# Quadratic Points on Modular Curves and Fermat-type Equations

### Ekin Özman

Bogazici University

June 8, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

One of the most famous problems in number theory is : Finding solutions of Diophantine Equations

•  $x^n + y^n + z^n = 0 \Rightarrow$  Fermat's Equation

- $Ax^n + By^n + Cz^n = 0 \Rightarrow$  Generalized Fermat's Equation
- $x^m + y^n + z^k = 0 \Rightarrow$  "twisted" Fermat's Equation

Absolute Galois group of  $\mathbb{Q}$ ,  $G_{\mathbb{Q}} = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ . Understand this! To understand  $G_{\mathbb{Q}}$  we look at its representations:

$$\rho: G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{F}_p)$$

Let E[p] be the *p*-torsion subgroup in  $E(\mathbb{C})$ ,  $G_{\mathbb{Q}}$  acts on E[p]. We obtain a representation

$$\rho_{\mathcal{P}}: \mathcal{G}_{\mathbb{Q}} \to \operatorname{Aut}(\mathcal{E}[\mathcal{P}]) \cong \operatorname{GL}_{2}(\mathbb{F}_{\mathcal{P}})$$



#### Theorem (Wiles, Taylor-Wiles)

The equation

$$FLT_n: x^n + y^n = z^n$$

has no nonzero integer solutions if n > 2.

### Strategy of The Proof:

- To find an elliptic curve corresponding a proposed solution of *FLT<sub>p</sub>*
- To show that this curve has properties conflicting with each other
- Modularity Theorem (Wiles, Taylor-Wiles)
- 2 Level Lowering Theorem (Ribet)
- Irreducibility of Galois representations(Mazur)

 $\rho_{E,p}: G_{\mathbb{Q}} \to \operatorname{Aut}(E[p]) \cong \operatorname{GL}_2(\mathbb{F}_p)$ 

### Irreducibility of Galois representations(Mazur)

A key ingredient in the proof of  $FLT_p$  was that for big enough p and for any E:

$$\rho_{E,p}: G_{\mathbb{Q}} \to \operatorname{Aut}(E[p]) \cong \operatorname{GL}_2(\mathbb{F}_p)$$

is irreducible i.e. NOT upper triangular.

How to parametrize all  $\rho_{E,p}$ ?

Given p:

うつん 川 エー・エー・ エー・ ひゃう

$$\{\text{Points on } X_0(p)\}$$

$$(\rho_{E,\rho} : G_{\mathbb{Q}} \to \text{Aut}(E[\rho]) \cong \text{GL}_2(\mathbb{F}_{\rho}) \text{ such that } \rho_{E,\rho} \sim \begin{bmatrix} * & * \\ 0 & * \end{bmatrix}\}$$

#### Theorem (Mazur)

If N > 163 and prime then  $X_0(N)(\mathbb{Q})$  consists of only cusps.

Later this has been generalized to composite levels and the situation for small levels is also understood by Kenku, Momose.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $X_1(N)(K)$  is well understood:

- $\diamond \ \mathrm{X}_1(N)(K) \Leftrightarrow (E,P) \text{ where } E_{/K} \text{ and } P \in E[N](K).$
- $\begin{array}{l} \diamond \ \ \mathrm{X}_0(\mathrm{N})(\mathcal{K}) \Leftrightarrow \mathsf{reducible} \ \rho_{\mathcal{E},\mathcal{P}} \ \mathsf{OR} \\ (\mathcal{E},\phi:\mathcal{E}\to\mathcal{E}') = (\mathcal{E},\mathcal{C} = \ker \phi \cong \mathbb{Z}/\mathcal{N}\mathbb{Z}) \end{array}$
- By Mazur's work: X<sub>1</sub>(N)(Q) = {cusps} if its genus> 1
- Merel: Say  $|K : \mathbb{Q}| \le d$ , then there exists  $B_d$  such that  $X_1(N)(K) = \{ \text{cusps} \}$  if  $N > B_d$ .
- More precise results by Kamienny, Parent, Derickx, Stein, Stoll...

Unfortunately not much is known for  $X_0(N)(K)$  except the following:

### Definition

A point *P* is quadratic if  $|\mathbb{Q}(P)/\mathbb{Q}| = 2$ .

 Bars, Harris-Silverman: If g(X<sub>0</sub>(N)) ≥ 2 then X<sub>0</sub>(N) has finitely many quadratic points except for 28 values of N.

Bruin, Najman: parametrized all quadratic points on X<sub>0</sub>(N) such that J<sub>0</sub>(N) has MW rank 0 and X<sub>0</sub>(N) is hyperelliptic:
 {22, 23, 26, 28, 29, 30, 31, 33, 35, 39, 40, 41, 46, 47, 48, 50, 59, 71}

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

#### Theorem (O., Siksek)

Found and parametrized all quadratic points on  $X_0(N)$  such that

- $J_0(N)$  has MW rank 0,
- X<sub>0</sub>(N) nonhyperelliptic and
- $3 \le g(X_0(N)) \le 5$ .

 $\{34, 45, 64, 38, 44, 54, 81, 42, 51, 52, 55, 56, 63, 72, 75\}$ 

Hence we have a full list of all quadratic points on  $X_0(N)(K)$  for  $2 \le g(X_0(N)) \le 5$  with  $J_0(N)$  has MW rank 0.

Recently:

### Theorem (Box)

Found and parametrized all quadratic points on  $X_0(N)$  such that

- $J_0(N)$  has positive MW rank,
- X<sub>0</sub>(N) nonhyperelliptic and
- $2 \le g(X_0(N)) \le 5$ .

Hence we have a full list of all quadratic points on  ${\rm X}_0({\rm N})({\cal K})$  for  $2\leq g({\rm X}_0({\rm N}))\leq 5$ 

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Why is this helpful?

## Main Theorem

#### Theorem

Found and parametrized all quadratic points on  $X_0(N)$  for N =

- Bruin-Najman:
- $\{22, 23, 26, 28, 29, 30, 31, 33, 35, 39, 40, 41, 46, 47, 48, 50, 59, 71\}$ 
  - *O.-Siksek:* {34, 45, 64, 38, 44, 54, 81, 42, 51, 52, 55, 56, 63, 72, 75}
  - *Box:* {37, 43, 53, 61, 57, 65, 67, 73}

### Why is this helpful?

- Modular approach to solve Diop. Eqns. requires the irreducibility of the mod p representation  $\rho_{E,p}$  of a Frey elliptic curve *E* over *K*.
- This Frey elliptic curve often has extra level structure in the form of a *K*-rational 2 or 3-isogeny
- If the mod p representation is reducible, then the Frey curve gives rise to a point in X<sub>0</sub>(2p)(K) or X<sub>0</sub>(3p)(K)

### A genus 3 example $X_0(34)$

◇ If the mod *p* representation is reducible, then the Frey curve gives rise to a point in  $X_0(2p)(K)$  or  $X_0(3p)(K)$ ◇ The quadratic points of  $X_0(34)$  is used to study quadratic solutions of  $x^p + y^p + z^p = 0$  by Freitas and Siksek.

Genus: 3

 $\begin{array}{ll} \text{Model:} & x^3z - x^2y^2 - 3x^2z^2 + 2xz^3 + 3xy^2z - 3xyz^2 + 4xz^3 - y^4 + 4y^3z - 6x^2z^2 + 4yz^3 - 2z^4 \\ & J_0(34)(\mathbb{Q}) = C \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z} \end{array}$ 

| Name  | $\theta^2$ | Coordinates                                               | <i>j</i> -invariant                                        | CM by | Q-curve |
|-------|------------|-----------------------------------------------------------|------------------------------------------------------------|-------|---------|
| -     |            |                                                           |                                                            |       |         |
| $P_1$ | -1         | $(\theta + 1, 0, 1)$                                      | 287496                                                     | -16   | YES     |
| $P_2$ | -1         | $\left(\frac{\theta+1}{2},\frac{\theta+1}{2},1\right)$    | 1728                                                       | -4    | YES     |
| $P_3$ | -1         | $(\theta, -\theta, 1)$                                    | 1728                                                       | -4    | YES     |
| $P_4$ | -2         | $\left(\frac{\theta}{2}, -\frac{\theta}{2}, 1\right)$     | 8000                                                       | -8    | YES     |
| $P_5$ | -15        | $\left(\frac{\theta+11}{8},\frac{1}{2},1\right)$          | $\frac{2041\theta + 11779}{8}$                             | NO    | YES     |
| $P_6$ | -15        | $\left(\frac{\theta+23}{16},\frac{\theta+7}{16},1\right)$ | $\tfrac{-53184785340479\theta-7319387769191}{34359738368}$ | NO    | YES     |



### **Theoretical Approach**

- Say X/Q is nonhyperelliptic with g ≥ 3, J<sub>X</sub>(Q) is finite and there exists a P<sub>0</sub> ∈ X(Q).
- If one can enumerate all  $J_X(\mathbb{Q})$  then:

$$\iota: X^{(2)}(\mathbb{Q}) \hookrightarrow J_X(\mathbb{Q}), \ P \mapsto [D_P - 2P_0], \ \text{where}$$

$$\diamond X^{(2)}$$
, symmetric product of X

◇  $P = \{P_1, P_2\} \in X^{(2)}(\mathbb{Q})$  implies either  $P_1, P_2 \in X(\mathbb{Q})$  or  $P_1, P_2 \in X(K)$  and  $P_1 = \overline{P_2}$ 

⇒ 
$$D_P = P_1 + P_2$$
 when  $P = \{P_1, P_2\}$ .

**Idea:** Pulling back finitely many points in  $J_X(\mathbb{Q})$  it is possible to determine  $X^{(2)}(\mathbb{Q})$ 

**Idea:** Pulling back finitely many points in  $J_X(\mathbb{Q})$  it is possible to determine  $X^{(2)}(\mathbb{Q})$ 

$$\iota: X^{(2)}(\mathbb{Q}) \hookrightarrow J_X(\mathbb{Q}), \ P \mapsto [D_P - 2P_0], \ \text{where}$$

- any  $P = \{P_1, P_2\}$  in  $X^{(2)}(\mathbb{Q}) \rightsquigarrow D_P = P_1 + P_2 \sim D' + 2P_0$ for some  $[D'] \in J_X(\mathbb{Q}), D' \in Div^0(X)(\mathbb{Q})$
- for each [D'] ∈ J<sub>X</sub>(Q), enumerate effective degree 2 divs linearly equivalent to D' + 2P<sub>0</sub>
- Compute the RR space  $L(D' + 2P_0)$ . Either
  - dim  $L(D'+2P_0)=0$  : no eff. deg. 2 divisor  $D\sim D'+2P_0$
  - dim  $L(D' + 2P_0) = 1$ : let  $0 \neq f \in L(D' + 2P_0)$  then  $D' + 2P_0 + div(f)$  is unique eff. deg. 2 divisor  $\sim D' + 2P_0$ .

### **Theoretical Approach-Problems**

- It is hard to enumerate  $J_0(N)(\mathbb{Q}) = J_0(N)(\mathbb{Q})_{tors}$
- Even if this is done, J<sub>0</sub>(N)(Q)<sub>tors</sub> can be huge and Riemann-Roch computations can be complicated

#### **Our Approach:**

- Compute  $C_0(N) \leq J_0(N)(\mathbb{Q})$  where  $C_0(N)$  is the rational cuspidal group
- ② Bound its index inside  $J_0(N)(\mathbb{Q})$  by I, so  $I.J_0(N)(\mathbb{Q}) \subset C$
- **③** so the effective 2 divs we seek satisfy:  $[D 2P_0] = I[D']$  where  $D' \in J_0(N)(\mathbb{Q})$ .
- Apply a version of MW sieve to eliminate most possibilities for D'.
- only then use Riemann Roch.

# Rational Cuspidal Group, $C_0(N)(\mathbb{Q})$

- C<sub>0</sub>(N) ≤ J<sub>0</sub>(N)(Q); generated by classes of differences of cusps; the cuspidal subgroup.
- C<sub>0</sub>(N)(Q) ≤ C<sub>0</sub>(N); grp of points stable under the action of Gal(Q/Q); the rational cuspidal subgroup.
- $\diamond \ C_0(N)(\mathbb{Q}) \leq J_0(N)(\mathbb{Q})$
- ◇ Manin-Drinfeld thm:  $C_0(N) \subseteq J_0(N)(\overline{\mathbb{Q}})_{\text{tors}}$ , and thus  $C_0(N)(\mathbb{Q}) \subseteq J_0(N)(\mathbb{Q})_{\text{tors}}$ .
- conj. of Ogg, proved by Mazur: C<sub>0</sub>(N)(ℚ) = J<sub>0</sub>(N)(ℚ)<sub>tors</sub> for N prime.
- generalized Ogg conj.:  $C_0(N)(\mathbb{Q}) = J_0(N)(\mathbb{Q})_{\text{tors}}$  for all N.

#### Theorem (O., Siksek)

The generalized Ogg conjecture holds for N = 34, 38, 44, 45, 51, 52, 54, 56, 64, 81.

# Rational Cuspidal Group, $C_0(N)(\mathbb{Q})$

Write  $X = X_0(N)$ ,  $J = J_0(N)$ ,  $C = C_0(N)(\mathbb{Q})$ . Fix a degree 1 cusp place, denoted by  $\mathcal{P}_0$  (e.g.  $\infty$  or 0 cusp). Let  $\mathcal{P}_1, \ldots, \mathcal{P}_r$  be the other cusp places. *C* is generated by  $[\mathcal{P}_i - \deg(\mathcal{P}_i) \cdot \mathcal{P}_0]$  in  $\operatorname{Pic}^0(X/\mathbb{Q}) \cong J(\mathbb{Q})$ . To determine the structure of *C*:

- choose a prime  $p \nmid 2N$
- compute using Magma  $\operatorname{Pic}^0(X/\mathbb{F}_p)\cong J(\mathbb{F}_p)$
- The images of the classes [P<sub>i</sub> − deg(P<sub>i</sub>) · P<sub>0</sub>] under the composition

$$\mathcal{C}(\mathbb{Q}) \hookrightarrow J(\mathbb{Q})_{\mathrm{tors}} \hookrightarrow J(\mathbb{Q}) \hookrightarrow J(\mathbb{F}_{p})$$

うつん 川 エー・エー・ エー・ ひゃう

generate a subgroup of  $J(\mathbb{F}_p)$  that is isomorphic to *C*.

# Details of Computing possibilities $J_0(N)(\mathbb{Q})$

$$egin{aligned} &X=\mathrm{X}_0(\mathrm{N}), J=J_0(\mathcal{N}), \mathcal{C}=\mathcal{C}_0(\mathcal{N})(\mathbb{Q})\ \mathcal{C}\subset J(\mathbb{Q})_{\mathit{tors}}=J(\mathbb{Q})\hookrightarrow J(\mathbb{F}_p) ext{ for }, p
mid 2N \end{aligned}$$

$$\mathcal{A}'_{\mathcal{P}} := \{\iota : \mathcal{C} 
ightarrow \mathcal{A}\}$$
 where

- $A \leq J(\mathbb{F}_p)$
- $\operatorname{red}_{\rho}(C) \subset A$  and
- $\iota$  is the restriction of the reduction red<sub>p</sub> map to C.

For some  $\iota \in \mathcal{A}'_p$  :



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where  $\mu$  is an isomorphism.

## Details of Computing possibilities $J_0(N)(\mathbb{Q})$

g := genus of *X*, m := # of real comps of *J*. By Gross and Harris:

$$J(\mathbb{Q}) \cong \mathbb{Z}/d_1\mathbb{Z} \times \cdots \times \mathbb{Z}/d_k\mathbb{Z}, \qquad d_1 \mid d_2 \mid \cdots \mid d_k$$

where  $k \leq g$  or  $g + 1 \leq k \leq g + m - 1$  and  $d_i \in \{1, 2\}$ . Eliminate from  $\mathcal{A}'_p$  all  $\iota : C \to A$  where the isom. class of A is incompatible with this. Obtain a subset  $\mathcal{A}_p$ . Let  $p_1, \ldots, p_s$  be distinct primes  $\nmid 2pN$ .  $\mathcal{A}_{p; p_1, \ldots, p_s}$  set of  $\iota : C \to A \in \mathcal{A}_p$  such that : • For all  $p' \in \{p_1, \ldots, p_s\}$  there exists  $\iota' : C \to A'$  in  $\mathcal{A}_{p'}$  and • an isomorphism  $\psi : A \to A'$ 

making the diagram



うしん 前 ・ 山田・ 小田・ 小田・ トロ・

commute.

#### Question

Let C, A, A' be finite abelian groups and suppose  $\iota, \iota' : C \to A, A'$  are injective homomorphisms. is there is an isomorphism  $\psi : A \to A'$  such that  $\psi \circ \iota = \iota'$ ?



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

It is possible to give an effective answer to this question.

# Details of Computing possibilities $J_0(N)(\mathbb{Q})$

 $\mathcal{A}_{\rho; \rho_1, \ldots, \rho_S}$  set of  $\iota : C \to A \in \mathcal{A}_{\rho}$  such that :

For all  $p' \in \{p_1, \ldots, p_s\} \exists \iota' : C \to A'$  in  $\mathcal{A}_{p'}$  and an isom.  $\psi : A \to A'$  making the diagram commute.





**Aim:** to find suitable  $p, p_1, ..., p_s$  s.t.  $\#\mathcal{A}_{p;p_1,...,p_s} = 1$ , this is necessarily  $\iota_0$ , hence  $J(\mathbb{Q}) = C$ . We know that  $J(\mathbb{Q})/C \cong \operatorname{cokernel}(\iota)$  of some  $\iota$  in  $\mathcal{A}_{p;p_1,...,p_s}$ . Hence we get a positive integer I such that  $I \cdot J(\mathbb{Q}) \subseteq C$ .

**Aim:** to find suitable  $p, p_1, \ldots, p_s$  s.t.  $\#A_{p;p_1,\ldots,p_s} = 1$ . This is necessarily  $\iota_0$ , hence  $J(\mathbb{Q}) = C$ . Nevertheless;

• We know that  $J(\mathbb{Q})/C \cong \operatorname{cokernel}(\iota)$  of some  $\iota$  in  $\mathcal{A}_{\rho;\rho_1,\ldots,\rho_s}$ .

うつん 川 エー・エー・ エー・ ひゃう

• Hence we get a positive integer *I* such that  $I \cdot J(\mathbb{Q}) \subseteq C$ .

For each value of *N* computed  $A_{p;p_1,...,p_s}$  where

- *p* is the smallest prime not dividing 2*N*, and
- $p_1, \ldots, p_s$  are the primes  $\leq 17$  not dividing 2pN.

Now we know all the possible *G* for  $G = J(\mathbb{Q})/C$ .

- I := LCM of the exponents of G, thus  $I \cdot J(\mathbb{Q}) \subseteq C$ .
- X(Q) is known, so K<sub>0</sub> := {P + Q|P, Q ∈ X<sub>0</sub>(N)(Q)} set of effective degree 2 divisors is known.
- Find a few quadratic pnts P on X and enlarge K<sub>0</sub> be adjoining P + P<sup>σ</sup> where P<sup>σ</sup> is Galois conjugate of P. Obtain K known set of degree 2 divisors on X.
- apply a special MW sieve for a suitable choice of primes *p*<sub>1</sub>,..., *p*<sub>r</sub> ≥ 3 of good reduction,
- deduce a subset of S ⊆ J(Q) that contains the possibilities for I · [D − 2P<sub>0</sub>] for D ∈ X<sup>(2)</sup>(Q) \ K.
- In almost all cases we found  $S = \emptyset$  and thus  $X^{(2)}(\mathbb{Q}) = \mathcal{K}$

#### Theorem (O., Siksek)

For

 $\{34, 45, 64, 38, 44, 54, 81, 42, 51, 52, 55, 56, 63, 72, 75\},\$ 

 $X_0(N)(\mathbb{Q}(\sqrt{d}))$  consists of only cusps if

$$d \neq -159, -39, -19, -15, -11, -7 - 3, -2, -1, 5, 13, 17.$$

**Open Question:** 

Is there a bound *B* such that for all |d| > B,  $X_0(N)$  doesn't have any non-rational quadratic points for any *N*? (Say genus of  $X_0(N) > 2$ )

うつん 川 エー・エー・ エー・ ひゃう