Heavenly elliptic curves over quadratic fields

VaNTAGe - May 13, 2025

Christopher Rasmussen

Wesleyan University

Cam McLeman

University of Michigan-Flint

Outline

- Meavenly abelian varieties: What and Why
- ② Finiteness results: old (K fixed, ℓ varies) and new (ℓ fixed, K varies)
- heavenly: strikingly similar to complex multiplication
- Characterization of "heavenly" among elliptic curves with CM

A "Large" Galois representation

K number field

 ℓ rational prime ($\ell \neq 2$ for convenience)

M maximal extension of $\overline{K}(t)$ unramified outside $t=0,1,\infty$

 $M^{(\ell)}$ maximal pro- ℓ subextension

$$1 \longrightarrow \overline{\pi} \longrightarrow \pi \longrightarrow G_K \longrightarrow 1$$

$$\star \colon \qquad \sigma \mapsto \left(\eta \mapsto \left(\tilde{\sigma} \eta \tilde{\sigma}^{-1} \right) \right)$$

$$G_K \xrightarrow{\star} \operatorname{Out} \overline{\pi} \longrightarrow \operatorname{Out} \overline{\pi}^{(\ell)}$$

Ihara's Question

Definition

- ・天: maximal pro- ℓ extension of $K(\mu_{\ell^{\infty}})$ unramified away from ℓ
- $oldsymbol{\sqcup}$: fixed field of ker Φ_K

Question (Ihara 1986)

For $K = \mathbf{Q}$, does $\mathbf{\dot{\mu}} = \mathbf{\Xi}$? (Does the mountain reach the heavens?)

Theorem (Brown 2012 (+ Sharifi 2002))

For $K = \mathbf{Q}$ and ℓ an odd regular prime, $\mathbf{\dot{\mu}} = \mathbf{\Xi}$.

Theorem (Anderson-Ihara (1988))

Suppose X/K is a smooth projective curve and $f: X \to \mathbf{P}^1$ is a morphism such that:

- $K \subseteq \coprod = \coprod (\mathbf{Q}, \ell)$,
- f branches over only $\{0,1,\infty\}$, and
- the galois closure $f^{\mathrm{gal}}\colon X^{\mathrm{gal}} o \mathbf{P}^1$ has degree ℓ^N .

If $J := \operatorname{Jac}(X)$, then $K(J[\ell^{\infty}]) \subseteq \mathbf{L}$.

But such $f: X \to \mathbf{P}^1$ are rare (in bounded degree). Both to understand this rarity, and to study the extension \mathbf{x}/\mathbf{u} , we can search for a more general object: which abelian varieties A/K satisfy $K(A[\ell^{\infty}]) \subseteq \mathbf{x}$?

Heavenly abelian varieties

Definition

An abelian variety A/K is called **heavenly** (at ℓ over K) if $K(A[\ell^{\infty}]) \subseteq \mathbf{\Xi}$.

$$\begin{split} \mathcal{H}(K,g,\ell) &:= \left\{ [A]_K : \dim A = g, \ A \text{ heavenly at } \ell \right\}, \\ \mathcal{H}(K,g) &:= \left\{ ([A]_K,\ell) : [A]_K \in \mathcal{H}(K,g,\ell) \right\}. \end{split}$$

$K(A[\ell^\infty])/K$ unramified away from ℓ

- A/K good reduction outside $\{\ell\}$ (Serre-Tate)
- $\sharp \mathcal{H}(K,g,\ell) < \infty$ (Shafarevich Conjecture / Faltings / Zarhin)

$K(A[\ell^\infty])/K(\mu_\ell)$ pro- ℓ

- $[K(A[\ell]):K(\mu_\ell)]=\ell^m$ as $K(A[\ell^\infty])/K(A[\ell])$ is always pro- ℓ
- $[K(E[\ell]):K(\mu_{\ell})]=1$ or ℓ (for elliptic curve case $\ell = 1$)

Heavenly abelian varieties

- Suppose A/K is heavenly at ℓ , of dimension g.
- χ : ℓ -adic cyclotomic character, modulo ℓ
- Form of $ho_{A,\ell}\colon G_K o\operatorname{GL}_{2g}(\mathbf{F}_\ell)$ is constrained:

$$\rho_{A,\ell} \sim \begin{pmatrix} \chi^{i_1} & \star & \cdots & \star \\ & \chi^{i_2} & \cdots & \star \\ & & \ddots & \vdots \\ & & & \chi^{i_{2g}} \end{pmatrix}, \qquad \begin{cases} \det \rho_{A,\ell} = \chi^g, \\ \\ \sum_r i_r = g. \end{cases}$$

• g = 1: E/K heavenly $\implies E/K$ admits K-rational ℓ -isogeny.

Finiteness Conjecture (K fixed, varying ℓ)

Conjecture (2008)

Fix
$$K$$
 and g . Then $\sharp \mathcal{H}(K,g) < \infty$. Equivalently, $\ell \gg_{K,g} 0 \implies \mathcal{H}(K,g,\ell) = \emptyset$.

The conjecture is open, but many partial or conditional results are known ...

- $\sharp \mathcal{H}(K,g) < \infty$ under GRH [R.-Tamagawa 2017]
- $\sharp \mathcal{H}^{\mathrm{CM}}(K,g) < \infty$ [Ozeki 2013]
- $\sharp \mathcal{H}^{\text{pot-CM}}(K,g) < \infty$ [Bourdon 2015; Lombardo 2018]

- $\sharp \mathcal{H}(K,1) < \infty$ for $[K:\mathbf{Q}] \leq 3$ [R.-Tamagawa 2008, 2017]
- Uniformity ([$K: \mathbf{Q}$] odd) under GRH [R.-Tamagawa 2017]
- Uniformity (in $[K:\mathbf{Q}]$) with pot-CM, g=1 [Bourdon 2015]

And more: [Arai-Momose 2014], [Melistas 2023], [Okumura 2020], [Das-Sarkar 2023], ...

New perspective: fixed ℓ , varying K

Question: What finiteness results are available for fixed ℓ and varying K?

• Some control on *K* is required:

$$E/K$$
 good outside ℓ , $L=K(E[\ell]) \implies E \times_K L$ heavenly

- Solution: require $[K : \mathbf{Q}] \leq d$.
- Issues around base-change (and twists):

$$E/K$$
 heavenly, K'/K finite extn \implies $E \times_K K'$ heavenly over K'

• Solution: track $\overline{\mathbf{Q}}$ -isomorphism classes (count $[A]_{\overline{\mathbf{Q}}}$, not $[A]_K$).

New perspective: fixed ℓ , varying K

$$\overline{\mathcal{H}}(K,g,\ell) := \big\{ [A]_{\overline{\mathbf{Q}}} : [A]_K \in \mathcal{H}(K,g,\ell) \big\}, \quad \overline{\mathcal{H}}_F(d,g,\ell) := \bigcup_{K \colon [K:F] \leq d} \overline{\mathcal{H}}(K,g,\ell).$$

Theorem (McLeman-R. (2024))

Let F be a number field. Suppose d>1 and $\ell>2d+1$. Then $\sharp\overline{\mathcal{H}}_F(d,1,\ell)<\infty$.

Corollary

Fix
$$\ell \geq 7$$
. $\sharp \overline{\mathcal{H}}_{\mathbf{Q}}(2,1,\ell) < \infty$.

Remark

 $\overline{\mathcal{H}}_{\mathbf{Q}}(2,1,\ell_0)$ is infinite for $\ell_0=2$; likely infinite for $\ell_0=3,5$.

$\sharp \overline{\mathcal{H}}_{\mathit{F}}(d,1,\ell) < \infty$

Theorem (McLeman-R. (2024))

Let F be a number field. Suppose d>1 and $\ell>2d+1$. Then $\sharp\overline{\mathcal{H}}_F(d,1,\ell)<\infty$.

Sketch of Proof.

- Set $\mathcal{I}_{S,d} := \text{ set of "degree at most } d$ " S-integral points on $Y_1(\ell)$
- Known: $\mathcal{I}_{S,d}$ is finite for fixed S and "sufficiently many cusps on $X_1(\ell)$ ". Application of [Siegel 1929 / Corvaja-Zannier 2004 / Levin 2009, 2016]
- Identify $\overline{\mathcal{H}}_F(d,1,\ell)$ as a subset of $\mathcal{I}_{S,d}$, by choosing $S=\{\mathfrak{l}\subseteq\mathcal{O}_F:\mathfrak{l}\mid\ell\}.$
- (Unfortunately, the argument is not effective.)

Towards doubly uniform finiteness results

- Could we hope for a finiteness result when both ℓ and K vary?
- Literally? No:
 - hopeless if we allow $\ell < 7$
 - hopeless unless we exclude trivial base change constructions
 - More serious: fix A_0/\mathbf{Q} ; there could be many A/K with

$$A \not\cong A_0 \times_{\mathbf{Q}} K, \quad \text{but} \quad A \times_K \overline{\mathbf{Q}} \cong A_0 \times_{\mathbf{Q}} \overline{\mathbf{Q}}.$$

- One approach: Let \mathcal{H}° be the set of pairs $([A]_K,\ell)$ for which
 - $\ell \geq 7$ and $[K:\mathbf{Q}]=2$
 - A/K is heavenly at ℓ
 - there does not exist A_0/\mathbf{Q} , heavenly at ℓ , with $A\times_K \overline{\mathbf{Q}}\cong A_0\times_{\mathbf{Q}} \overline{\mathbf{Q}}$.

Conjecture

The set \mathcal{H}° is finite.

Towards doubly uniform finiteness results

Another approach: let $\mathcal{R} \subseteq \mathbb{N} \times \mathbb{N}$ be the set of pairs (ℓ, Δ) for which:

- $\ell \geq 7$ is prime,
- there exists quadratic K with $|\Delta_K| = \Delta$,
- there exists A/K heavenly at ℓ , and
- there does not exist A_0/\mathbf{Q} , heavenly at ℓ , with $A\times_K\overline{\mathbf{Q}}\cong A_0\times_{\mathbf{Q}}\overline{\mathbf{Q}}$.

Conjecture

The set \mathcal{R} is finite.

Proposition (McLeman-R. 2025)

The set \mathcal{H}° is finite if and only if \mathcal{R} is finite.

Why believe \mathcal{R} is finite?

- Horizontal fibers are finite:
 - $\sharp \mathcal{H}(K,1) < \infty$.
- Vertical fibers are finite:

•
$$\sharp \overline{\mathcal{H}}_{\mathbf{Q}}(2,1,\ell) < \infty.$$

- * E/K heavenly with $\ell > 163$ are non-CM [Bourdon 2015]
- E/K heavenly with $\ell > 19$ are balanced [McLeman-R. 2024]
- Significant evidence suggests that balanced curves always have CM.

Balanced abelian varieties

- K number field, ℓ prime, $\mathfrak{l} \mid \ell$, A/K heavenly at ℓ (For simplicity, assume ℓ is unramified in K/\mathbb{Q})
- $K_{\mathfrak{l}}^{\mathrm{ss}}$: minimal extension with $A \times_K K_{\mathfrak{l}}^{\mathrm{ss}}$ semistable
- ${}^{\centerdot}\ (\pi)=\mathfrak{m}\subseteq\mathcal{O}\subseteq K_{\mathfrak{l}}^{\mathrm{SS}}$
- Fix $\xi \in \overline{K}_{\mathfrak{l}}$ such that $\xi^{\ell-1} = \pi$
- Fundamental character:

$$\psi_{\mathfrak{l}} \colon J_{\mathfrak{l}} \to \mathbf{F}_{\ell}^{\times} \cong \mu_{\ell-1}, \qquad \sigma \mapsto \frac{\xi^{\sigma}}{\xi} \bmod \mathfrak{m}.$$

• $\psi^e_{\mathrm{I}}=\chi$ [Serre, 1972]

Balanced abelian varieties

- Characters of components of $A[\ell]$ (as a group scheme) must be powers of $\psi_{\mathfrak{l}}$. [Tate-Oort 1970]
- So there exist $\{j_r\}$ such that

$$\begin{pmatrix} \psi_{\mathfrak{l}}^{j_{1}} & \star & \cdots & \star \\ & \psi_{\mathfrak{l}}^{j_{2}} & \cdots & \star \\ & & \ddots & \vdots \\ & & & \psi_{\mathfrak{l}}^{j_{2g}} \end{pmatrix} \sim \rho_{A,\ell} \sim \begin{pmatrix} \chi^{i_{1}} & \star & \cdots & \star \\ & \chi^{i_{2}} & \cdots & \star \\ & & \ddots & \vdots \\ & & & \chi^{i_{2g}} \end{pmatrix}.$$

- The $\{j_r\}_r$ partition into pairs satisfing give $j_s+j_t=e$.
- We say A/K is **balanced** at \mathfrak{l} if $j_r = \frac{e}{2}$ for all r.

Balanced abelian varieties

Proposition (McLeman-R. (2024))

- For any $g \ge 1$ and any $n \ge 1$, there exists a constant B(n,g) with the following property. If $[K:\mathbf{Q}]=n$ and A/K is a g-dimensional abelian variety which is heavenly at $\ell > B(n,g)$, then A/K is balanced at every $\mathfrak{l} \mid \ell$.
- $B(2,1) \le 19$.

Sketch of Proof.

If $\ell\gg 0$ and A/K is not balanced, it is possible to demonstrate a Frobenius element whose trace violates the Weil bound.

Comparing balanced and CM curves

Suppose ℓ is odd, $\mathfrak{p} \nmid \ell$, $a_{\mathfrak{p}} = \operatorname{tr}\operatorname{Frob}_{\mathfrak{p}}$, $L = \mathbf{Q}(\sqrt{-\ell})$.

Proposition (Classical)

Suppose E/K has complex multiplication by \mathcal{O}_L and good reduction away from ℓ . The splitting behavior of $\mathfrak p$ in KL/K is related to $a_{\mathfrak p}$ as follows:

$$\mathfrak{p}$$
 splits $\Longrightarrow a_{\mathfrak{p}}^2 \equiv 4 \cdot \mathbf{N}\mathfrak{p} \mod \ell$, \mathfrak{p} inert $\Longrightarrow a_{\mathfrak{p}} = 0$.

Proposition (McLeman-R. (2024))

Suppose E/K is heavenly at ℓ , and is balanced at \mathfrak{l} for at least one $\mathfrak{l} \mid \ell$. The splitting behavior of \mathfrak{p} in KL/K is related to $a_{\mathfrak{p}}$ as follows:

$$\mathfrak{p}$$
 splits $\Longrightarrow a_{\mathfrak{p}}^2 \equiv 4 \cdot \mathbf{N}\mathfrak{p} \mod \ell$, \mathfrak{p} inert $\Longrightarrow a_{\mathfrak{p}} \equiv 0 \mod \ell$.

- A tempting idea appears to fall short ...
 - ...the proposition is *not* strong enough to imply that a balanced and non-CM elliptic curve gives a violation of Sato-Tate.
- We can characterize, among E/K with complex multiplication and good reduction away from ℓ , which ones are heavenly.

Theorem (McLeman-R. (2024))

Suppose E/K has complex multiplication and good reduction away from ℓ , and assume $K=\mathbf{Q}(j(E))$. Then

- E is heavenly at ℓ if and only if $\operatorname{tr}(\rho_{E,\ell}(G_K)) \neq \mathbf{F}_{\ell}$.
- In this case, $\operatorname{tr} \bigl(\rho_{E,\ell}(G_K) \bigr) = (\frac{2}{\ell}) \cdot \mathbf{F}_{\ell}^{\times 2} \cup \{0\}.$
- In this case, if $\ell > 7$, then E is balanced at every $\ell \mid \ell$.

Computational Results

- We determined a finite set \mathcal{X} that contains all pairs $([E]_K, \ell)$, where
 - $K = \mathbf{Q}(j(E))$ is quadratic,
 - E/K has complex multiplication,
 - E/K is heavenly at ℓ .
- The set $\mathcal X$ has 240 pairs. In principle, $\mathcal X$ may contain "false positives," but if one believes traces of Frobenius are "independent," this is *extremely* unlikely.
- Inside \mathcal{X} , one isogeny class over $K=\mathbf{Q}(\sqrt{6})$, contains curves with everywhere good reduction, which are heavenly at both $\ell=2$ and $\ell=3$.
- Assuming ERH, we extended a calculation of Karpisz to show $|\Delta_K| < 5 \cdot 10^5$ and $\ell > 163$ implies $\mathcal{H}(K,1,\ell) = \emptyset$.

Thank you!