quadratic non-residue modulo ℓ.
- The ring $\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)[\sqrt{\epsilon}]$ is a free $\mathbb{Z} / \ell^{n} \mathbb{Z}$-module of rank 2. This gives an embedding $\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)[\sqrt{\epsilon}]^{\times} \rightarrow \mathrm{GL}_{2}\left(\ell^{n}\right)$. The image is a non-split Cartan subgroup.
- Let $N_{n s}\left(\ell^{n}\right)$ be its normalizer. Concretely,

$$
N_{n s}\left(\ell^{n}\right)=\left\{\left[\begin{array}{cc}
a & b \epsilon \\
\pm b & \pm a
\end{array}\right]: a, b \in \mathbb{Z} / \ell^{n} \mathbb{Z},(a, b) \neq(0,0)\right\}
$$

Let $X_{\mathrm{ns}}^{+}\left(\ell^{n}\right)=X_{N_{n s}\left(\ell^{n}\right)}$.

Non-split Cartan subgroups (2/2)

Theorem (Chen, 2004)

Up to isogeny,

$$
J\left(X_{\mathrm{ns}}^{+}\left(\ell^{n}\right)\right) \simeq \prod_{f} J_{f}
$$

where the product runs over all weight 2 newforms for $\Gamma_{0}\left(\ell^{2 r}\right)$, $0 \leq r \leq n$ with trivial character and the sign of $L(f, s)$ equal to -1 .

Arithmetically maximal

- We say $H \subseteq \mathrm{GL}_{2}(\hat{\mathbb{Z}})$ of level N is arithmetically maximal if
- $\operatorname{det}(H)=\hat{\mathbb{Z}}^{\times}$,
- H contains an element conjugate to $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ or $\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right]$ in $\mathrm{GL}_{2}(N)$, and
- $X_{H}(\mathbb{Q})$ is finite but $X_{K}(\mathbb{Q})$ is infinite for every K properly containing H.
- Our focus is on understanding $X_{H}(\mathbb{Q})$ for prime-power level H.

Modular curves example (1/3)

- The subgroup $N_{\mathrm{ns}}(5)$ is an index 10 maximal subgroup of $\mathrm{GL}_{2}(5)$.
- It has label 5.10.0.1. The corresponding modular curve $X_{\text {ns }}^{+}(5)$ has genus zero and is isomorphic to \mathbb{P}^{1}.
- If E / \mathbb{Q} is an elliptic curve and $j(E) \neq 0,1728$, then $\rho_{E, 5}\left(G_{\mathbb{Q}}\right) \subseteq N_{\text {ns }}(5)$ if and only if there is a rational number t so that

$$
j(E)=\frac{2^{12} 5^{4}(t-10)\left(t^{2}+5 t+10\right)^{3}}{\left(t^{2}-20\right)^{5}}
$$

Modular curves example (2/3)

- The subgroup $H=\left\langle\left[\begin{array}{cc}3 & 4 \\ 0 & 12\end{array}\right],\left[\begin{array}{cc}10 & 19 \\ 13 & 0\end{array}\right]\right\rangle \subset \mathrm{GL}_{2}(25)$ is an index 5 subgroup of $N_{\text {ns }}(5)$.
- It has label 25.50.2.1. The corresponding modular curve is

$$
X_{H}: y^{2}=25 x^{6}+20 x^{5}+50 x^{4}+50 x^{3}+25 x^{2}+50 x-15 .
$$

- The Jacobian J_{H} is isogenous to J_{f}, where f is the newform with LMFDB label 625.2.a.a. This means that J_{H} / \mathbb{Q} has analytic rank 2.

Modular curves example (3/3)

- The two points at infinity on X_{H} are rational, and their images on the j-line are $j=0$ and $j=2^{4} \cdot 3^{2} \cdot 5^{7} \cdot 23^{3}$.
- If E / \mathbb{Q} is an elliptic curve with $j(E)=2^{4} \cdot 3^{2} \cdot 5^{7} \cdot 23^{3}$, then $\rho_{E, 5^{\circ}}\left(G_{\mathbb{Q}}\right)$ has index 50 in $\mathrm{GL}_{2}\left(\mathbb{Z}_{5}\right)$.

Theorem (Balakrishnan, Dogra, Müller, Tuitman, Vonk)

The only rational points on X_{H} are the two points at infinity.

2015 results about $\ell=2$

Theorem (R, Zureick-Brown, 2015)

Let E / \mathbb{Q} be a non-CM elliptic curve, $H=\operatorname{im} \rho_{E, 2 \infty}\left(G_{\mathbb{Q}}\right)$ and $\bar{H}=\langle H,-I\rangle$. Then, either

- $\left[\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right): \bar{H}\right] \leq 48$ or
- $j(E)$ is in the following list:

$$
\begin{aligned}
& 2^{11}, \quad 2^{4} \cdot 17^{3}, \quad 4097^{3} / 2^{4}, \quad 257^{3} / 2^{8}, \quad-857985^{3} / 62^{8}, \\
& 919425^{3} / 496^{4}, \quad-3 \cdot 18249920^{3} / 17^{16}, \\
& -7 \cdot 1723187806080^{3} / 79^{16} .
\end{aligned}
$$

Results for $\ell=3$

Theorem (R, Sutherland, Zureick-Brown)

Let E / \mathbb{Q} be a non-CM elliptic curve, $H=\rho_{E, 3 \infty}\left(G_{\mathbb{Q}}\right)$. Then,

- X_{H} is a genus zero modular curve with infinitely many rational points, or
- $H \subseteq N_{\mathrm{ns}}(27)$.
- In the first case, the index can be as large as 72 and the level as large as 27.
- We have a complete classification of im $\rho_{E, 3 \infty}$ for non-CM elliptic curves with a cyclic 3-isogeny.

Introduction

3-adic images for non-CM E / \mathbb{Q}

Results for $\ell=5$

Theorem

Let E / \mathbb{Q} be a non-CM elliptic curve, $H=\rho_{E, 5^{\circ}}\left(G_{\mathbb{Q}}\right)$. Then,

- X_{H} is a genus zero modular curve with infinitely many rational points, or
- $j(E)=2^{4} \cdot 3^{2} \cdot 5^{7} \cdot 23^{3}$ or $2^{12} \cdot 3^{3} \cdot 5^{7} \cdot 29^{3} / 7^{5}$, or
- $H \subseteq N_{\mathrm{ns}}(25)$.
- The second j-invariant listed above comes from an exceptional point on 25.75.2.1.

Results for $\ell=7$

Theorem

Let E / \mathbb{Q} be a non-CM elliptic curve, $H=\rho_{E, 7 \infty}\left(G_{\mathbb{Q}}\right)$. Then,

- X_{H} is a genus zero modular curve with infinitely many rational points, or
- $j(E)=3^{3} \cdot 5 \cdot 7^{5} / 2^{7}$, or
- H is contained in a group with label 49.147.9.1 or 49.196.9.1, or
- $H \subseteq N_{\mathrm{ns}}(49)$.
- The j-invariant above arises for an elliptic curve E / \mathbb{Q} that does not have a cyclic 7 -isogeny, but for which E / \mathbb{F}_{p} does for all primes p of good reduction.

Results for $\ell=11$

Theorem

Let E / \mathbb{Q} be a non-CM elliptic curve, $H=\rho_{E, 11^{\infty}}\left(G_{\mathbb{Q}}\right)$. If $H \neq \mathrm{GL}_{2}\left(\mathbb{Z}_{11}\right)$, then either

- $H=N_{\text {ns }}(11)$, or
- $j(E)=-11^{2}$ or $-11 \cdot 131^{3}$, or
- $H \subseteq N_{\mathrm{ns}}(121)$.
- In the last case, the height of $j(E)$ is larger than about $10^{10^{200}}$.

Results for $\ell=13$

Theorem (BC, BDMTV, K, Z)

Let E / \mathbb{Q} be a non-CM elliptic curve and $H=\rho_{E, 13 \infty}\left(G_{\mathbb{Q}}\right)$. Then

- X_{H} is a genus zero modular curve with infinitely many rational points, or
- H has label 13.91.3.2 and

$$
\begin{aligned}
j(E) & =2^{4} \cdot 5 \cdot 13^{4} \cdot 17^{3} / 3^{13} \text { or } \\
& -2^{12} \cdot 5^{3} \cdot 11 \cdot 13^{4} / 3^{13} \text { or } \\
& 13 \cdot 929 \cdot 150593365056^{3} / 305^{13} .
\end{aligned}
$$

General method

- We enumerate the arithmetically maximal subgroups H of $\mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$.
- For most such H, we compute a model for X_{H}.
- We find all the rational points on X_{H}.

Fast point counting on modular curves over \mathbb{F}_{q}

- In 2015, David Zywina gave a method for counting points on X_{H} / \mathbb{F}_{p} without having an equation for X_{H}.
- We produce a refinement of that method that counts the points on X_{H} / \mathbb{F}_{q} that runs in time $\tilde{O}\left(q^{1 / 2}\right)$ that doesn't require computing Hilbert class polynomials.
- This method allows us to compute the numerator of the zeta function for X_{H} / \mathbb{F}_{p} even if the genus of X_{H} is moderate.

The analytic rank of J_{H}

- If $H \leq \mathrm{GL}_{2}(N)$, the simple isogeny factors of J_{H} have the form J_{f}, where f is a newform for $\Gamma_{1}\left(N^{2}\right)$ and character χ of conductor dividing N.
- Combining the fast point counting code with tabulation of newforms allows us to compute the decomposition of J_{H}.
- We have computed the analytic rank of J_{H} for every arithmetically maximal H of level ℓ^{n} with $\ell \leq 37$.

A genus 3 curve

- Let $X:-x^{3} y+x^{2} y^{2}-x y^{3}+3 x z^{3}+3 y z^{3}=0$. This curve has label 27.36.3.1. There is an automorphism $\iota: X \rightarrow X$ interchanging x and y.
- The quotient $X /\langle\iota\rangle$ is a rank one elliptic curve E. From the previous slide, $J_{X} \sim E \times A$ with A / \mathbb{Q} having rank zero.
- We therefore have a map $\tau: X(\mathbb{Q}) \rightarrow J_{X}(\mathbb{Q})_{\text {tors }}$ given by $\tau(P)=P-\iota(P)$. We compute $J_{X}(\mathbb{Q})_{\text {tors }}$ and take preimages to find $X(\mathbb{Q})$.

Canonical models of modular curves (1/2)

- We use a variety of tricks to compute canonical models of higher genus modular curves by finding a basis for the space of holomorphic differentials on X_{H}.
- For a non-hyperelliptic curve of genus ≥ 3, the canonical ring $\oplus_{d \geq 0} H^{0}\left(X_{H}, \Omega^{\otimes d}\right)$ is generated in degree 1.
- We find the map from X_{H} to the j-line by representing E_{4} and E_{6} as ratios of elements in the canonical ring.

Canonical models of modular curves $(2 / 2)$

- We show that E_{4} is a ratio of an element of weight k and weight $k-4$ in the canonical ring if

$$
k \geq \frac{2 e_{\infty}+e_{2}+e_{3}+5 g-4}{2(g-1)}
$$

- We use this method to compute the canonical models for $X_{\mathrm{ns}}^{+}(27), 27.729 .43 .1, X_{\mathrm{ns}}^{+}(25)$, and 25.625.36.1.
- We can show that the modular curves corresponding to 27.729 .43 .1 and 25.625 .36 .1 have no points over \mathbb{Q}_{3} and \mathbb{Q}_{5}, respectively.

Cases we can't handle: $X_{\text {ns }}^{+}(27)(1 / 2)$

- This curve has genus 12 , and 8 rational CM points.
- Its Jacobian factors as a product of two simple abelian varieties of dimensions 6 , each with analytic rank 6.
- There is a genus 3 modular curve X_{H} defined over $\mathbb{Q}\left(\zeta_{3}\right)$ so that $X_{\mathrm{ns}}^{+}(27) \rightarrow X_{H} \rightarrow X_{\mathrm{ns}}^{+}(9)$.

Cases we can't handle: $X_{\text {ns }}^{+}(27)(2 / 2)$

- We computed the canonical model for X_{H}. It has at least 13 points on it over $\mathbb{Q}\left(\zeta_{3}\right)$.
- We found a $D \in \operatorname{Div}^{0}\left(X_{H}\right)$ whose image in J_{H} has order 3 and used this to construct an étale cover of X_{H}.
- Each twist of the 9 twists of this étale cover maps to an elliptic curve over $\mathbb{Q}\left(\zeta_{3}\right)$, but one such elliptic curve has rank 2 .

Cases we can't handle: $X_{\text {ns }}^{+}(25)$

- We computed the canonical model for this curve. It has 8 rational CM points.
- The Jacobian factors as a product of three abelian surfaces, and one dimension 8 abelian variety.
- If there were a map from $X_{\text {ns }}^{+}(25) \rightarrow C$ for a genus two curve C, we could probably use that to provably find the rational points on $X_{\text {ns }}^{+}(25)$.

Cases we can't handle: 49.147.9.1

- This curve is a degree 7 cover of $X_{\mathrm{ns}}^{+}(7) \simeq \mathbb{P}^{1}$. We have a simple plane model of degree 7 .
- Point searching finds a single rational point above $j=0$.
- The Jacobian is irreducible with analytic rank 9. The torsion subgroup is trivial, and the curve does not have any automorphisms over \mathbb{Q}.

Cases we can't handle: 49.196.9.1

- This curve is a degree 7 cover of $X_{\mathrm{sp}}^{+}(7) \simeq \mathbb{P}^{1}$. We have a simple plane model of degree 7 .
- Point searching finds a single rational point above $j=0$.
- The Jacobian has analytic rank 9 and factors as the product of two abelian varieties of dimension 3 and 6 . The torsion subgroup is trivial, and there are no automorphisms defined over \mathbb{Q}.

Cases we can't handle: $X_{\text {ns }}^{+}(17)(1 / 3)$

- Pietro Mercuri and René Schoof computed a canonical model for the genus 6 curve $X=X_{\mathrm{ns}}^{+}(17)$.
- By Chen's result, if $f \in S_{2}\left(\Gamma_{0}\left(17^{2}\right)\right)$ is a newform with sign -1 , then A_{f} is a factor of $J(X)$.
- Thus, there is a map $X_{\mathrm{ns}}^{+}(17) \rightarrow E$ where $E: y^{2}+x y+y=x^{3}-x^{2}-199 x-510$.
- The degree of $X_{0}(289) \rightarrow E$ is 72 . What's the degree of $X_{\mathrm{ns}}^{+}(17) \rightarrow E$?

Cases we can't handle: $X_{\text {ns }}^{+}(17)(2 / 3)$

- Using a Math. Comp. paper of Cremona from 1995, we compute that the degree is 9 .
- We can guess the induced map on differentials $\phi^{*}: \Omega_{E} \rightarrow \Omega_{X}$ and using this produce the morphism $\phi: X \rightarrow E$.
- We have $E(\mathbb{Q}) \cong \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}=\langle P, T\rangle$.
- The Mordell-Weil sieve shows that if $Q \in X(\mathbb{Q})$ and $\phi(Q)=k P+r T$, then either $(k, r) \in\{(-2,0),(-1,0),(-1,1),(0,0)\}$ or $|k|>6.9 \cdot 10^{40}$.

Cases we can't handle: $X_{\text {ns }}^{+}(17)(3 / 3)$

- We can use the non-trivial torsion subgroup to construct an étale double cover $Y \rightarrow X$.
- This Y has genus 11 and the five-dimensional "new" piece is irreducible.
- The map $Y \rightarrow E$ ensures that $J(Y)$ has a rational 2-torsion point. Can we use this to compute the rank of $J(Y)$?

Summary

- We develop new methods to count points on X_{H} / \mathbb{F}_{q} and compute the decomposition of $J\left(X_{H}\right)$.
- We provably find all the rational points on X_{H} for all ℓ-power level arithmetically maximal subgroups, with the following exceptions:
$X_{\mathrm{ns}}^{+}(27), X_{\mathrm{ns}}^{+}(25), X_{\mathrm{ns}}^{+}(49), X_{\mathrm{ns}}^{+}(121), 49.147 .9 .1$, and 49.196.9.1.

