Quadratic Points on Modular Curves and Fermat-type Equations

Ekin Özman

Bogazici University
June 8, 2021

One of the most famous problems in number theory is :
Finding solutions of Diophantine Equations

- $x^{n}+y^{n}+z^{n}=0 \Rightarrow$ Fermat's Equation
- $A x^{n}+B y^{n}+C z^{n}=0 \Rightarrow$ Generalized Fermat's Equation
- $x^{m}+y^{n}+z^{k}=0 \Rightarrow$ "twisted" Fermat's Equation

Absolute Galois group of $\mathbb{Q}, G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. Understand this! To understand $G_{\mathbb{Q}}$ we look at its representations:

$$
\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

Let $E[p]$ be the p-torsion subgroup in $E(\mathbb{C}), G_{\mathbb{Q}}$ acts on $E[p]$.
We obtain a representation

$$
\rho_{p}: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}(E[p]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

Theorem (Wiles, Taylor-Wiles)

The equation

$$
F L T_{n}: x^{n}+y^{n}=z^{n}
$$

has no nonzero integer solutions if $n>2$.

Strategy of The Proof:

- To find an elliptic curve corresponding a proposed solution of $F L T_{p}$
- To show that this curve has properties conflicting with each other
(1) Modularity Theorem (Wiles, Taylor-Wiles)
(2) Level Lowering Theorem (Ribet)
(3) Irreducibility of Galois representations(Mazur)

$$
\rho_{E, p}: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}(E[p]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

Irreducibility of Galois representations(Mazur)

A key ingredient in the proof of $F L T_{p}$ was that for big enough p and for any E :

$$
\rho_{E, p}: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}(E[p]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

is irreducible i.e. NOT upper triangular.
How to parametrize all $\rho_{E, p}$?
Given p :
\{Non-cuspidal points on $\mathrm{X}_{0}(\mathrm{p})$ \}

$$
\left\{\rho_{E, p}: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}(E[p]) \cong \operatorname{GL}_{2}\left(\mathbb{F}_{p}\right) \text { such that } \rho_{E, p} \sim\left[\begin{array}{cc}
* & * \\
0 & *
\end{array}\right]\right\}
$$

Understanding $\mathrm{X}_{0}(\mathrm{~N})(\mathbb{Q})$

\{Points on $\mathrm{X}_{0}(\mathrm{p})$ \}
॥

$$
\left\{\rho_{E, p}: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}(E[p]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) \text { such that } \rho_{E, p} \sim\left[\begin{array}{cc}
* & * \\
0 & *
\end{array}\right]\right\}
$$

Theorem (Mazur)

 If $N>163$ and prime then $\mathrm{X}_{0}(\mathrm{~N})(\mathbb{Q})$ consists of only cusps.Later this has been generalized to composite levels and the situation for small levels is also understood by Kenku, Momose.
$\mathrm{X}_{1}(N)(K)$ is well understood:
$\diamond \mathrm{X}_{1}(N)(K) \Leftrightarrow(E, P)$ where $E_{/ K}$ and $P \in E[N](K)$.
$\diamond \mathrm{X}_{0}(\mathrm{~N})(K) \Leftrightarrow$ reducible $\rho_{E, p} \mathrm{OR}$

$$
\left(E, \phi: E \rightarrow E^{\prime}\right)=(E, C=\operatorname{ker} \phi \cong \mathbb{Z} / N \mathbb{Z})
$$

- By Mazur's work: $\mathrm{X}_{1}(N)(\mathbb{Q})=\{$ cusps $\}$ if its genus >1
- Merel: Say $|K: \mathbb{Q}| \leq d$, then there exists B_{d} such that $\mathrm{X}_{1}(N)(K)=\{$ cusps $\}$ if $N>B_{d}$.
- More precise results by Kamienny, Parent, Derickx, Stein, Stoll...

Unfortunately not much is known for $\mathrm{X}_{0}(\mathrm{~N})(K)$ except the following:

Definition

A point P is quadratic if $|\mathbb{Q}(P) / \mathbb{Q}|=2$.

- Bars, Harris-Silverman: If $g\left(\mathrm{X}_{0}(\mathrm{~N})\right) \geq 2$ then $\mathrm{X}_{0}(\mathrm{~N})$ has finitely many quadratic points except for 28 values of N.
- Bruin, Najman: parametrized all quadratic points on $X_{0}(\mathrm{~N})$ such that $J_{0}(N)$ has MW rank 0 and $\mathrm{X}_{0}(\mathrm{~N})$ is hyperelliptic:
$\{22,23,26,28,29,30,31,33,35,39,40,41,46,47,48,50,59,71\}$

Understanding $\mathrm{X}_{0}(\mathrm{~N})(\mathrm{K})$

Theorem (O., Siksek)

Found and parametrized all quadratic points on $\mathrm{X}_{0}(\mathrm{~N})$ such that

- $J_{0}(N)$ has MW rank 0,
- $\mathrm{X}_{0}(\mathrm{~N})$ nonhyperelliptic and
- $3 \leq g\left(\mathrm{X}_{0}(\mathrm{~N})\right) \leq 5$.
$\{34,45,64,38,44,54,81,42,51,52,55,56,63,72,75\}$
Hence we have a full list of all quadratic points on $\mathrm{X}_{0}(\mathrm{~N})(K)$ for $2 \leq g\left(\mathrm{X}_{0}(\mathrm{~N})\right) \leq 5$ with $J_{0}(N)$ has MW rank 0 .

Understanding $\mathrm{X}_{0}(\mathrm{~N})(\mathrm{K})$

Recently:

Theorem (Box)

Found and parametrized all quadratic points on $\mathrm{X}_{0}(\mathrm{~N})$ such that

- $J_{0}(N)$ has positive MW rank,
- $\mathrm{X}_{0}(\mathrm{~N})$ nonhyperelliptic and
- $2 \leq g\left(\mathrm{X}_{0}(\mathrm{~N})\right) \leq 5$.

Hence we have a full list of all quadratic points on $\mathrm{X}_{0}(\mathrm{~N})(K)$ for $2 \leq g\left(\mathrm{X}_{0}(\mathrm{~N})\right) \leq 5$
Why is this helpful?

Theorem

Found and parametrized all quadratic points on $\mathrm{X}_{0}(\mathrm{~N})$ for $N=$

- Bruin-Najman:
$\{22,23,26,28,29,30,31,33,35,39,40,41,46,47,48,50,59,71\}$
- O.-Siksek:
$\{34,45,64,38,44,54,81,42,51,52,55,56,63,72,75\}$
- Box: $\{37,43,53,61,57,65,67,73\}$

Why is this helpful?

- Modular approach to solve Diop. Eqns. requires the irreducibility of the mod p representation $\rho_{E, p}$ of a Frey elliptic curve E over K.
- This Frey elliptic curve often has extra level structure in the form of a K-rational 2 or 3-isogeny
- If the $\bmod p$ representation is reducible, then the Frey curve gives rise to a point in $\mathrm{X}_{0}(2 p)(K)$ or $\mathrm{X}_{0}(3 p)(K)$

A genus 3 example $\mathrm{X}_{0}(34)$

\diamond If the $\bmod p$ representation is reducible, then the Frey curve gives rise to a point in $\mathrm{X}_{0}(2 p)(K)$ or $\mathrm{X}_{0}(3 p)(K)$
\diamond The quadratic points of $\mathrm{X}_{0}(34)$ is used to study quadratic solutions of $x^{p}+y^{p}+z^{p}=0$ by Freitas and Siksek.
Genus: 3
Model: $x^{3} z-x^{2} y^{2}-3 x^{2} z^{2}+2 x z^{3}+3 x y^{2} z-3 x y z^{2}+4 x z^{3}-y^{4}+4 y^{3} z-6 x^{2} z^{2}+4 y z^{3}-2 z^{4}$
$J_{0}(34)(\mathbb{Q})=C \cong \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 12 \mathbb{Z}$

Name	θ^{2}	Coordinates	j-invariant	CM by	\mathbb{Q}-curve
P_{1}	-1	$(\theta+1,0,1)$	287496	-16	YES
P_{2}	-1	$\left(\frac{\theta+1}{2}, \frac{\theta+1}{2}, 1\right)$	1728	-4	YES
P_{3}	-1	$(\theta,-\theta, 1)$	1728	-4	YES
P_{4}	-2	$\left(\frac{\theta}{2},-\frac{\theta}{2}, 1\right)$	8000	-8	YES
P_{5}	-15	$\left(\frac{\theta+11}{8}, \frac{1}{2}, 1\right)$	$\frac{2041 \theta+11779}{8}$	NO	YES
P_{6}	-15	$\left(\frac{\theta+23}{16}, \frac{\theta+7}{16}, 1\right)$	$\frac{-53184785344479-7319387769191}{34359738368}$	NO	YES

Theoretical Approach

- Say X / \mathbb{Q} is nonhyperelliptic with $g \geq 3, J_{X}(\mathbb{Q})$ is finite and there exists a $P_{0} \in X(\mathbb{Q})$.
- If one can enumerate all $J_{X}(\mathbb{Q})$ then:

$$
\iota: X^{(2)}(\mathbb{Q}) \hookrightarrow J_{X}(\mathbb{Q}), P \mapsto\left[D_{P}-2 P_{0}\right], \text { where }
$$

$\diamond X^{(2)}$, symmetric product of X
$\diamond P=\left\{P_{1}, P_{2}\right\} \in X^{(2)}(\mathbb{Q})$ implies either $P_{1}, P_{2} \in X(\mathbb{Q})$ or $P_{1}, P_{2} \in X(K)$ and $P_{1}=\bar{P}_{2}$
$\diamond D_{P}=P_{1}+P_{2}$ when $P=\left\{P_{1}, P_{2}\right\}$.
Idea: Pulling back finitely many points in $J_{X}(\mathbb{Q})$ it is possible to determine $X^{(2)}(\mathbb{Q})$

Idea of the Proof-Theoretical Approach

Idea: Pulling back finitely many points in $J_{X}(\mathbb{Q})$ it is possible to determine $X^{(2)}(\mathbb{Q})$

$$
\iota: X^{(2)}(\mathbb{Q}) \hookrightarrow J_{X}(\mathbb{Q}), P \mapsto\left[D_{P}-2 P_{0}\right], \text { where }
$$

- any $P=\left\{P_{1}, P_{2}\right\}$ in $X^{(2)}(\mathbb{Q}) \rightsquigarrow D_{P}=P_{1}+P_{2} \sim D^{\prime}+2 P_{0}$ for some $\left[D^{\prime}\right] \in J_{X}(\mathbb{Q}), D^{\prime} \in \operatorname{Div}^{0}(X)(\mathbb{Q})$
- for each $\left[D^{\prime}\right] \in J_{X}(\mathbb{Q})$, enumerate effective degree 2 divs linearly equivalent to $D^{\prime}+2 P_{0}$
- Compute the RR space $L\left(D^{\prime}+2 P_{0}\right)$. Either
- $\operatorname{dim} L\left(D^{\prime}+2 P_{0}\right)=0$: no eff. deg. 2 divisor $D \sim D^{\prime}+2 P_{0}$
- $\operatorname{dim} L\left(D^{\prime}+2 P_{0}\right)=1$: let $0 \neq f \in L\left(D^{\prime}+2 P_{0}\right)$ then $D^{\prime}+2 P_{0}+\operatorname{div}(f)$ is unique eff. deg. 2 divisor $\sim D^{\prime}+2 P_{0}$.

Theoretical Approach-Problems

- It is hard to enumerate $\mathrm{J}_{0}(\mathrm{~N})(\mathbb{Q})=\mathrm{J}_{0}(\mathrm{~N})(\mathbb{Q})_{\text {tors }}$
- Even if this is done, $\mathrm{J}_{0}(\mathrm{~N})(\mathbb{Q})_{\text {tors }}$ can be huge and Riemann-Roch computations can be complicated
Our Approach:
(1) Compute $C_{0}(N) \leq \mathrm{J}_{0}(\mathrm{~N})(\mathbb{Q})$ where $C_{0}(N)$ is the rational cuspidal group
(2) Bound its index inside $\mathrm{J}_{0}(\mathrm{~N})(\mathbb{Q})$ by I, so $I . \mathrm{J}_{0}(\mathrm{~N})(\mathbb{Q}) \subset C$
(3) so the effective 2 divs we seek satisfy: $\left[D-2 P_{0}\right]=I\left[D^{\prime}\right]$ where $D^{\prime} \in \mathrm{J}_{0}(\mathrm{~N})(\mathbb{Q})$.
(4) Apply a version of MW sieve to eliminate most possibilities for D^{\prime}.
(5) only then use Riemann Roch.

Rational Cuspidal Group, $C_{0}(N)(\mathbb{Q})$

- $C_{0}(N) \leq J_{0}(N)(\overline{\mathbb{Q}})$; generated by classes of differences of cusps; the cuspidal subgroup.
- $C_{0}(N)(\mathbb{Q}) \leq C_{0}(N)$; grp of points stable under the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$; the rational cuspidal subgroup.
$\diamond C_{0}(N)(\mathbb{Q}) \leq J_{0}(N)(\mathbb{Q})$
\diamond Manin-Drinfeld thm: $C_{0}(N) \subseteq J_{0}(N)(\overline{\mathbb{Q}})_{\text {tors }}$, and thus $C_{0}(N)(\mathbb{Q}) \subseteq J_{0}(N)(\mathbb{Q})_{\text {tors }}$.
- conj. of Ogg, proved by Mazur: $C_{0}(N)(\mathbb{Q})=J_{0}(N)(\mathbb{Q})_{\text {tors }}$ for N prime.
- generalized Ogg conj.: $C_{0}(N)(\mathbb{Q})=J_{0}(N)(\mathbb{Q})_{\text {tors }}$ for all N.

Theorem (O., Siksek)

The generalized Ogg conjecture holds for $N=34,38,44,45,51,52,54,56,64,81$.

Rational Cuspidal Group, $C_{0}(N)(\mathbb{Q})$

Write $X=\mathrm{X}_{0}(\mathrm{~N}), J=J_{0}(N), C=C_{0}(N)(\mathbb{Q})$.
Fix a degree 1 cusp place, denoted by \mathcal{P}_{0} (e.g. ∞ or 0 cusp). Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{r}$ be the other cusp places.
C is generated by $\left[\mathcal{P}_{i}-\operatorname{deg}\left(\mathcal{P}_{i}\right) \cdot \mathcal{P}_{0}\right]$ in $\operatorname{Pic}^{0}(X / \mathbb{Q}) \cong J(\mathbb{Q})$. To determine the structure of C :

- choose a prime $p \nmid 2 N$
- compute using Magma $\operatorname{Pic}^{0}\left(X / \mathbb{F}_{p}\right) \cong J\left(\mathbb{F}_{p}\right)$
- The images of the classes $\left[\mathcal{P}_{i}-\operatorname{deg}\left(\mathcal{P}_{i}\right) \cdot \mathcal{P}_{0}\right]$ under the composition

$$
C(\mathbb{Q}) \hookrightarrow J(\mathbb{Q})_{\text {tors }} \hookrightarrow J(\mathbb{Q}) \hookrightarrow J\left(\mathbb{F}_{p}\right)
$$

generate a subgroup of $J\left(\mathbb{F}_{p}\right)$ that is isomorphic to C.

Details of Computing possibilities $J_{0}(N)(\mathbb{Q})$

$X=\mathrm{X}_{0}(\mathrm{~N}), J=J_{0}(N), C=C_{0}(N)(\mathbb{Q})$
$C \subset J(\mathbb{Q})_{\text {tors }}=J(\mathbb{Q}) \hookrightarrow J\left(\mathbb{F}_{p}\right)$ for, $p \nmid 2 N$
$\mathcal{A}_{p}^{\prime}:=\{\iota: C \rightarrow A\}$ where

- $A \leq J\left(\mathbb{F}_{p}\right)$
- $\operatorname{red}_{p}(C) \subset A$ and
- ι is the restriction of the reduction red_{p} map to C.

For some $\iota \in \mathcal{A}_{p}^{\prime}$:

where μ is an isomorphism.

Details of Computing possibilities $J_{0}(N)(\mathbb{Q})$

$g:=$ genus of $X, m:=\#$ of real comps of J. By Gross and Harris:

$$
J(\mathbb{Q}) \cong \mathbb{Z} / d_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / d_{k} \mathbb{Z}, \quad d_{1}\left|d_{2}\right| \cdots \mid d_{k}
$$

where $k \leq g$ or $g+1 \leq k \leq g+m-1$ and $d_{i} \in\{1,2\}$. Eliminate from \mathcal{A}_{p}^{\prime} all $\iota: C \rightarrow A$ where the isom. class of A is incompatible with this. Obtain a subset \mathcal{A}_{p}.
Let p_{1}, \ldots, p_{s} be distinct primes $\nmid 2 p N$. $\mathcal{A}_{p ; p_{1}, \ldots, p_{s}}$ set of $\iota: C \rightarrow A \in \mathcal{A}_{p}$ such that:

- For all $p^{\prime} \in\left\{p_{1}, \ldots, p_{s}\right\}$ there exists $\iota^{\prime}: C \rightarrow A^{\prime}$ in $\mathcal{A}_{p^{\prime}}$ and
- an isomorphism $\psi: A \rightarrow A^{\prime}$
- making the diagram

commute.

A group theory problem

Question

Let C, A, A^{\prime} be finite abelian groups and suppose $\iota, \iota^{\prime}: C \rightarrow A, A^{\prime}$ are injective homomorphisms. is there is an isomorphism $\psi: A \rightarrow A^{\prime}$ such that $\psi \circ \iota=\iota^{\prime}$?

It is possible to give an effective answer to this question.

Details of Computing possibilities $J_{0}(N)(\mathbb{Q})$

$\mathcal{A}_{p ; p_{1}, \ldots, p_{s}}$ set of $\iota: C \rightarrow A \in \mathcal{A}_{p}$ such that:
For all $p^{\prime} \in\left\{p_{1}, \ldots, p_{s}\right\} \exists \iota^{\prime}: C \rightarrow A^{\prime}$ in $\mathcal{A}_{p^{\prime}}$ and an isom. $\psi: A \rightarrow A^{\prime}$ making the diagram commute.

$\mathcal{A}_{p ; p_{1}, \ldots, p_{s}}$ must contain some $\iota_{0}: C \rightarrow A_{0}$,
where $A_{0}=\operatorname{red}_{p}(C)$

Aim: to find suitable p, p_{1}, \ldots, p_{s} s.t. $\# \mathcal{A}_{p ; p_{1}, \ldots, p_{s}}=1$, this is necessarily ι_{0}, hence $J(\mathbb{Q})=C$.
We know that $J(\mathbb{Q}) / C \cong \operatorname{cokernel}(\iota)$ of some ι in $\mathcal{A}_{p ; p_{1}, \ldots, p_{s}}$. Hence we get a positive integer I such that $l \cdot J(\mathbb{Q}) \subseteq C$.

Details of Computing possibilities $J_{0}(N)(\mathbb{Q})$

Aim: to find suitable p, p_{1}, \ldots, p_{s} s.t. $\# \mathcal{A}_{p ; p_{1}, \ldots, p_{s}}=1$. This is necessarily ι_{0}, hence $J(\mathbb{Q})=C$.
Nevertheless;

- We know that $J(\mathbb{Q}) / C \cong \operatorname{cokernel}(\iota)$ of some ι in $\mathcal{A}_{p ; p_{1}, \ldots, p_{s}}$.
- Hence we get a positive integer I such that $l \cdot J(\mathbb{Q}) \subseteq C$.

For each value of N computed $\mathcal{A}_{p ; p_{1}, \ldots, p_{s}}$ where

- p is the smallest prime not dividing $2 N$, and
- p_{1}, \ldots, p_{s} are the primes ≤ 17 not dividing $2 p N$.

Finding quadratic points

Now we know all the possible G for $G=J(\mathbb{Q}) / C$.

- $l:=$ LCM of the exponents of G, thus $I \cdot J(\mathbb{Q}) \subseteq C$.
- $X(\mathbb{Q})$ is known, so $\mathcal{K}_{0}:=\left\{P+Q \mid P, Q \in \mathrm{X}_{0}(\mathrm{~N})(\mathbb{Q})\right\}$ set of effective degree 2 divisors is known.
- Find a few quadratic pnts P on X and enlarge \mathcal{K}_{0} be adjoining $P+P^{\sigma}$ where P^{σ} is Galois conjugate of P. Obtain \mathcal{K} known set of degree 2 divisors on X.
- apply a special MW sieve for a suitable choice of primes $p_{1}, \ldots, p_{r} \geq 3$ of good reduction,
- deduce a subset of $\mathcal{S} \subseteq J(\mathbb{Q})$ that contains the possibilities for $I \cdot\left[D-2 P_{0}\right]$ for $D \in X^{(2)}(\mathbb{Q}) \backslash \mathcal{K}$.
- In almost all cases we found $\mathcal{S}=\emptyset$ and thus $X^{(2)}(\mathbb{Q})=\mathcal{K}$

Theorem (O., Siksek)

For

$$
\{34,45,64,38,44,54,81,42,51,52,55,56,63,72,75\}
$$

$\mathrm{X}_{0}(\mathrm{~N})(\mathbb{Q}(\sqrt{d}))$ consists of only cusps if

$$
d \neq-159,-39,-19,-15,-11,-7-3,-2,-1,5,13,17
$$

Open Question:
Is there a bound B such that for all $|d|>B, X_{0}(\mathrm{~N})$ doesn't have any non-rational quadratic points for any N ? (Say genus of

$$
\left.\mathrm{X}_{0}(\mathrm{~N})>2\right)
$$

