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Setup

N ≥ 1, Y0(N) ↪→ X0(N) = Y0(N)
∐
{ cusps }, all over Q.

J0(N) = Jacobian of X0(N) (Abelian variety over Q).

C̃ = group of degree-0 divisors on X0(N) with cuspidal support
(formal cuspidal group)

C = image of C̃ in J0(N) = cuspidal subgroup of J0(N).

Manin–Drinfeld: C is a finite group

Note: C consists of rational torsion points of J0(N) if N is
square free (but not in general).



Example: the case where N is prime

If N is prime, then C is the cyclic subgroup generated by the

image of (∞)− (0) in J0(N). It has order n = num
(

N − 1
12

)
.

Theorem (Mazur, 1977)
The group C is the full group of rational torsion points of J0(N).

For example, C has order 5 if N = 11, order 11 if N = 23, etc.,
etc.

Mazur’s theorem was Ogg’s conjecture before it was proved in
the Eisenstein ideal article by Mazur.



Ogg in the 1970s

Invenliones math. 12, 105-111 (1971) 
 9 by Springer-Verlag 1971 

Rational Points of Finite Order 
on Elliptic Curves 

A. P. OCG* (Berkeley, California) 

If A is an abelian curve defined over the field of rational numbers 
Q, then by Mordell 's theorem the group AQ of rational points on A is 
of finite type: 

Ao_~Zr@F, 

where F is finite. According to Cassels [2, p.264], the folklore contains 
the conjecture that the order of F is bounded, and in particular there 
should be only a finite number of integers N such that some curve A 
has a rational point of order N. It is known [2, p.264] that N =  l - 10 
or 12 is possible, and that N = l l ,  14, 15, 16, 20, or 24 is impossible. 

In the present paper, we give a proof  that N =  17 is impossible, by 
a suitable modification of the method used by Billing and Mahler [1] 
to prove that N = 11 is impossible, and then make some general remarks 
on the modular  interpretation of the problem. 

1. Points of Order 17 
The method of Billing and Mahler (slightly modified here for com- 

putational convenience) goes as follows. Suppose we have an abelian 
curve A over a field k, together with a point P on A, rational over k 
and of order N > 9 .  We may assume that A is a non-singular cubic in 
the projective plane, and that the group law on A is that three points 
on A add up to zero if and only if they are collinear. Now no three of 
the four points 0, P, 3 P, 4 P  are collinear (since, for example, if P, 3 P, 
4P  were collinear, then 8P  would be 0, contrary to N>9) ,  and so we 
can choose our coordinate system in the plane so that these points have 
coordinates 0 = (0, l, 0), 

P = ( 1 , 0 ,  0), 

3P=(o,o, 1), 
4P=(1 ,  1, 1). 

* Partially supported by NSF GP-14066, and a member during 1970-1971 of the 
Miller Institute for Basic Research in Science. 



The general Ogg conjecture

William Stein filed his PhD thesis in 2000 and began computing
with modular symbols, modular forms, modular curves,. . . even
while a graduate student. Stein’s work (especially Sage) made
it practical to compute C for N not too big (say less than 1000)
and to have some confidence in the following conjecture.

Conjecture (Ogg’s conjecture for N ≥ 1)
If N is a positive integer, the group of rational torsion points of
J0(N) is contained in C.



A related problem

Can one give a neat (conjectural) characterization of C inside
the group of all torsion points of J0(N)?



Literature on Ogg’s conjecture

In 2013 and 2014, Masami Ohta proved Ogg’s conjecture for N
square free away from the 2- and 3-primary parts of the finite
abelian groups C and J0(N)(Q)tors. In addition, he treats the
3-primary parts if N is not divisible by 3. To do this, he finds the
order of J0(N)(Q)tors and compares the result with Takagi’s
1997 computation of the order of C.

Other authors who have worked on aspects of the problem
include D. Lorenzini, Conrad–Edixhoven–Stein, H. Yoo and
Y. Ren.



Our perspective

The aim is to prove Ogg’s conjecture by a “pure thought” that
avoids computing the orders of the groups being compared.

We succeed at least when N is square free and for p-primary
parts if p is at least 5 and prime to N.



A convention

From now on, fix N ≥ 1 and a prime p not dividing 6N.

We localize abelian groups systematically at the ideal (p) of Z
but commit the serious abuse of notation by writing simply “A”
instead of “A(p)” when A is an abelian group.





Our first theorem

To state said theorem, we need a bunch of notation. Let M be
the space of weight-2 holomorphic modular forms on Γ0(N) and
let S ⊆ M be the space of cusp forms. Let E ⊆ M be the
complementary space of Eisenstein series. On all three spaces
M, S and E , we have the classical Hecke operators Tn for
n ≥ 1. (Note to experts: we use Tq instead of wq for q a prime
dividing N.) Consider the Hecke ring

T̃ = Z[. . . ,Tn, . . .] ⊆ End M

along with the corresponding rings

T = Z[. . . ,Tn, . . .] ⊆ End S, TE = Z[. . . ,Tn, . . .] ⊆ End E

for S and E .

The asymmetry in the notation (T instead of TS) reflects our
perspective that T̃ and its quotient T are the objects of primary
interest, while TE is of secondary importance.



Our first theorem

The Eisenstein ideal of T̃ is the kernel of the quotient map
T̃→ T defined by restriction to S. The Eisenstein ideal of T is
the image in T of the Eisenstein ideal of T̃.

For each prime q not dividing N, the operator 1 + q − Tq of T̃
annihilates E and thus belongs to the Eisenstein ideal of T̃.

Theorem
If Σ is a finite set of prime numbers containing the primes
dividing N, then the Eisenstein ideal of T̃ is generated by the
1 + q − Tq with q not in Σ.

Reminder: we are localizing away from 6N.



The Eisenstein ideal of T

Let I ⊆ T be the Eisenstein ideal (the image in T of the
Eisenstein ideal of T̃).

Corollary
If Σ is a finite set of prime numbers containing the primes
dividing N, then the Eisenstein ideal I is generated by the
1 + q − Tq ∈ T with q not in Σ.



Application: rational torsion points are Eisenstein

The Eichler–Shimura formula shows that the finite group
J0(N)(Q)tors is annihilated by the operators 1 + q − Tq in T for
all q prime to N and the order of J0(N)(Q)tors. Hence we obtain
the following consequence:

Corollary
The group J0(N)(Q)tors is annihilated by the Eisenstein ideal
of T. In symbols, I ⊆ AnnT J0(N)(Q)tors.



Our second theorem

Recall that C is the cuspidal subgroup of J0(N). Our second
theorem is a quantitative “small annihilator” version of the
qualitative statement that C is “big.”

Theorem
The annihilator of C in T is contained in the Eisenstein ideal I.



Ogg’s conjecture

Theorem
The annihilator of C in T is contained in the Eisenstein ideal I.

Corollary (of the first theorem)
The group J0(N)(Q)tors is annihilated by the Eisenstein ideal
of T. In symbols, I ⊆ AnnT J0(N)(Q)tors.

These two statements combine to prove that the annihilators of
C and J0(N)(Q)tors are equal. Ogg’s conjecture follows directly
from this equality plus the following cyclicity result à la Mazur.

Proposition
For each maximal ideal m of T, the kernel J0(N)(Q)tors[m] is a
cyclic T/m-vector space.



Ogg’s conjecture

By Nakayama’s lemma, the cyclicity in the proposition shows
that the Pontryagin dual of J0(N)(Q)tors is a cyclic T-module. An
evident quotient is the Pontraygin dual of C. Since the module
and its quotient are cyclic and have identical annihilators, they
are equal.



Discussion of the first theorem

The first theorem concerns the Eisenstein ideal of T̃, which is
the kernel of the restriction map T̃→ End E . The image of this
map is the Eisenstein Hecke ring, whose Z-rank is 2r − 1,
where r is the number of primes dividing N.

The Eisenstein ideal of T̃ contains these elements:
1 + q − Tq for all primes q prime to N,
(Tq − 1)(Tq − q) for all primes q dividing N,

the product
∏

q

(Tq − 1), taken over all q dividing N.

Taken together, these elements generate the Eisenstein ideal:
the quotient of the formal polynomial ring Z[. . . ,Tn, . . .] by the
elements is a free Z-module of the same rank as TE .

To prove the theorem is to show that these “bulleted” elements
all lie in the ideal generated by the 1 + q − Tq with q outside Σ.



Some notation

Let Ĩ ⊆ T̃ be the Eisenstein ideal of T̃ and let J̃ ⊆ Ĩ be the ideal
generated by the 1 + q − Tq with q not in Σ. Then J̃ ⊆ Ĩ. The
theorem states the opposite inclusion, to the effect that the
bulleted elements all lie in J̃.

We prove that these elements lie in J̃ by studying Galois
representations.

To show Ĩ ⊆ J̃, it’s convenient to work locally, “prime” (i.e.,
maximal ideal m ⊂ T̃ ) by prime. We can assume that J̃ ⊆ m;
otherwise, there is nothing to prove. This assumption means
that m contains almost all of the 1 + q − Tq, which is the same
as saying that the mod p representation of Gal(Q/Q)
associated to m is a reducible representation.



The Hecke ring (revisited)

The Hecke ring T̃ is (by definition) a Z(p)-algebra. The
associated Q-algebra T̃⊗Q is a product of number fields
because of a result of Coleman–Edixhoven (“On the
semi-simplicity of the Up-operator on modular forms”).

To get p-adic Galois representations, we consider for a moment
the p-adic completion T̃⊗ Zp, which is a semi-local ring: a
product of local rings

∏
m

Tm, with the factors indexed by the

maximal ideals of T̃. Each Tm is an order in a product of p-adic
integer rings; the Qp-algebra Tm ⊗Zp Qp is then a product of
p-adic fields.



The Hecke ring (revisited)

Without losing information, we can and will now replace T̃ by its
p-adic completion T̃⊗ Zp. In fact, let’s go further and fix a
maximal ideal m as “above” and replace T̃ by Tm.

We can and will assume that J̃ ⊆ m, and we write simply J̃ for
the ideal J̃m that J̃ generates in T̃m.



Galois representations

There is a natural Galois representation

ρ : Gal(Q/Q) −→ GL(2, T̃)

with determinant equal to the p-adic cyclotomic character
χ : Gal(Q/Q)→ Z∗p for which

trace(ρ(Frobq)) = Tq ∈ T̃

for almost all q. By Čebotarev, trace(ρ) takes values in T̃; and
J̃ ⊆ T̃ is the ideal generated by the image of the function

trace(ρ)− χ− 1 : Gal(Q/Q)→ T̃.

Using this characterization of J̃, we show that J̃ contains all of
the bulleted relations.



Example: N=11

In the case N = 11 that was considered by Mazur in 1977, the
ring T̃ (before localization) is the order of index 5 in Z× Z, with
(say) the second factor corresponding to the 1-dimensional
space of Eisenstein series and the first factor corresponding to
the elliptic curve J0(11). Take p = 5. After p-adic completion,
the ring T̃ is { (a,b) ∈ Zp |a ≡ b (mod 5) }. It has a single
maximal ideal. The tensor product T̃⊗Qp is a product of two
copies of Qp. The Galois representation that we have just
introduced is the direct sum of the irreducible 2-dimensional
representation arising from V5(J0(11)) and the 2-dimensional
representation 1⊕ χ.



Example of a bulleted relation

Drew and Rachel suggested that I make my slides available to
people who attend my talk. I’m including a the next slide for
offline reading with the idea that I’ll never have time to discuss it
during my “live” talk.



Example of a bulleted relation

One of the bulleted relations is (Tq − 1)(Tq − q) for q a prime
dividing N. Take such a q, and note that q and p are distinct.
Let Frobq ∈ Gal(Q/Q) be a Frobenius element for q: one
chooses first a decomposition group for q in Gal(Q/Q) and
then an element of the decomposition group that maps to the
usual Frobenius element in the unramified quotient of the
decomposition group.

One checks, component by component, that

T 2
q − trace ρ(Frobq)Tq + q = 0.

The representation ρ could well be ramified at q, but the
semisimplification of its restriction to the decomposition group
is unramified. Modulo J̃, trace ρ(Frobq) ≡ 1 + χ(Frobq) = 1 + q,
so that

T 2
q − (1 + q)Tq + q ∈ J̃;

the expression in question is (Tq − q)(Tq − 1).



Discussion of the second theorem

Recall the statement:

Theorem
The annihilator of C in T is contained in the Eisenstein ideal I.

In the first theorem, we observed that C ⊂ J0(N) is small; in
fact, we showed that the group of rational torsion points
of J0(N) is small. The second theorem states that C is big in
the sense that it has a small annihilator. We prove it by
exhibiting a subquotient of C with small annihilator.

At least morally (and quite possibly literally), everything that we
need is contained in the work of Kubert–Lang and Stevens.



Discussion of the second theorem

Recall:
N ≥ 1, Y0(N) ↪→ X0(N) = Y0(N)

∐
{ cusps }, all over Q.

J0(N) = Jacobian of X0(N) (Abelian variety over Q).
C̃ = group of degree-0 divisors on X0(N) with cuspidal
support (formal cuspidal group)
C = image of C̃ in J0(N) = cuspidal subgroup of J0(N).
Manin–Drinfeld: C is a finite group

Let U be the group of modular units on X0(N), considered
modulo scalars. Then C = C̃/div(U), where div is the divisor
map.

(We continue to tacitly tensor Z-modules with Z(p) and thus are
secretly considering the p-primary part of C.)



Modular units and Eisenstein series

Here’s the slogan of the moment:
The divisor of a modular unit u is the residue of the
differential dlog u.

We complicate things slightly by inserting a middleman. Define
the Eisenstein series Du by the formula

2πiDu dz = dlog u

and introduce the residue map on Eisenstein series

Res f = 2πi
∑

c ∈ cusps

Resc(f (z) dz)[c].

Then div u = Res(Du) for all u ∈ U.



Example

Let d be a divisor of N with d 6= 1. A suitable power of the
eta-quotient η(dz)/η(z) is a modular unit on X0(N). Let

hd =

(
η(dz)

η(z)

)12N

. Then Dhd = 12N(e(dz)− e(z)), where

e = − 1
12

+
∞∑

n=1

(∑
d |N

d
)
qn

is the phantom Eisenstein series of weight 2 on SL(2,Z). Here,
q is the standard variable 22πiz and is no longer a prime
number.

Note that the q-expansion of this Eisenstein series is
Z(p)-integral.



A key proposition

Proposition
If u is a modular unit, then the q-expansion of Du is
Z(p)-integral.

I suspect that this proposition is implicit in the work of
Kubert–Lang and Stevens. Our article has a “pure thought”
proof using the arithmetic of the arithmetic surface Y0(N)Z[ 1

N ].



Some notation

Let M = M2(Γ0(N),Z(p)) be the space of weight-2 modular
forms on Γ0(N) whose q-expansions at∞ are Z(p)-integral. Let
S and E be the submodules of M consisting of cusp forms and
Eisenstein series with Z(p)-integral q-expansions. The quotient

M/(S ⊕ E)

is a classic “module of fusion” whose annihilator as a T-module
is easily seen to be the Eisenstein ideal I.

We claim that the cuspidal group C has a subquotient
isomorphic to M/(S ⊕ E). It follows from this claim that the
annihilator of C is contained in I, which is precisely the
statement of the second theorem.



Proof of the claim

First of all,

C = C̃/div(U) = C̃/Res(DU) � C̃/Res(E),

in view of the Proposition. Then the exact sequence

0→ S → M Res−→ C̃,

makes M/(S ⊕ E) into a submodule of C̃/Res(E) and
therefore a subquotient of C̃/Res(DU) = C.



About the cover photo

This photo shows a detail from Mathemalchemy, a mixed-media
art installation that resulted from a collaboration between Ingrid
Daubechies and Canadian artist Dominique Ehrmann.


