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COLEMAN’S CONJECTURE



Robert Coleman (1954–2014)



[...]

Finally we would like to state one last conjecture. Let g be an integer
g ≥ 4.

Conjecture 6. There are only finitely many curves over C of genus g
whose Jacobians admit the structure of a CM Abelian variety.

Quoted from: R. Coleman, Torsion points on curves. In: Galois representations
and arithmetic algebraic geometry (Kyoto, 1985/Tokyo, 1986), pp. 235–247; Adv.
Stud. Pure Math., 12, North-Holland, Amsterdam, 1987.



I Why this conjecture?

I Why g ≥ 4 ?

I Would Serre call this a conjecture?
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BASIC NOTIONS



Let A/k be an abelian variety, dim(A) = g .

Definition

We say A is a CM abelian variety (or: A has CM) if End0(A) contains a
commutative semisimple algebra S with dimQ(S) = 2g .

I If A is simple, A has CM if End0(A) contains a field of degree 2g
over Q

I In general: let A ∼ Am1
1 × · · · × Amr

r be a decomposition of A as
product of simple factors; then A has CM if each Ai has CM

Caution: If k 6= k̄ it may happen that A/k does not have CM but Ak̄/k̄
does.



Unless stated otherwise, I will work over the complex numbers. “Curve”
means: complete nonsingular curve.

The Torelli map

τ : Mg → Ag ,1 , [C ] 7→ [Jac(C )]

is injective on points, immersive outside the hyperelliptic locus. We write

T ◦g ⊂ Tg ⊂ Ag ,1

for the image of τ and its closure, called the Torelli locus.

The boundary T dec
g = Tg \ T ◦g is the intersection of Tg with the locus of

decomposable ppav.



Does it ever happen that a Jacobian J has CM?

Example. Take an integer g ≥ 1 and let n = 2g + 1. Let Cn be the curve
given by the equation

yn = x(x − 1)

So “x” gives a morphism Cn → P1 which is a cyclic cover of degree n.
Therefore, Q[Z/nZ] acts on Jn = Jac(Cn).

Clear: if d | n then we have Cn → Cd , which on Jacobians gives Jn ← Jd .
Define:

Jnew
n := Jn/

∑
d |n

Jd



I The group algebra

Q[Z/nZ] ∼=
∏
d |n

Q(ζd) (∗)

acts on Jn.

I We have an isogeny decomposition

Jn ∼
∏
d |n

Jnew
d

which is compatible with (∗)

I dim(Jnew
d ) = ϕ(d)

2 =

[
Q(ζd ):Q

]
2

Conclusion: Jn is a CM abelian variety



Exercise/challenge:

Construct other examples of CM Jacobians

You will find that it is not so obvious how to do this. Fermat curves have
CM Jacobians but they occur only in special genera.
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MOTIVATION FOR COLEMAN’S

CONJECTURE: AN ANALOGY



Why Coleman’s Conjecture?

[...]

This is an analogue of the Manin–Mumford conjecture because the CM
points on the moduli space of principally polarized Abelian varieties of
genus g are analogous to torsion points. In fact the CM liftings to Qp of
an ordinary Abelian variety over F̄p are the torsion points in the moduli
space of all liftings (see [K]). Dwork and Ogus have obtained a partial
result in this direction, see [D–O].



Yuri Manin David Mumford



Manin–Mumford Conjecture = Theorem of Raynaud

Let C/C be a curve of genus g ≥ 2, let b ∈ C be a base point and
consider the emnbedding

i : C ↪→ J = Jac(C ) given by P 7→ [b − P].

Then C ∩
{

torsion points of J
}

is finite.

First proven by Raynaud, 1983.



An analogy—?

abelian variety moduli space Ag ,1

torsion points CM points

C ↪→ J Mg ↪→ Ag ,1 (Torelli map)

Manin–Mumford (Raynaud’s thm): Coleman’s Conjecture:

C ∩
{

torsion points
}

is finite T ◦g ∩
{

CM points
}

is finite (??)



In fact, Raynaud proved something stronger than Manin–Mumford:

Definition

Let A/C be an abelian variety. An irreducible subvariety S ⊂ A is called a
special subvariety if S is the translate of an abelian subvariety over a
torsion point.

Theorem (Raynaud)

Let A/C be an abelian variety, Z ⊂ A an irreducible subvariety. Then

Z is special ⇐⇒ the torsion points in Z are Zariski dense



abelian variety moduli space Ag ,1

torsion points CM points

C ↪→ J Mg ↪→ Ag ,1 (Torelli map)

Manin–Mumford (Raynaud’s thm): Coleman’s Conjecture:

C ∩
{

torsion points
}

is finite T ◦g ∩
{

CM points
}

is finite (??)

special subvariety special subvariety

m m ?

torsion points dense CM points dense



Definition

An irreducible subvariety S ⊂ Ag ,1 is called a special subvariety if S is an
irreducible component of a Shimura subvariety.

Not an easy definition...

I We can try to explain the definition in more detail or

I we can try to characterize special subvarieties by certain properties.



What the definition means:

The special subvarieties of Ag ,1 are the Hodge loci, i.e., the maximal
irreducible subvarieties on which certain cohomology classes are Hodge
classes.

Special subvarieties are “defined by” Shimura data (G ,X ), consisting of a
reductive Q-group G and a hermitian symmetric domain X with transitive
G (R)-action, satisfying certain axioms (Deligne). In this language one can
try to classify special subvarieties.



Basic example: fix some ring R, and consider all (principally polarized)
abelian varieties A that admit an action by R, i.e., for which we have
R ⊂ End(A).

Fact: in the moduli space, these points [A] ∈ Ag ,1 form a countable union
of irreducible algebraic subvarieties. These components are special
subvarieties of Ag ,1. In this particular case, they are called special
subvarieties “of PEL type”.



In this example, we use that an endomorphism of A corresponds to a
Hodge class in

End
(
H1(A,Z)

)
= H1(A,Z)∨ ⊗ H1(A,Z) .

So if we ask that R ↪→ End(A), this means that certain classes in
End

(
H1(A,Z)

)
should be Hodge classes.

In general, the geometric “meaning” of the Hodge classes is less clear;
according to the Hodge conjecture they should be related to algebraic
cycles, but even so the interpretation is not so direct as in the case of
endomorphisms.



A characterization: special subvarieties are “linear”, in some sense.

Theorem (BM)

Let Z ⊂ Ag ,1 be an irreducible algebraic subvariety. Then

Z is special ⇐⇒ Z is totally geodesic and contains a CM point

(There is another characterization of special subvarieties through a
“linearity property” in mixed characteristic.)



Yves André Frans Oort



Basic fact: (first proven by Mumford, 1969) If S ⊂ Ag is a special
subvariety, the CM points in S lie dense, even for the analytic topology.

André–Oort Conjecture = Theorem of K-Y-U-P-T

Let Z ⊂ Ag ,1 be an irreducible subvariety. Then

Z is special ⇐⇒ the CM points in Z are Zariski dense



First proven conditionally (under GRH) by Klingler and Yafaev, using work
of Ullmo and Yafaev. First proven unconditionally (for Ag ,1) by
Tsimerman, using his work with Pila (+ input from work of
Andreatta–Goren–Howard–Madapusi Pera)



abelian variety moduli space Ag ,1

torsion points CM points

C ↪→ J Mg ↪→ Ag ,1 (Torelli map)

Manin–Mumford (Raynaud’s thm): Coleman’s Conjecture:

C ∩
{

torsion points
}

is finite T ◦g ∩
{

CM points
}

is finite (??)

special subvariety special subvariety

m m
torsion points dense CM points dense



Reformulation of Coleman’s conjecture:

Coleman–Oort Conjecture

For g ≥ ?? there are no special subvarieties S ⊂ Ag ,1 such that

I dim(S) > 0,

I S ⊂ Tg ,

I S 6⊂ T dec
g



Note: if for some g there are infinitely many Jacobians of CM type, the
Zariski closure of these CM points contains an irreducible component S
with dim(S) > 0.

By André–Oort, S is a special subvariety.

By construction, S ⊂ Tg and S is not fully contained in the boundary
of Tg .



Remark: It is easy to construct special subvarieties S ⊂ Tg of positive
dimension that are fully contained in the boundary T dec

g of Tg .

Coleman–Oort Conjecture

For g ≥ ?? there are no special subvarieties S ⊂ Ag ,1 such that

I dim(S) > 0,

I S ⊂ Tg ,

I S 6⊂ T dec
g
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WHAT IS KNOWN?

EXAMPLES



What is known?

For all genera g ≤ 7, there do exist special subvarieties S ⊂ Tg of positive
dimension that are not contained in the boundary of Tg .

So: Coleman’s original conjecture is false for g ≤ 7.

Note: For g < 4 this is trivial because then T ◦g ⊂ Ag ,1 is dense. (This is
why Coleman required g ≥ 4.)



A basic example (de Jong–Noot): Consider the family of curves Cλ of
genus 4 given by

y5 = x(x − 1)(x − λ) (λ a parameter)

This family gives a 1-dimensional subvariety Z ⊂M4.

Clear: the curves Cλ have an automorphism of order 5, given by

(x , y) 7→ (x , ζ5 · y) .

So the Jacobians Jλ have Q[ζ5] ↪→ End0(Jλ). This is already “half of CM”.



General question: Suppose we have

I an abelian variety A, say with dim(A) = g

I a CM field K ⊂ End0(A)

Let S ⊂ Ag be the PEL type special subvariety passing through [A] that is
defined by the condition that K acts by endomorphisms.

What is the dimension of S ?

This dimension does not only depend on K but also on the “CM type”.



The Lie algebra
T = T0(A) ∼= H0(A,Ω1

A)∨

is a module under
K ⊗Q C ∼=

∏
σ : K→C

C

So we have a natural decomposition

T =
⊕

σ : K→C

Tσ

Define
nσ := dimC(Tσ)



By using the polarization:
nσ + nσ̄ = g

(Think of the complex embeddings of K as a collection of pairs (σ, σ̄).)

Basic fact: (theory of Shimura varieties)

dim(S) =
∑

all pairs (σ, σ̄)

nσ · nσ̄



Back to the example:

Cλ : y5 = x(x − 1)(x − λ)

Basis for H0(Cλ,Ω
1) is given by

dx

y2
,

dx

y3
,

x dx

y4
,

x dx

y4
.

We see: the pairs (nσ, nσ̄) that occur are (0, 2) plus (1, 1). Conclusion: in
this case

dim(S) = 0 · 2 + 1 · 1 = 1



To summarize:

I the curves Cλ give rise to a 1-dimensional Z ⊂M4

I the image of Z is contained in a PEL type special subvariety S ⊂ A4

I by the above calculation dim(S) = 1

Conclusion: Z is dense in S , and hence there are infinitely many values
of λ such that Jλ has CM.



This is a nice game! Can we do more such examples?

Let’s try:
Cλ : y7 = x(x − 1)(x − λ)

1-parameter family of genus 6 curves.

Basis for H0(Cλ,Ω
1):

dx

y3
,

dx

y4
,

dx

y5
,

dx

y6
,

x dx

y5
,

x dx

y6
.

We see: the pairs (nσ, nσ̄) that occur are (1, 1) plus twice (0, 2).
Conclusion:

dim(S) = 0 · 2 + 0 · 2 + 1 · 1 = 1

and again we get an example with infinitely many CM Jacobians.



If we try
Cλ : y11 = x(x − 1)(x − λ)

we get a 1-parameter family of genus 10 curves. This time a basis for
H0(Cλ,Ω

1) is

dx

y4
, . . . ,

dx

y10
,

x dx

y8
,

x dx

y9
,

x dx

y10
.

We find
dim(S) = 3× (0 · 2) + 2× (1 · 1) = 2

So now S has bigger dimension than Z and we cannot conclude that Z is
a special subvariety.



We can do this more systematically: fix

I an integer m ≥ 2

I an integer N ≥ 4

I nonzero elements a1, . . . , aN ∈ Z/mZ that generate the whole group
and satisfy

∑
ai = 0

Then consider the family of curves given by

ym = (x − λ1)a1(x − λ2)a2 · · · (x − λN)aN

This gives an (N − 3)-dimensional subvariety of Mg with

g = 1 +
(N − 2)m −

∑N
i=1 gcd(ai ,m)

2



The Jacobians Jλ have an action of Q[Z/mZ] and we can consider the
PEL type special subvariety S ⊂ Ag parametrizing abelian varieties with
an action of this ring. Then calculate the dimension of S .

If dim(S) = N − 3 we get an example where we have infinitely many CM
Jacobians.

This can be done on a computer. This was done independently by Rohde
and myself. Here are the examples that are found:



genus m N (a1, . . . , aN)

1 2 4 (1,1,1,1)

2 2 6 (1,1,1,1,1,1)

2 3 4 (1,1,2,2)

2 4 4 (1,2,2,3)

2 6 4 (2,3,3,4)

3 3 5 (1,1,1,1,2)

3 4 4 (1,1,1,1)

3 4 5 (1,1,2,2,2)

3 6 4 (1,3,4,4)

4 3 6 (1,1,1,1,1,1)

genus m N (a1, . . . , aN)

4 5 4 (1,3,3,3)

4 6 4 (1,1,1,3)

4 6 4 (1,1,2,2)

4 6 5 (2,2,2,3,3)

5 8 4 (2,4,5,5)

6 5 5 (2,2,2,2,2)

6 7 4 (2,4,4,4)

6 10 4 (3,5,6,6)

7 9 4 (3,5,5,5)

7 12 4 (4,6,7,7)



Note: Suppose that in this game, we find that N − 3 = dim(Z ) < dim(S).
Then we cannot conclude that Z is a special subvariety of Ag .

But a priori we also cannot conclude that Z is not a special subvariety...

Theorem (BM)

Among all families of cyclic covers of P1 with varying branch points, the
above list of examples is complete. I.e., in all other cases the closure of
“Z” is not a special subvariety.

The proof relies on methods in mixed characteristic due to Dwork and
Ogus.
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COLEMAN’S CONJECTURE:

VARIOUS APPROACHES



From now on we say that an algebraic subvariety S ⊂ Ag satisfies
condition (ST)—for “special subvariety in the Torelli locus”—if:

I S is a special subvariety of Ag

I dim(S) > 0

I S ⊂ Tg
I S ∩ T ◦g is nonempty

So with this terminology, the goal is to show that for g large enough, there
are no S ⊂ Ag that satisfy (ST).



“The Italian team:”

Colombo, Frediani, Ghigi, Penegini, Pirola, Porru, Torelli, ....

(lots of papers, with different groups of authors):

I Further examples of subvarieties satisfying (ST), e.g. via the study of
families of ramified covers with non-abelian group, or with a curve of
genus > 0 as basis. (All examples have g ≤ 7.)

I Extensive study of the differential-geometric properties of the Torelli
map, through the second fundamental form.



This has led to dimension estimates. The best estimate I’m aware of
(improving earlier results of Ghigi–Pirola–Torelli, improving earlier results
of ...) is due to Frediani and Pirola:

Theorem (Frediani–Pirola, improving earlier results)

Suppose S ⊂ Ag satisfies (ST). Then dim(S) ≤ 2g − 1 if g is even,
dim(S) ≤ 2g is g is odd.



Another important contribution is due to Hain, with later improvements by
de Jong and Zhang. Hain’s approach is based on the study of mapping
class groups.

Theorem (Hain, de Jong–Zhang)

Suppose S ⊂ Ag satisfies (ST) and the Q-group G that defines S is
simple. Then one of the following is true:

I S is a ball quotient

I S ∩ T dec
g has codimension ≤ 2 in S

I the Baily–Borel compactification of S has a nonempty boundary of
codimension ≤ 2.



Note: every special subvariety S is locally symmetric: S = Γ\X+, with
X+ a hermitian symmetric domain and Γ ⊂ G (Q) an arithmetic group.
We say that S is a ball quotient if X+ is the complex n-ball for some n.

Example: the only 1-dimensional hermitian symmetric domain (up to
equivalence) is the usual upper half plane. This can also be realized as the
complex 1-ball (Möbius transformation). Therefore: every 1-dimensional
special subvariety is a ball quotient.

Remarks:

I all known examples of special subvarieties satisfying (ST) are ball
quotients

I even in the 1-dimensional case, such varieties are in general not of
PEL type



Definition

Say that a special subvariety S ⊂ Ag with dim(S) > 0 is minimal if there
is no special S ′ ( S with dim(S ′) > 0.

Note: minimal special subvarieties can have arbitrarily large dimension
(for g large enough).



(Almost) obvious: for the Coleman–Oort conjecture, it suffices to show
that there are no minimal special subvarieties satifying (ST). This
simplifies the classification. If S is minimal, it comes from a Q-simple
algebraic group G ; in that case:

G ad = ResF/Q H

with F a totally real field, H an absolutely simple adjoint group over F .



Based on Hain’s results, the only cases we need to consider are:

I special subvarieties of dimension ≤ 2

I ball quotients

I the case where H is of Lie type A1 or B2

The assumption that S is minimal then still gives some finer information
about the algebraic group that defines S .



Work of

Zuo, Viehweg, Möller, Chen, Lu, ...

At the origin of their work lies the study of families of abelian varieties
f : A→ C over (open) curves, through the corresponding variation of
Hodge structure. Basic idea:

I C̄ = the complete nonsingular model of C

I S = C̄ \ C
I Higgs bundle E = (E 1,0 ⊕ E 0,1, θ) with E 1,0 = f∗Ω

1
A/C

I E extends to Ē over C̄

I Ē = F ⊕ G with F flat and G 1,0 = G ∩ Ē 1,0 ample



With this notation, there is the Arakelov inequality:

2 · deg(G 1,0) ≤ g(C̄ ) · deg
(
Ω1
C̄

(log S)
)

Theorem (Viehweg–Zuo)

Let f : A→ C be a family of g -dimensional abelian varieties. Assume the
largest unitary local subsystem of R1f∗C is defined over Q and that the
Arakelov inequality is an equality. Then the closure of the image of C in
Ag is a special subvariety.



This is only the start of a whole series of results. Zuo and collaborators
have used such techniques to prove results about the non-existence of
particular types of special subvarieties satisfying (ST). Here is just one
sample:

Theorem (Lu–Zuo)

For g > 7 there are no 1-dimensional special subvarieties S ⊂ Ag

satisfying (ST) that are contained in the hyperelliptic locus.



By combining the results of Lu–Zuo and the work of Hain–de Jong–Zhang,
and then analysing the possible Shimura data, I can prove something
stronger:

Theorem

For g > 7 there are no special subvarieties S ⊂ Ag satisfying (ST) that
are contained in the hyperelliptic locus.



By now, it’s maybe not unreasonable to call it a conjecture...!



THANK YOU

FOR YOUR ATTENTION!


