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Fundamental groups
Topological fundamental groups

Starting point: Fundamental group 71 (X), where X is a (punctured)
Riemann surface of genus g with r holes (“of type (g, r)”):
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@ Observe thatif r > 1, then this is a free group on 2g + r — 1
generators.

@ Recall that there is a universal cover X — X on which 7 (X) acts
freely, and X = )N(/m (X).

@ In particular, each finite index normal subgroup H of 71 (X)
corresponds to a finite topological cover of X with deck
transformation group =1(X)/H.
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Fundamental groups
Algebraic fundamental groups

@ Hard to talk about homotopy classes of loops in algebraic
geometry.

@ Instead, one builds the theory of the fundamental group from the
idea of covering spaces.

@ These are not Zariski-topological covers (topology is too coarse),
but rather finite étale covers.

@ Explicitly, Y — X is étale if, locally, Y is cut out over X by n
polynomials fi, ..., f, in nvariables such that the Jacobian matrix
of the f;is invertible. 11, |, Ik Oa @ o175, lbes tofologieal covtr

e Afinite étale cover f: Y — X is |Aut(Y/X)|-Galois if |Aut(Y/X)|
acts transitively on the fibers.

@ One can then define 729(X) to be the jnverse limit of Aut(Y/X)
over all Galois covers Y — X. So GT8 ’Eh'e Galois group of a cover
if and only if G is a quotient of 729(X).

Andrew Obus (Baruch College / CUNY Gradu Conductor-discriminant inequalities



Fundamental groups

Branched covers and inertia groups

@ If X is a smooth, connected affine curve with smooth projective
completion X, then any finite étale cover Y — X extends uniquely
to a finite morphism Y — X, where Y is the smooth projective
completion of Y.

@ Such a finite morphism is called a branched cover.

e If Y — Xis G-Galois, then G acts on Y, and the stabilizer of a
point of Y is called the inertia group at that point. ‘

@ For short, we refer to the inertia groups of Y — X as those of opelle

Ly
Y — X. 1
N D )
@ Over C, the inertia groups of a cover are always cyclic.

@ If X = P' over any algebraically closed field and Y — X is Galois,
then the inertia groups generate the Galois group of the cover.
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Fundamental groups

Fundamental groups and inertia groups in

characteristic zero

@ The Riemann existence theorem shows that if X is a smooth
algebraic curve over C and f@7: Y2 — X(C) is a finite topological
cover, then Y2 is actually Y(C) for some algebraic curve Y, and
the map 2" comes from an algebraic morphism from Y — X.

@ One derives from this that 729(X) is the profinite completion of
mP(X(C)).

@ Infact, as long as X is defined over an algebraically closed field of
characteristic zero, the isomorphism class of wf'g(X ) depends
only on the type (g, r) of X, not on the base field. It is ﬁg,r.

@ The inertia groups do not depend on the base field either (they are
cyclic).
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Fundamental groups

Flavors of fundamental group in characteristic p

Now, suppose X is a curve of type (g, r) over an algebraically closed
field of characteristic p, with smooth projective completion X. From
now on, we write 71 (X) = 729(X).

@ As we know,

m1(X) =2 jim Aut(Y/X)

Y—X Galois finite étale
@ If we instead take the inverse limit over Galois covers whose
inertia groups are prime to p, we obtain 7{2M¢(X).
@ If we only take the inverse limit over Galois covers whose degrees
. . p/ —
are prime to p, we obtain 73 (X).
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Fundamental groups
Comparison Theorem

t2pologlea Ritmapn SuyF
Let My, be the fundamental group of a Ezu-é"é o?’t;;gee’(g, r) over C.

Theorem (Grothendieck, SGA 1)

If X is a curve of type (g, r) over an algebraically closed field of
gharacteristic p, then there exists a surjective homomorphism
Mg, — mi@Me(X) which is an isomorphism on maximal prime-to-p
quotients.
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Fundamental groups
Wild cover examples

Let X = A}, with k algebraically closed of characteristic p. Note that if
k had characteristic zero, the affine line would have trivial fundamental

group!
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Fundamental groups

Quotients of m1(A})

@ We have seen that arbitrary finite powers of Z/p appear as
quotients of 71(A}).
@ In fact, there are interesting non-abelian examples as well!
Ceady a0 (FF0 (med p), nzprt).
15 étale  (Fun exercist)
(X—UV\Q/) (f wc,+ﬁke— Galo's dDSIM"e// Oq_lm\S ij\qD

Com b PSLLR, PSLLY), Sa, Aa leﬁ
on JC; P\

X&EX

What finite groups G can appear as quotients of w1 (A})? That is, for
what finite groups G do there exist G-Galois covers of A} ?
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Fundamental groups

m1(A}) is not topologically finitely generated!

@ Note that the examples above show that (Z/p)" is a quotient of
m1(A}) for all n € N, so 71(A}) is not topologically finitely
generated!

@ This means that even if we can answer the question of which finite
groups appear as quotients of w1 (A}), we will still not have
determined the full structure of 1 (A}).
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Abhyankar’s conjectures

Abhyankar’s philosophy regarding finite Galois covers

(informally)

@ Groups that shouldn’t be the Galois group of a cover aren’t.
@ Groups shouldn’t not be the Galois group of a cover are.

Or, slightly more formally:

@ A finite group should appear as a quotient of a fundamental group
in characteristic p if and only if its maximal prime-to-p quotient
appears as a quotient of the “corresponding” fundamental group in
characteristic zero.

This philosophy was informed by a great deal of examples that
Abhyankar originally encountered while studying resolution of
singularities on surfaces in characteristic p.
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Abhyankar’s conjectures

Abhyankar’s conjecture for affine curves

Let k be an algebraically closed field of characteristic p, let G be a
finite group, and let p(G) be the subgroup of G generated by its
p-Sylow subgroups. Suppose X is a curve of type (g, r) over k with
r>1.

Conijecture (Abhyankar — Proof by Harbater and Raynaud)

The group G is a quotient of w1(X) if and only if G/p(G) can be
generated by 2g + r — 1 elements.

Case’ yijl\‘k/ ’HVEA 6, 1 aimb)b(\’ 0% ﬂ)(/pﬁ}() |\f-§
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Abhyankar’s conjectures

Proof of Abhyankar’s conjecture: “only if” (easy)

direction
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Abhyankar’s conjectures

Proof of Abhyankar’s conjecture: Techniques for “if”

(hard) direction

@ Group cohomology and embedding problems

[4
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Abhyankar’s conjectures
Solvable case: Serre’s idea

Theorem (Serre)

Let1 - H— G — G/H — 1 be exact, with H solvable and G quasi-p.
If G/H is a quotient of 71(A}), then so is G.

Idea of proof:

@ By étale cohomology, 1 (A}) has cohomological dimension 1, and
is thus projective.

@ Som(A}) —» G/H lifts to m(A}) — G.

@ Need to make sure this map is surjective. Can assume H
elementary abelian, irreducible under action of G/H.

@ It might not be surjective, but there exists a twist by an element of
H'(m1(A}), H), provided this latter cohomology group strictly
contains H'(G/H, H)

@ Can ensure this by pulling back the G/H-cover by an mth power
map.

Andrew Obus (Baruch College / CUNY Gradu Conductor-discriminant inequalities



Abhyankar’s conjectures

Affine line case: Raynaud’s first idea

@ Let S be a p-Sylow group of G, and let G(S) C G be generated by
all proper quasi-p-subgroups of G whose p-Sylow subgroups are
contained in S.

@ Assume

@ Let G; be the proper subgroups of G whose p-Sylows are
contained in S. By induction, assume there are G;-Galois covers
fi:Yi— AL.

@ By Abhyankar's Lemma, can assume the inertia groups are
p-groups P;, all contained in S.

@ Now use rigid patching over k((t)) to patch these covers together
to a G-cover with inertia group S.

@ Lastly, take an appropriate specialization to get a cover over k.
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Abhyankar’s conjectures

Affine line case: Raynaud’s second idea

@ Assume G has no non-trivial normal p-subgroup (Serre).

@ Assume G(S) # G (!)

@ Build a G-Galois branched cover W — P(. in characteristic zero
with all inertia groups p-groups.

@ Can view this cover over a finite extension of Frac(W(k)).

@ If we take a semi-stable model of this cover and look at the special
fiber (which lives over k!), there will be an irreducible component
upstairs with a G-action, branched only where’it meets the rest of

the curve. This is the cover we seek! é W
L gl
W\/on‘h’ vaM'WC’*’b” f ‘l/
)
s P [
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Abhyankar’s conjectures

General curves: Harbater’s idea

@ The key case is the of type (0,2), that is, A} \ {0}.

@ Reduce to the case G = p(G) x G, where G is cyclic of prime-to-p
order.

@ If Pis a p-Sylow group of G, can use a souped-up version of
Serre’s result to build a P x G-cover g: V — A}(((t)) \ {0} with
inertia groups conjugate to P.

@ Using Abhyankar’s conjecture, build a p(G)-cover h: W — Al.
Can force inertia groups to be conjugate to P as well.

@ Thickening h, we can glue copies of h and g together using formal
patching to get a G-cover over k((t)). Then specialize as before.

@ General case comes from patching an appropriate cover of
Al {0} to copies of a prime-to-p cover of a type (g, r)-curve.
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Abhyankar’s conjectures

Open generalizations/extensions

@ Abhyankar’s inertia conjecture

@ Abhyankar’s affine arithmetical conjecture Y anals g f A““IWW
(o )\EJM&

v;m )L‘ IFf

@ Abhyankar’s conjectures for higher-dimensional schemes

L} Complomedss of Mperplane, arrugtneds,.
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Abhyankar’s conjectures

Abhyankar’s inertia conjecture

be
@ Let Y — A} j§ a G-Galois cover, and let / be an inertia group.

Then I and its conjugates generate G.
@ Furthermore, I = P x Z/m, where P is a non-trivial p-group and

ptm. Ly poo's grougs of xtenslons of kY-

Conjecture (Abhyankar’s inertia conjecture)

Let G be a quasi-p-group, and let | C G be a subgroup of the form
P x Z/m such that | and its conjugates generate G. Then there exists
a G-cover of the affine line with an inertia group equal to |I.

For short, we say we can realize (G, /).
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Abhyankar’s conjectures

Abhyankar’s inertia conjecture: Results

General results:
@ If we can realize (G, /) and I' 2 I with |I'/]| a power of p, then we
can realize (G, I') (Harbater).
@ If we canrealize (G, /) and I' C I with pt |I/I'|, then we can realize
(G, I'). (Abhyankar’s lemma)
Specific results
@ Lots of individual groups G (abelian p-groups,
PSLz(p), Ap, Ap+2; Ap+1, Apt3; Ap+a, Apis) 22 [moek 3>
@ Partial results (e.g., PSL»(¢) with p | £ — 1, products of alternating
groups Ap, with p < n; < 2p)
@ Techniques are similar to original Abhyankar conjecture (explicit
equations, reduction, patching).
No real “program” to solve the entire conjecture.
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Abhyankar’s conjectures

Abhyankar’s affine arithmetical conjecture

@ Suppose K is a finite field.
@ Observe that Gal(k/k) = Z.
@ If X is an affine curve over k, we have the exact sequence

1 — m1(Xg) — m(X) — Gal(k/k) = Z — 1.
@ Less ambitious conjecture: If G is a quotient of 74 (A%), thenitis a
quotient of 7 (Ag, ).

© More ambitious conjecture: If G is a quotient of 71 (A7 \ {0}), then
it is a quotient of 74 (A]‘Fp).

Theorem (Guralnick, Stevenson)

If G is generated by p(G) and g with g ¢ p(G), then there exists a finite
field Fq/Fp such that G is a quotient of (Al}q).
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Lifting to characteristic zero

Abhyankar-style covers from characteristic zero

@ We have already seen that, in order to prove Abhyankar’s
conjecture for affine curves over an algebraically closed field k of
characteristic p, a key step involves realizing a G-cover as an
irreducible component of the reduction of a cover of curves from
characteristic zero.

@ In fact, many G-covers can be realized as reductions of covers in
characteristic zero, full stop (no need to take an irrefiducible
component).

@ In fact, every branched G-cover Y — IF’}( can be realized in this
way, so long as the inertia groups are prime to p (i.e., it is a tame
cover).

@ This is more or less equivalent to the fact that the tame
fundamental group of an affine curve in characteristic p is a
quotient of the corresponding fundamental group in characteristic
zero.
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Lifting to characteristic zero
Example

Let k be an algebraically closed field of characteristic p. Consider the
Z/ p-cover of P}, étale over A}, given birationally by

y"—y
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Lifting to characteristic zero

The lifting problem and Oort groups

We consider the following “lifting problem”:

@ Suppose we are given a branched G-Galois cover of smooth
curves f: Y — P}. When is there a discrete valuation ring R in
characteristic zero with residue field k and a G-Galois cover
fr: Ygr — PL such that fg xg k = f as G-Galois covers?

If the question above has a positive answer for every cover for a given
group G, then G is said to be a (global) Oort group. One says that “all
G-Galois covers lift to characteristic zero”.
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Lifting to characteristic zero

A conjecture and recent counterexample

In characteristic p > 2, the group Dpn is an W for all n. \

wery Up,~ cover for Chaf P
@ Known for n =1 (Bouw-Wewers). Comes a5 riduchisn From du-
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Lifting to characteristic zero

ldea behind the counterexample

e If f: Y — P} is a G-cover, then there is a G-action on the vector
space V of holomorphic differentials of Y.

@ Outside of some exceptional cases, Petri’s theorem shows that
the canonical ideal / of Y is generated by quadratic differentials.
@ Kontogeorgis and Terezakis show that f lifts to characteristic zero

if and only if the G-module V lifts to characteristic zero in a way
that leaves the canonical ideal invariant.

o That s, letting kb C Symz(V) be the quadratic part of the canonical
ideal, the canonical action of G acting on Sym?( V) preserves /.
@ This uses an earlier result of theirs that any lift of the curve Y to
characteristic zero can be explicitly given by lifting the quadratic
polynomials that cut Y out in its canonical embedding.

@ They then show that a certain Dyo5-cover does not satisfy this
criterion. The proof is more or less linear algebra!
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Lifting to characteristic zero

Question on D,.-covers

Can one obtain any reasonably nice criterion for when a D,n-cover
does or does not lift to characteristic zero?
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Lifting to characteristic zero

Thank you for your attention!
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