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Setup
Take a curve like  The dihedral group 

 acts on points on this curve by moving those 
points around as follows (  a cube root of unity):

w2 = z6 + z3 + 1.
G = D6

ζ3

  and  r : (z, w) → (ζ3z, − w) s : (z, w) → ( 1
z3

,
w
z3 )

We call this group the automorphism group of the 
curve. It is always a finite group.



Projective nonsingular algebraic curves (defined over 
) are equivalent to compact Riemann surfaces.ℂ
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G = D6
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We call this group the automorphism group of the 
curve. It is always a finite group.



We will focus on compact Riemann surfaces.


The genus of a Riemann surface is the number of holes 
in the surface.

A Riemann surface is a one dimensional complex manifold (a 
topological space that looks like complex plane locally). 

Setup



 a compact Riemann surface of 
genus  with  (finite)
X

g G = Aut(X)

Setup

conformal homeomorphisms
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We call the set of orbits of the 
action  and this quotient is 
also a compact Riemann surface.
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genus  with  (finite) 


We call the set of orbits of the 
action  and this quotient is 
also a compact Riemann surface.

X
g G = Aut(X)

X/G

Setup

The natural map  gives us a 
branched covering branched at  places.

X → X/G
r



X

X/G

degree d d : 1

x

x

x

x

Setup



Monodromy
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Monodromy
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degree 4



Lifts of the blue loop correspond to a permutation of the 
points , , , and :

          send  to the endpoint of the lift which starts at . 	 


For our example,  goes to  in this permutation and  
goes to  in this permutation. 


Repeat for each branch point to create a permutation group 
which we call the monodromy. 


The group is a subgroup of  where  is the degree of the 
cover. 

P1 P2 P3 P4
Pi Pi

P1 P3 P2
P4

Sd d

Monodromy



 a compact Riemann surface of 
genus  with   (finite) 
gives us a branched covering 

, branched at  places.

X
g G = Aut(X)

X → X/G r

Setup

If  has genus  and those                                           
branch points have monodromy of order , 
respectively, then 

X/G h
m1, …, mr

[h; m1, …, mr]
is the signature of the action of  on .G X



Which groups can be the automorphism group 
of a Riemann surface of a particular genus, and 
with what signature (or monodromy) and what 
quotient genus?

Question



There is an idea called “principle of finite extensions”
which roughly says that if a result is true over some 
extension field, it is true over a finite extension field.

If a group acts on a curve over , it also acts on a 
curve over some finite extension of .

ℂ
ℚ

See Grothendieck’s EGA (s/o to Jeff Achter for the argument).

Motivation



Knowledge of automorphism groups and the 
corresponding monodromy has important applications: 

Motivation

• inverse Galois theory


• the study of the mapping class group 


• Jacobian varieties



Question

Which groups can be the automorphism group 
of a Riemann surface of a particular genus, and 
with what signature (or monodromy) and what 
quotient genus?

A recent AMS Contemporary Mathematics book has 
a paper with maaaaany open problems in the area 
(written with coauthors Allen Broughton and Aaron Wootton).

https://www.ams.org/books/conm/776/


A finite group G acts on a compact Riemann surface X of 
genus g >1 if and only if there are elements of the group

a1, b1, …, ah, bh, c1, …, cr

which generate the group, satisfy the following equation, 
h

∏
i=1

[ai, bi]
r

∏
j=1

cj = 1G

 is the genus of h X/G

Riemann’s Existence Theorem	

[ai, bi] = a−1
i b−1

i aibi
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Riemann’s Existence Theorem	

A finite group G acts on a compact Riemann surface X of 
genus g >1 if and only if there are elements of the group

and so that  satisfy the Riemann Hurwitz formulamj = ord(cj)

g = 1 + |G | (h − 1) +
|G |

2

r

∑
j=1 (1 −

1
mj ) .

a1, b1, …, ah, bh, c1, …, cr

which generate the group, satisfy the following equation, 
h

∏
i=1

[ai, bi]
r

∏
j=1

cj = 1G

generating vector:  (a1, b1, …, ah, bh, c1, …, cr)



Circa 2000, Thomas Breuer devised an algorithm to 
determine all automorphism groups of Riemann 
surfaces for a fixed genus, assuming a complete 
classification of groups of sufficiently large order.

He coded the algorithm in GAP, and ran it up to genus .48
For many more details, see Breuer’s book “Characters and 
automorphism groups of compact Riemann surfaces”.

Large automorphism groups up to  on Marston 
Conder's webpage.

g = 101

This data up to genus 15 (and a lot of additional data) is on the 
LMFDB. More data and higher genus coming “soon”!

https://www.math.auckland.ac.nz/~conder/
https://www.math.auckland.ac.nz/~conder/
https://www.lmfdb.org/HigherGenus/C/Aut/
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Riemann’s Existence Theorem	

A finite group G acts on a compact Riemann surface X of 
genus g >1 if and only if there are elements of the group

and so that  satisfy the Riemann Hurwitz formulamj = ord(cj)

g = 1 + |G | (h − 1) +
|G |

2

r

∑
j=1 (1 −

1
mj ) .

a1, b1, …, ah, bh, c1, …, cr

which generate the group, satisfy the following equation, 
h

∏
i=1

[ai, bi]
r

∏
j=1

cj = 1G

signature: [h; m1, …, mr]
generating vector:  (a1, b1, …, ah, bh, c1, …, cr)



Potential signatures are those signatures 
which satisfy the Riemann Hurwitz formula: 

[h; m1, …, mr]

Actual signatures are those which also have a generating 
vector associated to them.

g = 1 + |G | (h − 1) +
|G |

2

r

∑
j=1 (1 −

1
mj ) .

For a fixed group …G



  Example

These are not always the same. 

The signature  is a potential signature for 
 since it satisfies Riemann-Hurwitz for a curve 

of genus 2 and a group of order 9 with elements of 
order 3 and 9. 


But this signature cannot be an actual signature for 
abelian groups. There’s an issue with the lcm of the . 


[0; 3,3,9]
G = C9

mi



Sometimes they are badly not the same for a fixed group.

  Example

Take  for an odd prime . Then  

is a potential signature for  but there is only 
one element of order 2 in this group.


That one element certainly doesn’t generate the 
whole group!

q = pn p [0; 2, 2,…, 2
r>4

]

SL(2,q)



Easy to compute.

Hard to compute.

Potential signatures are those signatures 
which satisfy the Riemann Hurwitz formula: 

[h; m1, …, mr]

Actual signatures are those which also have a generating 
vector associated to them.

g = 1 + |G | (h − 1) +
|G |

2

r

∑
j=1 (1 −

1
mj ) .



Our Question

Which groups only have a finite number of 
potential signatures which fail to be actual 
signatures? 

We say such groups act with almost all signatures 
(or are AAS).



With a very small number of exceptions, any signature 
of the form  


for  and  is a potential signature.ni ∈ 𝒪(G) ti ∈ ℤ+

 is the order set. 𝒪(G) = {Ord(g) : g ∈ G} − {1}

[h; n1, …, n1

t1

, n2, …, n2

t2

, …, ns, …, ns

ts

]



Theorem

The commutator (or derived) subgroup  
contains an element of order every .


 may be generated by elements of order  for 
each .

 

[G : G]
ni ∈ 𝒪(G)

G ni
ni ∈ 𝒪(G)

I.

II.

A group G is AAS if and only if:

 is the order set. 𝒪(G) = {Ord(g) : g ∈ G} − {1}



The commutator subgroup  contains an 
element of order every .


 may be generated by elements of order  for 
each .

 

[G : G]
ni ∈ 𝒪(G)

G ni
ni ∈ 𝒪(G)

I.

II.



If II. is false, then potential signatures [0; ni, ni, … . , ni

≥4

]

If I. is false, then potential signatures  for  
are never actual signatures.

[h; ni] h > 0

are never actual signatures.

The commutator subgroup  contains an 
element of order every .


 may be generated by elements of order  for 
each .

 

[G : G]
ni ∈ 𝒪(G)

G ni
ni ∈ 𝒪(G)

I.

II.



If II. is true, then we exhibit generating vectors for any 
signature  for  beyond a certain bound.[h; m1, …, mr] r

If I. is true, we exhibit generating vectors for any 
signature  with  beyond a certain bound.[h; m1, …, mr] h

The commutator subgroup  contains an 
element of order every .


 may be generated by elements of order  for 
each .

 

[G : G]
ni ∈ 𝒪(G)

G ni
ni ∈ 𝒪(G)

I.

II.



Any non-abelian finite simple group is AAS.

Theorem

Non-abelian simple groups all have commutator 
subgroup the full group.

I.

II. Take an element of order . The set of conjugates 
of that element is a set of elements of order  and 
which generate a normal subgroup. Since the 
group is simple, this is all of G.

ni
ni



Proposition

If a group G is AAS, then it is either a non-abelian 
-group, or a perfect group.p

A perfect group is one where the commutator subgroup is 
the whole group. 

Since the commutator subgroup must contain elements of 
every order in , any AAS group must be non-abelian.𝒪(G)
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Any non-abelian finite simple group is AAS.

Theorem



For each non-abelian simple group up to order            
10 000, what is the largest genus  so that there exists 
a potential signature for a curve of that genus which 
is, in fact, not an actual signature?

g

Question



For each non-abelian simple group up to order            
10 000, what is the largest genus  so that there exists 
a potential signature for a curve of that genus which 
is, in fact, not an actual signature?

g

many
^

Question



Well, at least for covers of ?ℙ1

Question

For each non-abelian simple group up to order           
10 000, what is the largest genus  so that there exists 
a potential signature for a curve of that genus which 
is, in fact, not an actual signature?

g

many
^



PSL(2,7) 210 [0; 2, 2, 2, 3] [0; 2, 2, 2, 4] [0; 2, 2, 2, 2, 2]

  PSL(2,9)A6 ≅ 31 [0; 2, 2, 2, 3] [0; 3, 4, 4]

PSL(2,11) 56 [0; 2, 2, 2, 3]

group g potential, but not actual 
signatures

PSL(2,16) [0; 3, 3, 5] [0; 2, 5, 5] [0; 5, 5, 5] [0; 3, 5, 5]817

[0; 4, 5, 6]
[0; 3, 4, 4][0; 2, 6, 6]

[0; 5, 5, 5]
[0; 4, 4, 5]

[0; 2, 4, 6]
[0; 3, 3, 5]

[0; 3, 5, 5] [0; 3, 6, 6]

1821 [0; 2, 5, 5]

[0; 5, 6, 6]

[0; 2, 5, 6]
[0; 3, 4, 6]

PSL(2,25) [0; 2, 4, 5]



, and PSL  forA5 (2,q)
q = 8, 13, 17, 19, 23, 27

Every potential signature is an actual signature.

A7 [0; 2, 3, 7]
[0; 2, 6, 6]

3150
[0; 2, 2, 2, ni]
[0; 2, 5, 5]

[0; 2, 5, 6] [0; 3, 3, 4]
[0; 2, 4, 5] [0; 2, 4, 6]

[0; 2, 2, 2, 2, 2]

[0; 2, 3, 8]

[0; 3, 4, 4]

[0; 2, 6, 6]

[0; 3, 5, 5] [0; 4, 4, 4]

[0; 2, 4, 5][0; 2, 4, 6]

[0; 3, 3, 4] [0; 3, 3, 5] [0; 3, 3, 6] [0; 3, 3, 11]
[0; 2, 2, 3, 3]

9900
[0; 2, 5, 5][0; 2, 4, 8] [0; 2, 5, 6]
[0; 2, 3,11]M11

group g potential, but not actual 
signatures

[0; 2, 2, 2, 2, 2]

(Potential signature with .)h = 0



Aaron Wootton

University of Portland

Classify all actions for the alternating group  

Question

with quotient genus .> 0
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Riemann’s Existence Theorem ( )h = 0

A finite group G acts on a compact Riemann surface X of 
genus g >1 if and only if there are elements of the group

and so that  satisfy the Riemann Hurwitz formulamj = ord(cj)

g = 1 − |G | +
|G |

2

r

∑
j=1 (1 −

1
mj ) .

c1, …, cr

which generate the group, satisfy the following equation, 
r

∏
j=1

cj = 1G

generating vector:  (c1, …, cr)



Equivalent Actions

Some generating vectors represent the “same” action

If  is one generating vector, so is  
for any .

(c1, …, cr) (cg
1 , …, cg

r )
g ∈ G

This defines an equivalence relation on generating vectors 
up to inner automorphisms of .G

conjugation by g



Two generating vectors are topologically equivalent if they 
are in the same orbit under the action of . Aut(G) × ℬr

What other “sameness” conditions are there?

Equivalent Actions

Artin braid group

eg.  to   (c1, …, cr) (c1, …ci−1, ci+1, c−1
i+1cici+1, …, cr)



ExampleExample

In genus 3,  acts with signature 
 in 3 topologically inequivalent ways.

H = C2 × C4
[0; 2, 2, 4, 4]

(1 2)(3 4)(5 6)(7 8) 
(1 3)(2 4)(5 7)(6 8) 
(1 5 2 6)(3 7 4 8)  
(1 7 2 8)(3 5 4 6)

(1 3)(2 4)(5 7)(6 8) 
(1 3)(2 4)(5 7)(6 8) 
(1 5 2 6)(3 7 4 8)  
(1 6 2 5)(3 8 4 7)

(1 3)(2 4)(5 7)(6 8) 
(1 4)(2 3)(5 8)(6 7) 
(1 5 2 6)(3 7 4 8)  
(1 5 2 6)(3 7 4 8) 

generating vectors



Any subgroup  will also act on  with a quotient 
structure This gives us many intermediate actions.

H ≤ G X
X/H .

But which action does a subgroup  correspond to for a 
particular action of ? (Assume  is genus 0 too.)

H
G X/H

X

X/G

X/H

Equivalent Actions



ExampleExample

In genus 3,  acts with signature 
 in 3 topologically inequivalent ways.

H = C2 × C4
[0; 2, 2, 4, 4]

(1 2)(3 4)(5 6)(7 8) 
(1 3)(2 4)(5 7)(6 8) 
(1 5 2 6)(3 7 4 8)  
(1 7 2 8)(3 5 4 6)

(1 3)(2 4)(5 7)(6 8) 
(1 3)(2 4)(5 7)(6 8) 
(1 5 2 6)(3 7 4 8)  
(1 6 2 5)(3 8 4 7)

(1 3)(2 4)(5 7)(6 8) 
(1 4)(2 3)(5 8)(6 7) 
(1 5 2 6)(3 7 4 8)  
(1 5 2 6)(3 7 4 8) 

 in genus 3 with signature [0; 2, 2, 2, 4].G = C2 × D4



ExampleExample

In genus 3,  acts with signature 
 in 3 topologically inequivalent ways.

H = C2 × C4
[0; 2, 2, 4, 4]

(1 2)(3 4)(5 6)(7 8) 
(1 3)(2 4)(5 7)(6 8) 
(1 5 2 6)(3 7 4 8)  
(1 7 2 8)(3 5 4 6)

(1 3)(2 4)(5 7)(6 8) 
(1 3)(2 4)(5 7)(6 8) 
(1 5 2 6)(3 7 4 8)  
(1 6 2 5)(3 8 4 7)

(1 3)(2 4)(5 7)(6 8) 
(1 4)(2 3)(5 8)(6 7) 
(1 5 2 6)(3 7 4 8)  
(1 5 2 6)(3 7 4 8) 

 in genus 3 with signature [0; 2, 2, 2, 4].G = D4 : C2



Another Equivalence

Two subgroups ,   are conformally                             
equivalent if there is an automorphism                                  

 so that .

H1 H2 ≤ Aut(X)

τ : X → X τH1τ−1 = H2

Note: conformally equivalent means the subgroups are 
conjugate in the full automorphism group of the surface. 



Two subgroups ,   are conformally (topologically) 
equivalent if there is an automorphism (homeomorphism) 

 so that .

H1 H2 ≤ Aut(X)

τ : X → X τH1τ−1 = H2

Note: it is clear that if an action is conformally equivalent then it 
is topologically equivalent, but the converse is not always true. 

Another Equivalence



• 1991/1994 González-Diez: for  cyclic subgroup of 
prime order then topological  conformal.


•1997 González-Diez and Hidalgo: 2 subgroups 
isomorphic to  in genus 9 where topological  
conformal


•2004 Cirre: gave an example where action was for a 
non-cyclic group (genus 3)


•2013 Carvacho: gave one dimensional families of 
groups of order  generalizing González-Diez/Hidalgo.

H1, H2
⇒

C8 ⇏

2n



The set of all isomorphism classes of Riemann surfaces 
topologically equivalent to the one defined by  is 
a closed, irreducible (non-smooth) subvariety of  
denoted by .

(H, s, σ)
ℳg

ℳg(H, s, σ)

The set of all classes of Riemann surfaces in 
up to conformal equivalence is the normalization of 

. (González-Diez, Harvey  1992) 

ℳg(H, s, σ)

ℳg(H, s, σ)

Fix genus , , signature , and generating vector .g H ≤ G s σ

Motivation



• Using already known complete lists of groups which act on 
Riemann surfaces for a particular genus, we search for 
isomorphic but not conjugate subgroups .


• Compare the generating vectors of  and , and then 
determine if they are topologically equivalent actions. 


• If they are, we know  is a non-normal 
subvariety in the singular locus of .

H1, H2 ≤ G

H1 H2

ℳg(H1, s, σ)
ℳg

We search for  which are topologically but 
not conformally equivalent.

H1, H2 ≤ Aut(X)

The Problem



Example

The group  acts in each odd genus with 
signature  and  is isomorphic to two 
non-conjugate subgroups of this group.

C2 × Dg+1
[0; 2, 2, 2, g+1] C2

2

For every genus  the group  acts with signature 
 in one hyperelliptic way.

g ≥ 3 C2
2

s = [0; 2,…,2
g+3

]

e.g. Accola-Maclachlan curve is a non-normal point



Example

For every genus  the group  acts with signature 
 in one hyperelliptic way.

g ≥ 3 C2
2

s = [0; 2,…,2
g+3

]

The group  acts in each even genus with signature 
 and  is isomorphic to two non-

conjugate subgroups of this group.

Dg
[0; 2, 2, 2, 2, g] C2

2

e.g. Wiman curve of type II is a non-normal point



Example

For every genus  the group  acts with signature 
 in one hyperelliptic way.

g ≥ 3 C2
2

s = [0; 2,…,2
g+3

]

The group  acts in each even genus with signature 
 and  is isomorphic to two non-

conjugate subgroups of this group.

Dg
[0; 2, 2, 2, 2, g] C2

2

So, for each g > 2, the moduli space  contains a non-
normal subvariety of type .

ℳg
ℳg(C2

2 , s, σh)



Example

The group  acts with signature 
 and  is isomorphic to two non-

conjugate subgroups of this group.

C2(g−1) ⋊ C2
[0; 2, 2, 2, 2] D2(g−1)

For each odd integer ,  acts with signature 
 in one way up to topological equivalence.

g > 3 D2(g−1)
[0; 2, 2, 2, 2, 2]

This gives us first examples of action of non-abelian 
groups giving non-normal subvarieties. 



The End


