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An elliptic curve E over Q is the closure in P2 of a smooth curve

y2 = x3 + Ax + B,

where A,B ∈ Q. (Smoothness amounts to 4A3 + 27B2 6= 0.)

Who cares?
I care, because they’re

the simplest varieties whose Q-points are not fully understood,
the simplest projective algebraic groups of dimension ≥ 1.

E (Q) is an abelian group.
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Rational points on elliptic curves

Theorem (Mordell 1922)
The abelian group E (Q) is finitely generated.

Thus E (Q) ' Zr ⊕ T for some r ≥ 0 and finite abelian group T .

Theorem (Mazur 1977)
The possibilities for the torsion subgroup T are

Z/mZ for m ≤ 12 excluding 11, and
Z/2Z× Z/2nZ for n ≤ 4.

What about the rank r := rkE (Q)?



Is the rank bounded?

Poincaré 1901: What are the possibilities for the rank?

Question
Is rkE (Q) bounded as E varies over all elliptic curves over Q?

Early authors conjectured YES: Néron 1950, Honda 1960.
Later, most conjectured NO: Cassels 1966, Tate 1974,
Mestre 1982, Silverman 1986, 2009, Brumer 1992,
Ulmer 2002, Farmer–Gonek–Hughes 2007.
Recent heuristics for YES: Rubin and Silverberg 2000,
Granville 2006, Watkins 2015.

We will present a different heuristic, which models ranks,
Selmer groups, and Shafarevich–Tate groups simultaneously
and predicts that rkE (Q) ≤ 21 for all but finitely many E
(Granville/Watkins also suggested 21).



Each E is isomorphic to a unique one given by

y2 = x3 + Ax + B

with A,B ∈ Z such that there is no prime p with p4|A and p6|B .
E := the set of such elliptic curves.
all but finitely many E means all but finitely many E ∈ E .
heightE := max(|4A3|, |27B2|) for each E ∈ E .
E≤H := {E ∈ E : heightE ≤ H}.

Proposition

#E≤H ∼ H5/6, ignoring constants.

Sketch of proof:
About H1/3 choices for A, and about H1/2 choices for B .



Selmer group

Let n ≥ 2. Taking Galois cohomology of

0 −→ E [n] −→ E (Q)
n−→ E (Q) −→ 0

yields

0 // E (Q)

nE (Q)

global // H1(Q,E [n])

im(global)? Too hard.

im(local)? Easier.

Seln E := {c : β(c) ∈ im(local)} is an upper bound for
E (Q)

nE (Q)
.
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Selmer groups and Shafarevich–Tate groups

For each E , one has

0 −→ E (Q)

nE (Q)
−→ Seln E

n-Selmer group
−→ X[n]

n-torsion of the

Shafarevich–Tate group

−→ 0.

Setting n = pe and taking lim−→e
yields

0 −→ E (Q)⊗ Qp

Zp
−→ Selp∞ E −→X[p∞] −→ 0.

We will model these sequences.



Model for Selp E
Equip Vn := F2n

p with the quadratic form

Q(x1, . . . , xn, y1, . . . , yn) := x1y1 + · · ·+ xnyn.

Call a subspace Z ⊆ Vn maximal isotropic if Q|Z = 0 and Z⊥ = Z .

Conjecture (P.–Rains 2012)
The distribution of dimSelp E as E ranges over E equals

limn→∞ of the distribution of dim(Z ∩W )
for random maximal isotropic subspaces Z ,W of Vn.

Lots of reasons to believe this:
A variant for many quadratic twist families is proved for p = 2
(Heath-Brown 1994, Swinnerton-Dyer 2008, Kane 2013).
Selp E is an intersection of two maximal isotropic subgroups
(P.–Rains 2012).
Compatible with de Jong 2002 and Bhargava–Shankar 2015–
theorems on Average(#Seln).
“Large q limit” function field variant proved
(Feng–Landesman–Rains 2020+).



From Selp to Selpe and Selp∞

BKLPR 2015: Generalizing leads to
a conjectural distribution for Selpe E ;
a conjectural distribution for the whole sequence

0 −→ E (Q)⊗ Qp

Zp
−→ Selp∞ E −→X[p∞] −→ 0;

for each r ≥ 0, a conjectural distribution for X[p∞]
as E ranges over rank r curves in E ,
in terms of coker(A)tors for a random matrix A ∈ Mn(Zp)alt
conditioned on rk(kerA) = r .

Reasons to believe these:
Compatible with conjectures of Delaunay & Jouhet 2000–2014.
A variant for many quadratic twist families is proved for p = 2
(Alexander Smith 2020+).
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How to model an elliptic curve E of height H

Using growing functions η(H) and X (H) to be specified later,
1. Choose n ∈ Z>0 of size about η(H) of random parity.
2. Choose random AE ∈ Mn(Z)alt with |entries| ≤ X (H).
3. Define random variables

X′
E := (cokerA)tors and rk′E := rkZ(kerA).

These are supposed to model X(E ) and rkE (Q).

The functions η(H) and X (H) are chosen so that

X (H)η(H) = H1/12+o(1);

it turns out that this ensures that for rank 0 curves, the averages of
X′

E and X(E ) match (conditionally on standard conjectures).



Consequences of the model
Theorem (Park–P.–Voight–Wood 2019)
The following hold with probability 1:

#{E ∈ E≤H : rk′E = 0} = H20/24+o(1)

#{E ∈ E≤H : rk′E = 1} = H20/24+o(1)

#{E ∈ E≤H : rk′E ≥ 2} = H19/24+o(1)

#{E ∈ E≤H : rk′E ≥ 3} = H18/24+o(1)

...

#{E ∈ E≤H : rk′E ≥ 20} = H1/24+o(1)

#{E ∈ E≤H : rk′E ≥ 21} ≤ Ho(1),

#{E ∈ E : rk′E > 21} is finite.

For comparison: Elkies found
infinitely many elliptic curves of rank at least 19, and
one elliptic curve of rank at least 28.



Elliptic curves with prescribed torsion subgroup

torsion subgroup # curves our rank bound known example
trivial H5/6 21 19
Z/2Z H1/2 13 11
Z/3Z H1/3 9 7
Z/4Z H1/4 7 6
Z/5Z H1/6 5 4
Z/6Z H1/6 5 5
Z/7Z H1/12 3 2
Z/8Z H1/12 3 3
Z/9Z H1/18 2 1
Z/10Z H1/18 2 1
Z/12Z H1/24 2 1

Z/2Z× Z/2Z H1/3 9 8
Z/2Z× Z/4Z H1/6 5 5
Z/2Z× Z/6Z H1/12 3 3
Z/2Z× Z/8Z H1/24 2 1



Summary

Heuristics for Selmer groups led to a model for the complete
package consisting of ranks, Selmer groups, and
Shafarevich–Tate groups.
Many aspects of the model are supported by theorems.
In the model, the pseudo-ranks of all but finitely many elliptic
curves over Q are bounded by 21.
This suggests that rkE (Q) is uniformly bounded as E varies.

Also,
Similar heuristics may apply to elliptic curves over global fields,
after excluding curves definable over proper subfields.
Similar heuristics may apply to abelian varieties of fixed
dimension over a fixed number field.



Elliptic curves over global fields: heuristics

K : a global field
EK : a set of representatives for the isomorphism classes of
elliptic curves over K
BK := lim supE∈EK

rkE (K ).

Example
Our heuristic predicts 20 ≤ BQ ≤ 21.

A naive adaptation of our heuristic would suggest that

20 ≤ BK ≤ 21 for every global field K .

Question
How does this compare with reality?

Not well. . .



Elliptic curves over global fields: reality

Theorem (Tate–Shafarevich 1967, Ulmer 2002)
If K is a global function field, then BK =∞.

Even for number fields, BK can be arbitrarily large
(but maybe still always finite):

Theorem (Park–P.–Voight–Wood)
There exist number fields K of arbitrarily high degree such that
BK ≥ [K : Q].

Number fields for which BK is large include
number fields in anticyclotomic towers and
certain multiquadratic fields.



Elliptic curves over global fields: reconciliation

Question
How do we explain the differences between our heuristic and reality?

The elliptic curves of high rank used to prove that BK is large for
some K are special in that they are definable over a proper subfield
of K . Exclude them!

E ◦K : the set of E ∈ EK such that
E is not a base change of a curve from a proper subfield.

B◦K := lim sup
E∈E ◦K

rkE (K ).

Speculation
It is possible that B◦K <∞ for every global field K .

On the other hand, it is not true that B◦K ≤ 21 for all number fields:
Shioda’s rank 68 elliptic curve y2 = x3 + t360 + 1 over C(t)
specializes to show that B◦K ≥ 68 for many number fields K .



Abelian varieties
Question
For abelian varieties A over number fields K , is there a bound on
rkA(K ) depending only on dimA and [K : Q]?

Fix g . By restriction of scalars and Zarhin’s trick, one reduces
to considering one algebraic family Fg of principally polarized
abelian varieties over Q.
Define the height of A ∈ Fg in terms of coefficients of defining
polynomials.
The number of abelian varieties in Fg of height ≤ H
is bounded by a polynomial in H.
If, as for elliptic curves, there is a model involving a
pseudo-rank rk′A such that Prob(rk′A ≥ r) gets divided by at
least a fixed fractional power of H each time r is incremented
by 1, then the pseudo-ranks are bounded with probability 1.
Thus maybe actual ranks are bounded too.

Guess: YES!


