Abhyankar's Conjectures and Fundamental Groups

Andrew Obus

Baruch College / CUNY Graduate Center

vaNTAGe Seminar December 12, 2023

Outline

- Fundamental groups
- Abhyankar's conjectures
- 3 Lifting to characteristic zero

(Very) short bibliography

- S. S. Abhyankar, "Galois theory on the line in nonzero characteristic", Bull. Amer. Math. Soc. (1992), 68–133.
- S. S. Abhyankar, "Resolution of singularities and modular Galois theory", Bull. Amer. Math. Soc. (2001), 131–169.
- D. Harbater, A. Obus, R. Pries, K. Stevenson, "Abhyankar's conjectures in Galois theory: Current status and future directions", Bull. Amer. Math. Soc. (2018), 239–287.

Topological fundamental groups

Starting point: Fundamental group $\pi_1(X)$, where X is a (punctured) Riemann surface of genus g with r holes ("of type (g, r)"):

- Observe that if $r \ge 1$, then this is a *free* group on 2g + r 1 generators.
- Recall that there is a universal cover $\widetilde{X} \to X$ on which $\pi_1(X)$ acts freely, and $X \cong \widetilde{X}/\pi_1(X)$.
- In particular, each finite index normal subgroup H of $\pi_1(X)$ corresponds to a finite topological cover of X with deck transformation group $\pi_1(X)/H$.

Algebraic fundamental groups

- Hard to talk about homotopy classes of loops in algebraic geometry.
- Instead, one builds the theory of the fundamental group from the idea of covering spaces.
- These are not Zariski-topological covers (topology is too coarse), but rather finite étale covers.
- Explicitly, $Y \to X$ is étale if, locally, Y is cut out over X by n polynomials f_1, \ldots, f_n in n variables such that the Jacobian matrix of the f_i is invertible. Think: On Great, gives topological confirmation.
- A finite étale cover $f: Y \to X$ is |Aut(Y/X)|-Galois if |Aut(Y/X)| acts transitively on the fibers.
- One can then define $\pi_1^{\text{alg}}(X)$ to be the inverse limit of Aut(Y/X) over all Galois covers $Y \to X$. So G is the Galois group of a cover if and only if G is a quotient of $\pi_1^{\text{alg}}(X)$.

Branched covers and inertia groups

- If X is a smooth, connected affine curve with smooth projective completion \overline{X} , then any finite étale cover $Y \to X$ extends uniquely to a finite morphism $\overline{Y} \to \overline{X}$, where \overline{Y} is the smooth projective completion of Y.
- Such a finite morphism is called a branched cover.
- If $Y \to X$ is G-Galois, then G acts on \overline{Y} , and the stabilizer of a point of \overline{Y} is called the *inertia group* at that point.
- For short, we refer to the inertia groups of $\overline{Y} \to \overline{X}$ as those of $Y \to X$.
- Over C, the inertia groups of a cover are always *cyclic*.
- If $\overline{X} \cong \mathbb{P}^1$ over any algebraically closed field and $Y \to X$ is Galois, then the inertia groups generate the Galois group of the cover.

Fundamental groups and inertia groups in characteristic zero

- The Riemann existence theorem shows that if X is a smooth algebraic curve over $\mathbb C$ and $f^{an} \colon Y^{an} \to X(\mathbb C)$ is a finite topological cover, then Y^{an} is actually $Y(\mathbb C)$ for some algebraic curve Y, and the map f^{an} comes from an *algebraic* morphism from $Y \to X$.
- One derives from this that $\pi_1^{\text{alg}}(X)$ is the profinite completion of $\pi_1^{\text{top}}(X(\mathbb{C}))$.
- In fact, as long as X is defined over an algebraically closed field of characteristic zero, the isomorphism class of $\pi_1^{\text{alg}}(X)$ depends only on the type (g,r) of X, not on the base field. It is $\hat{\Pi}_{g,r}$.
- The inertia groups do not depend on the base field either (they are cyclic).

Flavors of fundamental group in characteristic p

Now, suppose X is a curve of type (g, r) over an algebraically closed field of characteristic p, with smooth projective completion \overline{X} . From now on, we write $\pi_1(X) = \pi_1^{\text{alg}}(X)$.

As we know,

$$\pi_1(X) \cong \varprojlim_{Y \to X \text{ Galois finite étale}} \operatorname{Aut}(Y/X)$$

- If we instead take the inverse limit over Galois covers whose inertia groups are prime to p, we obtain $\pi_1^{\text{tame}}(X)$.
- If we only take the inverse limit over Galois covers whose degrees are prime to p, we obtain $\pi_1^{p'}(X)$.

Comparison Theorem

Let $\Pi_{g,r}$ be the fundamental group of a curve of type (g,r) over \mathbb{C} .

Theorem (Grothendieck, SGA 1)

If X is a curve of type (g,r) over an algebraically closed field of characteristic p, then there exists a surjective homomorphism $\hat{\Pi}_{g,r} \to \pi_1^{tame}(X)$ which is an isomorphism on maximal prime-to-p quotients.

Wild cover examples

Let $X = \mathbb{A}^1_k$, with k algebraically closed of characteristic p. Note that if k had characteristic zero, the affine line would have trivial fundamental group!

Quotients of $\pi_1(\mathbb{A}^1_k)$

- We have seen that arbitrary finite powers of \mathbb{Z}/p appear as quotients of $\pi_1(\mathbb{A}^1_k)$.
- In fact, there are interesting non-abelian examples as well!

Question

What finite groups G can appear as quotients of $\pi_1(\mathbb{A}^1_k)$? That is, for what finite groups G do there exist G-Galois covers of \mathbb{A}^1_k ?

$\pi_1(\mathbb{A}^1_k)$ is not topologically finitely generated!

- Note that the examples above show that $(\mathbb{Z}/p)^n$ is a quotient of $\pi_1(\mathbb{A}^1_k)$ for all $n \in \mathbb{N}$, so $\pi_1(\mathbb{A}^1_k)$ is *not* topologically finitely generated!
- This means that even if we can answer the question of which finite groups appear as quotients of $\pi_1(\mathbb{A}^1_k)$, we will still not have determined the full structure of $\pi_1(\mathbb{A}^1_k)$.

Abhyankar's philosophy regarding finite Galois covers (informally)

- Groups that shouldn't be the Galois group of a cover aren't.
- Groups shouldn't not be the Galois group of a cover are.

Or, slightly more formally:

 A finite group should appear as a quotient of a fundamental group in characteristic p if and only if its maximal prime-to-p quotient appears as a quotient of the "corresponding" fundamental group in characteristic zero.

This philosophy was informed by a great deal of examples that Abhyankar originally encountered while studying resolution of singularities on surfaces in characteristic p.

Abhyankar's conjecture for affine curves

Let k be an algebraically closed field of characteristic p, let G be a finite group, and let p(G) be the subgroup of G generated by its p-Sylow subgroups. Suppose X is a curve of type (g, r) over k with $r \ge 1$.

Conjecture (Abhyankar — Proof by Harbater and Raynaud)

The group G is a quotient of $\pi_1(X)$ if and only if G/p(G) can be generated by 2g + r - 1 elements.

Proof of Abhyankar's conjecture: "only if" (easy) direction

Proof of Abhyankar's conjecture: Techniques for "if" (hard) direction

Group cohomology and embedding problems

$$\pi_{l}(x) \rightarrow GlH$$

Formal/Rigid patching

Semi-stable models

Controlled had reduction to char. P.

Gx! Xy = p (char. 0) reductor xy=0

reduced, singularities are ODP's.

Solvable case: Serre's idea

Theorem (Serre)

Let $1 \to H \to G \to G/H \to 1$ be exact, with H solvable and G quasi-p. If G/H is a quotient of $\pi_1(\mathbb{A}^1_k)$, then so is G.

Idea of proof:

- By étale cohomology, $\pi_1(\mathbb{A}^1_k)$ has cohomological dimension 1, and is thus projective.
- So $\pi_1(\mathbb{A}^1_k) \twoheadrightarrow G/H$ lifts to $\pi_1(\mathbb{A}^1_k) \to G$.
- Need to make sure this map is surjective. Can assume H elementary abelian, irreducible under action of G/H.
- It might not be surjective, but there exists a twist by an element of $H^1(\pi_1(\mathbb{A}^1_k), H)$, provided this latter cohomology group strictly contains $H^1(G/H, H)$
- Can ensure this by pulling back the G/H-cover by an mth power map.

Affine line case: Raynaud's first idea

- Let S be a p-Sylow group of G, and let $G(S) \subseteq G$ be generated by all proper quasi-p-subgroups of G whose p-Sylow subgroups are contained in S.
- Assume G(S) = G.
- Let G_i be the proper subgroups of G whose p-Sylows are contained in S. By induction, assume there are G_i -Galois covers $f_i \colon Y_i \to \mathbb{A}^1_k$.
- By Abhyankar's Lemma, can assume the inertia groups are p-groups P_i, all contained in S.
- Now use rigid patching over k((t)) to patch these covers together to a G-cover with inertia group S.
- Lastly, take an appropriate specialization to get a cover over *k*.

Affine line case: Raynaud's second idea

- Assume G has no non-trivial normal p-subgroup (Serre).
- Assume $G(S) \neq G(!)$
- Build a *G*-Galois branched cover $W \to \mathbb{P}^1_{\mathbb{C}}$ in characteristic zero with all inertia groups p-groups.
- Can view this cover over a finite extension of Frac(W(k)).

• If we take a *semi-stable* model of this cover and look at the special fiber (which lives over k!), there will be an irreducible component upstairs with a G-action, branched only where it meets the rest of the curve. This is the cover we seek!

General curves: Harbater's idea

- The key case is the of type (0,2), that is, $\mathbb{A}^1_k \setminus \{0\}$.
- Reduce to the case $G \cong p(G) \rtimes \overline{G}$, where \overline{G} is cyclic of prime-to-p order.
- If P is a p-Sylow group of G, can use a souped-up version of Serre's result to build a $P \rtimes \overline{G}$ -cover $g \colon V \to \mathbb{A}^1_{k((t))} \setminus \{0\}$ with inertia groups conjugate to P.
- Using Abhyankar's conjecture, build a p(G)-cover $h: W \to \mathbb{A}^1_k$. Can force inertia groups to be conjugate to P as well.
- Thickening h, we can glue copies of h and g together using formal patching to get a G-cover over k((t)). Then specialize as before.
- General case comes from patching an appropriate cover of $\mathbb{A}^1_k \setminus \{0\}$ to copies of a prime-to-p cover of a type (g, r)-curve.

Open generalizations/extensions

- Abhyankar's inertia conjecture
- Abhyankar's inertia conjecture
 Abhyankar's affine arithmetical conjecture analog of Abhyankar
 Abhyankar's conjectures for higher-dimensional schemes

4 Complements of hyperplane arrangements.

Abhyankar's inertia conjecture

- Let $Y \to \mathbb{A}^1_k$ is a G-Galois cover, and let I be an inertia group. Then I and its conjugates generate G.
- Furthermore, $I \cong P \rtimes \mathbb{Z}/m$, where P is a non-trivial p-group and $p \nmid m$.

Conjecture (Abhyankar's inertia conjecture)

Let G be a quasi-p-group, and let $I \subseteq G$ be a subgroup of the form $P \rtimes \mathbb{Z}/m$ such that I and its conjugates generate G. Then there exists a G-cover of the affine line with an inertia group equal to I.

For short, we say we can realize (G, I).

Abhyankar's inertia conjecture: Results

General results:

- If we can realize (G, I) and $I' \supseteq I$ with |I'/I| a power of p, then we can realize (G, I') (Harbater).
- If we can realize (G, I) and $I' \subseteq I$ with $p \nmid |I/I'|$, then we can realize (G, I'). (Abhyankar's lemma)

Specific results

- Lots of individual groups G (abelian p-groups, $PSL_2(p), A_p, A_{p+2}, A_{p+1}, A_{p+3}, A_{p+4}, A_{p+5})$ p $\leq 2 \pmod{3}$
- Partial results (e.g., $PSL_2(\ell)$ with $p \mid \ell^2 1$, products of alternating groups A_{n_i} with $p \leq n_i < 2p$)
- Techniques are similar to original Abhyankar conjecture (explicit equations, reduction, patching).

No real "program" to solve the entire conjecture.

Abhyankar's affine arithmetical conjecture

- Suppose *k* is a *finite* field.
- Observe that $Gal(\overline{k}/k) \cong \hat{\mathbb{Z}}$.
- If X is an affine curve over k, we have the exact sequence

$$1 \to \pi_1(X_{\overline{k}}) \to \pi_1(X) \to \operatorname{Gal}(\overline{k}/k) \cong \hat{\mathbb{Z}} \to 1.$$

- Less ambitious conjecture: If G is a quotient of $\pi_1(\mathbb{A}^1_{\overline{k}})$, then it is a quotient of $\pi_1(\mathbb{A}^1_{\mathbb{F}_n})$.
- More ambitious conjecture: If G is a quotient of $\pi_1(\mathbb{A}^1_{\overline{k}}\setminus\{0\})$, then it is a quotient of $\pi_1(\mathbb{A}^1_{\mathbb{F}_n})$.

Theorem (Guralnick, Stevenson)

If G is generated by p(G) and g with $g \notin p(G)$, then there exists a finite field $\mathbb{F}_q/\mathbb{F}_p$ such that G is a quotient of $\pi_1(\mathbb{A}^1_{\mathbb{F}_q})$.

Abhyankar-style covers from characteristic zero

- We have already seen that, in order to prove Abhyankar's conjecture for affine curves over an algebraically closed field k of characteristic p, a key step involves realizing a G-cover as an irreducible component of the reduction of a cover of curves from characteristic zero.
- In fact, many G-covers can be realized as reductions of covers in characteristic zero, full stop (no need to take an irrefiducible component).
- In fact, *every* branched *G*-cover $Y \to \mathbb{P}^1_k$ can be realized in this way, so long as the inertia groups are prime to p (i.e., it is a tame cover).
- This is more or less equivalent to the fact that the tame fundamental group of an affine curve in characteristic p is a quotient of the corresponding fundamental group in characteristic zero.

Example

Let k be an algebraically closed field of characteristic p. Consider the \mathbb{Z}/p -cover of \mathbb{P}^1_k , étale over \mathbb{A}^1_k , given birationally by

Sketch? Work over
$$R$$
 W(k) [Sp], Let $\lambda = Sp^{-1}$.

When the work over R given by

$$Z' = 1 + \lambda' X \qquad Z = 1 + \lambda' X$$
The mult $C_{1}(1 + \lambda Y)^{p} = 1 + \lambda' X \qquad Z = 1 + \lambda' X$
The mult $C_{2}(1 + \lambda Y)^{p} = 1 + \lambda' X \qquad Z = 1 + \lambda' X$

The mult $C_{3}(1 + \lambda Y)^{p} = 1 + \lambda' X \qquad Z = 1 + \lambda' X$

The mult $C_{3}(1 + \lambda Y)^{p} = 1 + \lambda' X \qquad Z =$

The lifting problem and Oort groups

We consider the following "lifting problem":

• Suppose we are given a branched *G*-Galois cover of smooth curves $f: Y \to \mathbb{P}^1_k$. When is there a discrete valuation ring *R* in characteristic zero with residue field *k* and a *G*-Galois cover $f_R: Y_R \to \mathbb{P}^1_R$ such that $f_R \times_R k \cong f$ as *G*-Galois covers?

If the question above has a positive answer for every cover for a given group *G*, then *G* is said to be a *(global) Oort group*. One says that "all *G*-Galois covers lift to characteristic zero".

A conjecture and recent counterexample

Conjecture

In characteristic p > 2, the group D_{p^n} is an Oort group for all n.

- Known for n = 1 (Bouw–Wewers).
- Comes as reduction from our. • Known for D_9 , D_{25} , D_{27} (Dang, Das, Karagiannis, Obus, Thatte)

Counterexample: 0125 Shranched at 2 points

(inertia groups

Kontageorgis-Terezakis

Sychic part 7/125 upper jumps 9,45,225

every op_ cover for chaft f

Idea behind the counterexample

- If $f: Y \to \mathbb{P}^1_k$ is a *G*-cover, then there is a *G*-action on the vector space *V* of holomorphic differentials of *Y*.
- Outside of some exceptional cases, Petri's theorem shows that the canonical ideal I of Y is generated by quadratic differentials.
- Kontogeorgis and Terezakis show that f lifts to characteristic zero if and only if the G-module V lifts to characteristic zero in a way that leaves the canonical ideal invariant.
 - That is, letting $I_2 \subseteq \operatorname{Sym}^2(V)$ be the quadratic part of the canonical ideal, the canonical action of G acting on $\operatorname{Sym}^2(V)$ preserves I_2 .
- This uses an earlier result of theirs that any lift of the curve Y to characteristic zero can be explicitly given by lifting the quadratic polynomials that cut Y out in its canonical embedding.
- They then show that a certain D_{125} -cover does not satisfy this criterion. The proof is more or less linear algebra!

Question on D_{p^n} -covers

Can one obtain any reasonably nice criterion for when a D_{p^n} -cover does or does not lift to characteristic zero?

Thank you for your attention!