Q-curves over odd degree number fields and sporadic points

Filip Najman

University of Zagreb
joint with Abbey Bourdon (Wake Forest) and John Cremona (Warwick)

VaNTAGe
a virtual math seminar on open conjectures in number theory and arithmetic geometry

June 29th 2021.

Definitions

Definition

An isogeny of elliptic curves is a surjective homomorphism with finite kernel

We say that an isogeny $\phi: E_{1} \rightarrow E_{2}$ is defined over K if E_{1}, E_{2} and ϕ are all defined over K.

An isogeny (if no field is stated) is in this talk defined over $\overline{\mathbb{Q}}$.

Definition

An elliptic curve is called a \mathbb{Q}-curve if it is isogenous to all of its $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-conjugates.

If E / K is a \mathbb{Q}-curve, it is not necessarily isogenous over K to its conjugates.

Galois representations attached to elliptic curves

Let E / K be an elliptic curve, K a number field and p a prime.
Define

$$
E[p]:=\{R \in E(\bar{K}) \mid p R=O\},
$$

$G_{K}:=\operatorname{Gal}(\bar{K} / K)$ acts on $E[p]$.
This induces

$$
\rho_{E, p}: \operatorname{Gal}(\bar{K} / K) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right),
$$

the $\bmod p$ Galois representation attached to E.
Serre's uniformity question/conjecture: Does there exist a $C>0$ such that for all primes $p>C$ and for all elliptic curves E / \mathbb{Q} without CM we have $\rho_{E, p}\left(G_{\mathbb{Q}}\right)=\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$?

Q-curves are the modular curves over number fields

Ribet (1992) (assuming Serre's conjecture which was later proved): \mathbb{Q}-curves are exactly the elliptic curves over number fields that are modular, in the sense of being quotients of $J_{1}(N)$ for some N.
\mathbb{Q}-curves have been extensively used in the "modular method" to solve Fermat-type equations. It is often crucial to understand their Galois representations.

Which curves are \mathbb{Q}-curves?

An elliptic curve defined over \mathbb{Q} is a \mathbb{Q}-curve.
A base change of a \mathbb{Q}-curve is a \mathbb{Q}-curve.
A twist of a \mathbb{Q}-curve is a \mathbb{Q}-curve.
An elliptic curve E with $j(E) \in \mathbb{Q}$ is a \mathbb{Q}-curve.
A curve that is isogenous to a \mathbb{Q}-curve is a \mathbb{Q}-curve.
Any CM elliptic curve is a \mathbb{Q}-curve.
Let \mathcal{E} be the set of all elliptic curves.

$$
\begin{gathered}
\mathcal{E} \supset\{\mathbb{Q}-\text { curves }\} \supset\left\{E \text { isogenous to } E_{1} \mid j\left(E_{1}\right) \in \mathbb{Q}\right\} \supset \\
\supset\{E \mid j(E) \in \mathbb{Q}\} \supset\{E / \mathbb{Q}\} .
\end{gathered}
$$

Questions, questions

$$
\begin{aligned}
\mathcal{Q C} & :=\{\mathbb{Q}-\text { curves }\} \\
\mathcal{I J} & :=\left\{E \text { isogenous to } E_{1} \mid j\left(E_{1}\right) \in \mathbb{Q}\right\} \\
\mathcal{J} & :=\{E \mid j(E) \in \mathbb{Q}\}, \\
\mathcal{B} & :=\{E / \mathbb{Q}\},
\end{aligned}
$$

Important tower of sets: $\mathcal{E} \supset \mathcal{Q C} \supset \mathcal{I} \mathcal{J} \supset \mathcal{J} \supset \mathcal{B}$.
Which statements about Galois representaions of elliptic curves in each of these sets can we prove?

In particular are degrees of isogenies and sizes of torsion groups bounded?

I will not talk about CM elliptic curves. Their Galois representations are now well understood (Bourdon, Clark \& collaborators, Lozano-Robledo).

Our tower of sets: $\mathcal{E} \supset \mathcal{Q C} \supset \mathcal{I J} \supset \mathcal{J} \supset \mathcal{B}$.
For each of these sets S and for $d \in \mathbb{Z}_{+}$denote by $S(d)$ the set of all such elliptic curves defined over all number fields of degree d.
$T(S):=$ set of all possible torsion groups of elliptic curves in S.
Obviously $\mathcal{E}(1)=\mathcal{Q C}(1)=\mathcal{I J}(1)=\mathcal{J}(1)=\mathcal{B}(1)$.
Mazur (1977):
$T(\mathcal{E}(1))=\left\{C_{n}: n=1, \ldots, 10,12\right\} \cup\left\{C_{2} \times C_{2 m}: m=1, \ldots, 4\right\}$

Torsion groups over quadratic fields

Our tower of sets: $\mathcal{E} \supset \mathcal{Q C} \supset \mathcal{I J} \supset \mathcal{J} \supset \mathcal{B}$.

$$
\begin{aligned}
& T(\mathcal{E}(2))=\left\{C_{n}: n=1, \ldots, 16,18\right\} \cup\left\{C_{2} \times C_{2 n}: n=1, \ldots, 6\right\} \\
& \cup\left\{C_{3} \times C_{3 n}, n=1,2\right\} \cup\left\{C_{4} \times C_{4}\right\}(\text { Kenku,Momose '88,Kamienny '92). }
\end{aligned}
$$

$$
T(\mathcal{B}(2))=T(\mathcal{E}(2)) \backslash\left\{C_{n}, n=11,13,14,18\right\} .(\mathrm{N} .(2014)) .
$$

$$
T(\mathcal{J}(2))=T(\mathcal{B}(2)) \cup\left\{C_{13}\right\} \text { (Tzortzakis (2018), Gužvić (2019)). }
$$

$$
T(\mathcal{Q C}(2))=T(\mathcal{J}(2)) \cup\left\{C_{14}, C_{18}\right\} .(\text { Le Fourn, N. (2018)) } .
$$

Le Fourn (2013): over any imaginary quadratic field Serre's uniformity conjecture is true for curves in $\mathcal{Q C} \backslash(\mathcal{I J} \cup \mathcal{C M})$.

Where do torsion groups and isogenies appear?

Our tower of sets: $\mathcal{E} \supset \mathcal{Q C} \supset \mathcal{I} \mathcal{J} \supset \mathcal{J} \supset \mathcal{B}$.
Where do elliptic curves over quadratic fields with certain torsion groups and isogenies appear?

Curves with C_{13} torsion are in $\mathcal{J} \backslash \mathcal{B}$. (Bosman, Bruin, Dujella, N. (2014))
Curves wit C_{18} torsion are in $\mathcal{Q C} \backslash \mathcal{I} \mathcal{J}$. (Bosman, Bruin, Dujella, N. (2014))
Curves wit C_{16} torsion are in \mathcal{B} (Bruin, N. (2016).)
Similar results about elliptic curves with n-isogenies, for various n, over quadratic fields have been by Bruin, N. (2014), Ozman, Siksek(2016) and Box (2018).

Our tower of sets: $\mathcal{E} \supset \mathcal{Q C} \supset \mathcal{I} \mathcal{J} \supset \mathcal{J} \supset \mathcal{B}$.
Derickx, Etropolski, van Hoeij, Morrow and Zureick-Brown (2020): $T(\mathcal{E}(3))=\left\{C_{n}: n=1, \ldots, 16,18,21\right\} \cup\left\{C_{2} \times C_{2 n}: n=1, \ldots, 7\right\}$.
N. (2014): $T(\mathcal{B}(3))=\left\{C_{n}: n=1, \ldots, 10,12,13,14,18,21\right\}$
$\cup\left\{C_{2} \times C_{2 n}: n=1, \ldots, 4,7\right\}$.
Gužvić (2019): $T(\mathcal{J}(3))=T(\mathcal{B}(3))$.
Open problem: Determine $T(\mathcal{Q C}(3))$ (this is equal to $T(\mathcal{I J}(3))$, as will be seen).

Torsion bounds over general number fields

Our tower of sets: $\mathcal{E} \supset \mathcal{Q C} \supset \mathcal{I J} \supset \mathcal{J} \supset \mathcal{B}$.
Order of groups in $T\left(\mathcal{E}(d)\right.$) is bounded by some B_{d}. (Merel (1996))
Order of groups in $T(\mathcal{B}(d))$ for d not divisible by primes ≤ 7 is bounded by 16. (Gonzalez-Jimenez and N. (2016))
Order of groups in $T(\mathcal{J}(p)$), for p prime is bounded by 28 . (Guzuvić (2019))

Theorem (Cremona, N. (2020))

Order of groups in $T(\mathcal{Q C}(p))$ for $p>7$ prime is bounded by 16 .
If one includes $p=2,3,5,7$ then the correct bound is almost certainly 28.

No such absolute bound can exist for $T(\mathcal{E}(d))$ when d runs through any infinite set of positive integers.

Isogeny bounds

Our tower of sets: $\mathcal{E} \supset \mathcal{Q C} \supset \mathcal{I} \mathcal{J} \supset \mathcal{J} \supset \mathcal{B}$.
$I(S):=$ set of all possible cyclic isogeny degrees of elliptic curves in S.

Note $I(\mathcal{J}(d))=I(\mathcal{B}(d))$.
Mazur (1978) and Kenku (1980s) determined $I(\mathcal{B}(1))$.
N. (2015) - the largest prime in $I((\mathcal{I} \mathcal{J} \backslash \mathcal{C} \mathcal{M})(d))$ is bounded by $3 d-1$ (and by $d-1$ if we assume a weaker version of Serre's uniformity conjecture, which has been proven by Le Fourn and Lemos (2020)).

Isogeny bounds for \mathbb{Q}-curves

Theorem (Cremona, N. (2020))

Let $L=\{2,3,5,7,11,13,17,37\}$.
a) The primes in $I((\mathcal{Q C} \backslash \mathcal{C} \mathcal{M})(d))$ for odd d are contained in L.
b) If d is not divisible by any prime $\ell \in L$, then $\max I((\mathcal{Q C} \backslash \mathcal{C M})(d))=37$.
c) For odd d, $\max I(\mathcal{Q C}(d)) \leq B_{d}$ for some constant B_{d} depending only on d.

Fields of defintion: Removing the bar

Theorem (Elkies(1994))

Every non-CM \mathbb{Q}-curve over a number field K is \bar{K}-isogenous to an elliptic curve defined over a polyquadratic field F.

Theorem (Cremona, N. (2020))

Every non-CM \mathbb{Q}-curve over a number field K is K-isogenous to an elliptic curve with j-invariant in a polyquadratic field F.

So $F \subseteq K$ and moreover \mathbb{Q}-curve over an odd degree number field is isogenous to an elliptic curve with $j(E) \in \mathbb{Q}$.

Conjecturally (Elkies), the degree of the field F can be bounded by an absolute constant.

Proving these results

This means that for odd d we have $\mathcal{Q C}(d)=\mathcal{I J}(d)$ and the Galois representations of curves in $\mathcal{I J}(d)$ are comparatively well understood and this allows us to obtain our results.

We also develop a quick algorithm to test whether a given curve E / K is a \mathbb{Q}-curve. It works (in the worst case) by computing the K-isogeny class.

Previously it was necessary to compute the K^{\prime}-isogeny class, where K^{\prime} is the Galois closure of K over \mathbb{Q}.

Sporadic points

Definition

We say that a point x of degree d on a curve X is sporadic if there are only finitely many points of degree $\leq d$.

When trying to determine $T(\mathcal{E}(d))$ and $I(\mathcal{E}(d))$ it is determining what the "sporadic groups" (those that appear finitely many times) are that is the hardest obstacle.

The groups that appear infinitely often in $T(\mathcal{E}(d))$ are known for $d \leq 6$: $d=3$ proved by Jeon, Kim, Schweizer (2004), $d=4$ by Jeon, Kim, Park (2006) and $d=5,6$ by Derickx, Sutherland (2016).

The sporadic groups in $T(\mathcal{E}(d))$ are known only for $d \leq 3$.
The degrees that appear infinitely often in $I(\mathcal{E}(d))$ are known for $d=2$ (Bars, 1999) and $d=3$ (Jeon, 2021), while the sporadic ones are known only for $d=1$.

CM sporadic points

For large N and large degrees there is an abundance of CM sporadic points on $X_{1}(N)$.

Theorem (Clark, Genao, Pollack, Saia, 2019)

For all $N \geq 721$, the curve $X_{1}(N)$ has a sporadic CM point.

Theorem (Bourdon, Ejder, Liu, Odumodu, Viray, 2019)

Let E be a CM elliptic curve. Then E corresponds to a sporadic point on $X_{1}(N)$ for infinitely many N.

So every CM j-invariant is a "sporadic j-invariant."

Theorem (Bourdon, Ejder, Liu, Odumodu, Viray, 2019)

Assuming Serre's Uniformity Conjecture, there are only finitely many rational j-invariants giving rise to a sporadic point in $\cup_{N \in \mathbb{Z}_{+}} X_{1}(N)$.

The set of "sporadic j-invariants" in \mathbb{Q} contains $-3^{2} \cdot 5^{6} / 2^{3}$, $-7 \cdot 11^{3}$ and all CM j-invariants.

Proposition (Bourdon, Ejder, Liu, Odumodu, Viray, 2019)

Suppose there is a point $x \in X_{1}(N)$ with

$$
\operatorname{deg}(x)<\frac{7}{1600}\left[\mathbb{P S L}_{2}(\mathbb{Z}): \Gamma_{1}(N)\right]
$$

Then x is sporadic and for any positive integer d and any point $y \in X_{1}(d N)$ with $\pi(y)=x$, the point y is sporadic, where π denotes the natural map $X_{1}(d N) \rightarrow X_{1}(N)$.

Sporadic points of small degree

N. 2012: The elliptic curve $E: y^{2}+x y+y=x^{3}-x^{2}-5 x+5$ with $j=-3^{2} \cdot 5^{6} / 2^{3}$ and LMFDB label $162 . c 3$ has a point of order 21 over the cubic field $\mathbb{Q}\left(\zeta_{9}\right)^{+}$, while $X_{1}(21)$ has finitely many points of degree ≤ 3.

This is the least degree of sporadic point on $X_{1}(N)$ for any N.
There exists a positive finite number of elliptic curves (up to $\overline{\mathbb{Q}}$-isomorphism) with n-isogenies over \mathbb{Q} for

$$
n=11,14,15,17,19,21,27,37,43,67,163 .
$$

So the lowest degree of a sporadic point on $X_{0}(n)$ is 1 .
Bourdon, Gill, Rouse and Watson (2020): $j=-3^{2} \cdot 5^{6} / 2^{3}$ is the unique non-CM rational j-invariant giving rise to a sporadic point of odd degree on $X_{1}(N)$.

van Hoeij's list of sporadic points.

van Hoeij has a huge list of sporadic points on $X_{1}(N)$ for $N \leq 80$.
There are no sporadic points of degree 1 and 2, while there exist sporadic points of degree 3 and all $5 \leq d \leq 30$ (follows also from Derickx and van Hoeij's results on gonality of $\left.X_{1}(N), 2014\right)$.

Question

Are there any sporadic points on $X_{1}(N)$ (or more generally $X_{1}(M, N)$) of degree 4?

Relationship to Serre's Uniformity Conjecture

Theorem (Bourdon, N., 2021)

Suppose that all non-CM \mathbb{Q}-curves corresponding to sporadic points on $X_{1}\left(p^{2}\right)$ lie in finitely many isogeny classes, as p varies through all primes. Then Serre's Uniformity Conjecture holds.

- Suppose E / \mathbb{Q} is non-CM and $\rho_{E, p}$ non-surjective for $p>37$. Then $\operatorname{im} \rho_{E, p} \leq C_{n s}^{+}(p)$, so $F:=\mathbb{Q}(E[p])$ is of degree dividing $2\left(p^{2}-1\right)$.
- E has two independent p-isogenies over F, and so is F-isogenous to an elliptic curve E^{\prime} with a F-rational cyclic p^{2}-isogeny and a F-rational point of order p which is in the kernel of this isogeny.
- E^{\prime} has a point of order p^{2} over an extension F^{\prime} / F of degree dividing p, so at most $2 p\left(p^{2}-1\right)$.
- For large enough p is always sporadic by Abramovich's bound.

Relationship to Serre's Uniformity Conjecture

Basically the same argument also proves:

Theorem (Bourdon, N., 2021)

Suppose that there are finitely many sporadic non-CM points on $X(p)$ corresponding to elliptic curves defined over \mathbb{Q}, as p varies through all primes. Then Serre's Uniformity Conjecture holds.

Odd degree sporadic points on \mathbb{Q}-curves

Question (Bourdon, N. (2021))

Does there exist only finitely many (isogeny classes of) non-CM \mathbb{Q}-curves giving rise to sporadic points on $X_{1}(N)$ for some N ?

If yes, this would imply Serre's uniformity conjecture.

Theorem (Bourdon, N., 2021)

All the odd degree sporadic points on $X_{1}(N)$ corresponding to non-CM \mathbb{Q}-curves lie in the isogeny classes of $j=-3^{2} \cdot 5^{6} / 2^{3}$.

Theorem (Bourdon, N., 2021)

Let p be a prime. If $x=[E, P] \in X_{1}\left(p^{k}\right)$ is a sporadic point of odd degree corresponding to a \mathbb{Q}-curve, then E has CM.

Isogeny classes giving infinitely many sporadic points

Proposition (Bourdon, N. 2021)

Suppose that there is a non-CM point $x=[E, P] \in X_{1}(N)$ corresponding to a \mathbb{Q}-curve with

$$
\begin{equation*}
\operatorname{deg}(x)<\frac{7}{1600}\left[\mathbb{P S L}_{2}(\mathbb{Z}): \Gamma_{1}(N)\right] . \tag{1}
\end{equation*}
$$

Then there exists infinitely many sporadic points $x^{\prime}=\left(E^{\prime}, P^{\prime}\right)$ on the curves $X_{1}(d N)$ (with d varying), such that E^{\prime} is isogenous to E and that all the $j\left(E^{\prime}\right)$ are pairwise distinct. If $\operatorname{deg}(x)$ is odd, we can obtain infinitely many sporadic points such x^{\prime} such that $\operatorname{deg}\left(x^{\prime}\right)$ is odd.

The sporadic j-invariant $-7 \cdot 11^{3}$, which corresponds to a degree 6 point on $X_{1}(37)$ (which is of gonality 18) almost satisfies this.
If an elliptic curve with this j-invariant was non-surjective at any other prime apart from 37 , it would satisfy (1).

Questions

Question

Does there exist a non-CM j-invariant that satisfies (1)?

Question

Does there exist a non-CM isogeny class with infinitely many sporadic points on $\cup_{N \in \mathbb{Z}_{+}} X_{1}(N)$?

Question

Does every non-CM isogeny class that has 1 sporadic point in $\cup_{N \in \mathbb{Z}_{+}} X_{1}(N)$ have infinitely many?

Question

What can we say about sporadic points on $X_{1}(N)\left(\right.$ or $X_{1}\left(p^{2}\right)$) of even degree?

The end

Thanks for listening!

