
Quadratic Points on Modular Curves and
Fermat-type Equations

Ekin Özman

Bogazici University

June 8, 2021



Diophantine Equations and the Absolute Galois group
of Q

One of the most famous problems in number theory is :
Finding solutions of Diophantine Equations

xn + yn + zn = 0⇒ Fermat’s Equation
Axn + Byn + Czn = 0⇒ Generalized Fermat’s Equation
xm + yn + zk = 0⇒ “twisted” Fermat’s Equation

Absolute Galois group of Q, GQ = Gal(Q̄/Q). Understand this!
To understand GQ we look at its representations:

ρ : GQ → GL2(Fp)

Let E [p] be the p-torsion subgroup in E(C),GQ acts on E [p].
We obtain a representation

ρp : GQ → Aut(E [p]) ∼= GL2(Fp)



FLT

Theorem (Wiles, Taylor-Wiles)
The equation

FLTn : xn + yn = zn

has no nonzero integer solutions if n > 2.

Strategy of The Proof:
To find an elliptic curve corresponding a proposed solution
of FLTp

To show that this curve has properties conflicting with each
other

1 Modularity Theorem (Wiles, Taylor-Wiles)
2 Level Lowering Theorem (Ribet)
3 Irreducibility of Galois representations(Mazur)

ρE ,p : GQ → Aut(E [p]) ∼= GL2(Fp)



Irreducibility of Galois representations(Mazur)

A key ingredient in the proof of FLTp was that for big enough p
and for any E :

ρE ,p : GQ → Aut(E [p]) ∼= GL2(Fp)

is irreducible i.e. NOT upper triangular.

How to parametrize all ρE ,p?

Given p :

{Non-cuspidal points on X0(p)}

m

{ρE ,p : GQ → Aut(E [p]) ∼= GL2(Fp) such that ρE ,p ∼
ï
∗ ∗
0 ∗

ò
}



Understanding X0(N)(Q)

{Points on X0(p)}

m

{ρE ,p : GQ → Aut(E [p]) ∼= GL2(Fp) such that ρE ,p ∼
ï
∗ ∗
0 ∗

ò
}

Theorem (Mazur)

If N > 163 and prime then X0(N)(Q) consists of only cusps.

Later this has been generalized to composite levels and the
situation for small levels is also understood by Kenku, Momose.



Understanding X0(N)(K )

X1(N)(K ) is well understood:
� X1(N)(K )⇔ (E ,P) where E/K and P ∈ E [N](K ).

� X0(N)(K )⇔ reducible ρE ,p OR
(E , φ : E → E ′) = (E ,C = ker φ ∼= Z/NZ)

By Mazur’s work: X1(N)(Q) = {cusps} if its genus> 1
Merel: Say |K : Q| ≤ d , then there exists Bd such that
X1(N)(K ) = {cusps} if N > Bd .

More precise results by Kamienny, Parent, Derickx, Stein,
Stoll...

Unfortunately not much is known for X0(N)(K ) except the
following:



Understanding X0(N)(K )

Definition
A point P is quadratic if |Q(P)/Q| = 2.

Bars, Harris-Silverman: If g(X0(N)) ≥ 2 then X0(N) has
finitely many quadratic points except for 28 values of N.

Bruin, Najman: parametrized all quadratic points on X0(N)
such that J0(N) has MW rank 0 and X0(N) is hyperelliptic:

{22,23,26,28,29,30,31,33,35,39,40,41,46,47,48,50,59,71}



Understanding X0(N)(K )

Theorem (O., Siksek)

Found and parametrized all quadratic points on X0(N) such that

J0(N) has MW rank 0,
X0(N) nonhyperelliptic and
3 ≤ g(X0(N)) ≤ 5.

{34,45,64,38,44,54,81,42,51,52,55,56,63,72,75}

Hence we have a full list of all quadratic points on X0(N)(K ) for
2 ≤ g(X0(N)) ≤ 5 with J0(N) has MW rank 0.



Understanding X0(N)(K )

Recently:

Theorem (Box)

Found and parametrized all quadratic points on X0(N) such that

J0(N) has positive MW rank,
X0(N) nonhyperelliptic and
2 ≤ g(X0(N)) ≤ 5.

Hence we have a full list of all quadratic points on X0(N)(K ) for
2 ≤ g(X0(N)) ≤ 5

Why is this helpful?



Main Theorem

Theorem
Found and parametrized all quadratic points on X0(N) for N =

Bruin-Najman:
{22,23,26,28,29,30,31,33,35,39,40,41,46,47,48,50,59,71}

O.-Siksek:
{34,45,64,38,44,54,81,42,51,52,55,56,63,72,75}
Box: {37,43,53,61,57,65,67,73}

Why is this helpful?
Modular approach to solve Diop. Eqns. requires the
irreducibility of the mod p representation ρE ,p of a Frey
elliptic curve E over K .
This Frey elliptic curve often has extra level structure in the
form of a K -rational 2 or 3-isogeny
If the mod p representation is reducible, then the Frey
curve gives rise to a point in X0(2p)(K ) or X0(3p)(K )



A genus 3 example X0(34)
� If the mod p representation is reducible, then the Frey curve
gives rise to a point in X0(2p)(K ) or X0(3p)(K )
� The quadratic points of X0(34) is used to study quadratic
solutions of xp + yp + zp = 0 by Freitas and Siksek.

Genus: 3

Model: x3z − x2y2 − 3x2z2 + 2xz3 + 3xy2z − 3xyz2 + 4xz3 − y4 + 4y3z − 6x2z2 + 4yz3 − 2z4

J0(34)(Q) = C ≅ Z/4Z ×Z/12Z

Name θ2 Coordinates j-invariant CM by Q-curve

P1 -1 (θ + 1,0,1) 287496 -16 YES
P2 -1 ( θ+12 , θ+12 ,1) 1728 -4 YES

P3 -1 (θ,−θ,1) 1728 -4 YES

P4 -2 ( θ2 ,− θ2 ,1) 8000 -8 YES

P5 -15 ( θ+118 , 12 ,1) 2041θ+11779
8 NO YES

P6 -15 ( θ+2316 ,
θ+7
16 ,1) −53184785340479θ−7319387769191

34359738368 NO YES
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Theoretical Approach

Say X/Q is nonhyperelliptic with g ≥ 3, JX (Q) is finite and
there exists a P0 ∈ X (Q).
If one can enumerate all JX (Q) then:

ι : X (2)(Q) ↪→ JX (Q), P 7→ [DP − 2P0], where

� X (2), symmetric product of X
� P = {P1,P2} ∈ X (2)(Q) implies either P1,P2 ∈ X (Q) or

P1,P2 ∈ X (K ) and P1 = P̄2

� DP = P1 + P2 when P = {P1,P2}.
Idea: Pulling back finitely many points in JX (Q) it is possible to
determine X (2)(Q)



Idea of the Proof-Theoretical Approach

Idea: Pulling back finitely many points in JX (Q) it is possible to
determine X (2)(Q)

ι : X (2)(Q) ↪→ JX (Q), P 7→ [DP − 2P0], where

any P = {P1,P2} in X (2)(Q) DP = P1 + P2 ∼ D′ + 2P0
for some [D′] ∈ JX (Q),D′ ∈ Div0(X )(Q)

for each [D′] ∈ JX (Q), enumerate effective degree 2 divs
linearly equivalent to D′ + 2P0

Compute the RR space L(D′ + 2P0). Either
dim L(D′ + 2P0) = 0 : no eff. deg. 2 divisor D ∼ D′ + 2P0
dim L(D′ + 2P0) = 1 : let 0 6= f ∈ L(D′ + 2P0) then
D′ + 2P0 + div(f ) is unique eff. deg. 2 divisor ∼ D′ + 2P0.



Theoretical Approach-Problems

It is hard to enumerate J0(N)(Q) = J0(N)(Q)tors

Even if this is done, J0(N)(Q)tors can be huge and
Riemann-Roch computations can be complicated

Our Approach:
1 Compute C0(N) ≤ J0(N)(Q) where C0(N) is the rational

cuspidal group
2 Bound its index inside J0(N)(Q) by I, so I.J0(N)(Q) ⊂ C
3 so the effective 2 divs we seek satisfy: [D − 2P0] = I[D′]

where D′ ∈ J0(N)(Q).

4 Apply a version of MW sieve to eliminate most possibilities
for D′.

5 only then use Riemann Roch.



Rational Cuspidal Group, C0(N)(Q)

C0(N) ≤ J0(N)(Q); generated by classes of differences of
cusps; the cuspidal subgroup.
C0(N)(Q) ≤ C0(N); grp of points stable under the action of
Gal(Q/Q); the rational cuspidal subgroup.

� C0(N)(Q) ≤ J0(N)(Q)

� Manin-Drinfeld thm: C0(N) ⊆ J0(N)(Q)tors, and thus
C0(N)(Q) ⊆ J0(N)(Q)tors.

conj. of Ogg, proved by Mazur: C0(N)(Q) = J0(N)(Q)tors
for N prime.
generalized Ogg conj.: C0(N)(Q) = J0(N)(Q)tors for all N.

Theorem (O., Siksek)

The generalized Ogg conjecture holds for
N = 34,38,44,45,51,52,54,56,64,81.



Rational Cuspidal Group, C0(N)(Q)

Write X = X0(N), J = J0(N),C = C0(N)(Q).
Fix a degree 1 cusp place, denoted by P0 (e.g. ∞ or 0 cusp).
Let P1, . . . ,Pr be the other cusp places.
C is generated by [Pi − deg(Pi) · P0] in Pic0(X/Q) ∼= J(Q).
To determine the structure of C:

choose a prime p - 2N
compute using Magma Pic0(X/Fp) ∼= J(Fp)

The images of the classes [Pi − deg(Pi) · P0] under the
composition

C(Q) ↪→ J(Q)tors ↪→ J(Q) ↪→ J(Fp)

generate a subgroup of J(Fp) that is isomorphic to C.



Details of Computing possibilities J0(N)(Q)

X = X0(N), J = J0(N),C = C0(N)(Q)
C ⊂ J(Q)tors = J(Q) ↪→ J(Fp) for, p - 2N

A′
p := {ι : C → A} where

A ≤ J(Fp)

redp(C) ⊂ A and
ι is the restriction of the reduction redp map to C.

For some ι ∈ A′
p :

C

ι

��

� � // J(Q)

red

��

µ

A �
� // J(Fp)

where µ is an isomorphism.



Details of Computing possibilities J0(N)(Q)

g := genus of X , m := # of real comps of J. By Gross and
Harris:

J(Q) ∼= Z/d1Z× · · · × Z/dkZ, d1 | d2 | · · · | dk

where k ≤ g or g + 1 ≤ k ≤ g + m − 1 and di ∈ {1,2}.
Eliminate from A′

p all ι : C → A where the isom. class of A is
incompatible with this. Obtain a subset Ap.
Let p1, . . . ,ps be distinct primes - 2pN.
Ap; p1,...,ps set of ι : C → A ∈ Ap such that :

For all p′ ∈ {p1, . . . ,ps} there exists ι′ : C → A′ in Ap′ and
an isomorphism ψ : A→ A′

making the diagram

C

ι′
&&

ι // A

ψ
��

A′

commute.



A group theory problem

Question
Let C, A, A′ be finite abelian groups and suppose
ι, ι′ : C → A,A′ are injective homomorphisms. is there is an
isomorphism ψ : A→ A′ such that ψ ◦ ι = ι′?

C

ι′
&&

ι // A

ψ
��

A′

It is possible to give an effective answer to this question.



Details of Computing possibilities J0(N)(Q)
Ap; p1,...,ps set of ι : C → A ∈ Ap such that :
For all p′ ∈ {p1, . . . , ps}∃ι′ : C → A′ in Ap′ and an isom. ψ : A → A′ making the diagram commute.

C

ι′
''

ι // A

ψ

��
A′

Ap;p1,...,ps must contain
some ι0 : C → A0,

where A0 = redp(C)

C

ι0

��

� � // J(Q)

red

��

µ

A0
� � // J(Fp)

Aim: to find suitable p, p1, . . . ,ps s.t. #Ap;p1,...,ps = 1, this is
necessarily ι0, hence J(Q) = C.
We know that J(Q)/C ∼= cokernel(ι) of some ι in Ap;p1,...,ps .
Hence we get a positive integer I such that I · J(Q) ⊆ C.



Details of Computing possibilities J0(N)(Q)

Aim: to find suitable p, p1, . . . ,ps s.t. #Ap;p1,...,ps = 1.
This is necessarily ι0, hence J(Q) = C.
Nevertheless;

We know that J(Q)/C ∼= cokernel(ι) of some ι in Ap;p1,...,ps .
Hence we get a positive integer I such that I · J(Q) ⊆ C.

For each value of N computed Ap;p1,...,ps where
p is the smallest prime not dividing 2N, and
p1, . . . ,ps are the primes ≤ 17 not dividing 2pN.



Finding quadratic points

Now we know all the possible G for G = J(Q)/C.
I := LCM of the exponents of G, thus I · J(Q) ⊆ C.
X (Q) is known, so K0 := {P + Q|P,Q ∈ X0(N)(Q)} set of
effective degree 2 divisors is known.
Find a few quadratic pnts P on X and enlarge K0 be
adjoining P + Pσ where Pσ is Galois conjugate of P.
Obtain K known set of degree 2 divisors on X .
apply a special MW sieve for a suitable choice of primes
p1, . . . ,pr ≥ 3 of good reduction,
deduce a subset of S ⊆ J(Q) that contains the possibilities
for I · [D − 2P0] for D ∈ X (2)(Q) \ K.
In almost all cases we found S = ∅ and thus X (2)(Q) = K



Final Word

Theorem (O., Siksek)
For

{34,45,64,38,44,54,81,42,51,52,55,56,63,72,75},

X0(N)(Q(
√

d)) consists of only cusps if

d 6= −159,−39,−19,−15,−11,−7− 3,−2,−1,5,13,17.

Open Question:

Is there a bound B such that for all |d | > B,X0(N) doesn’t have
any non-rational quadratic points for any N? (Say genus of

X0(N) > 2 )


