Computing isomorphism classes of abelian varieties over finite fields

Stefano Marseglia

Utrecht University

VaNTAGe

Abelian varieties over \mathbb{C} vs \mathbb{F}_{q}

- Let A / \mathbb{C} be an abelian variety of dimension g.
- Then $A(\mathbb{C})$ is a torus: $T:=\mathbb{C}^{g} / \Lambda$, where $\Lambda \simeq_{\mathbb{Z}} \mathbb{Z}^{2 g}$.
- Also, T admits a non-degenerate Riemann form \longleftrightarrow polarization.
- The functor $A \mapsto A(\mathbb{C})$ induces an equivalence of categories:

$$
\{\text { abelian varieties } / \mathbb{C}\} \longleftrightarrow\left\{\begin{array}{c}
\mathbb{C}^{g} / \Lambda \text { with } \Lambda \simeq \mathbb{Z}^{2 g} \text { admitting } \\
\text { a Riemann form }
\end{array}\right\} .
$$

- In char. $p>0$ such an equivalence cannot exist: there are (supersingular) elliptic curves with quaternionic endomorphism algebras.
- Nevertheless, over finite fields, we obtain analogous results if we restrict ourselves to certain subcategories of AVs.

Isogeny classification over \mathbb{F}_{q}

- A / \mathbb{F}_{q} comes with a Frobenius endomorphism, that induces an action
$\operatorname{Frob}_{A}: T_{\ell} A \rightarrow T_{\ell} A$ for any $\ell \neq p$,
where $T_{\ell}(A)=\lim A\left[\ell^{n}\right] \simeq \mathbb{Z}_{\ell}^{2 g}$.
- $h_{A}(x):=\operatorname{char}\left(\operatorname{Frob}_{A}\right)$ is a q-Weil polynomial and isogeny invariant.
- By Honda-Tate theory ([Tat66]-[Hon68]), the association

$$
\text { isogeny class of } A \longmapsto h_{A}(x)
$$

is injective and allows us to enumerate all AVs up to isogeny.

- Also, $h_{A}(x)$ is squarefree $\Longleftrightarrow \operatorname{End}(A)$ is commutative.

Deligne's equivalence

Recall: A / \mathbb{F}_{q} is ordinary if half of the p-adic roots of h_{A} are units.
Theorem (Deligne [Del69])
Let $q=p^{r}$, with p a prime. There is an equivalence of categories:
$\left\{\right.$ Ordinary abelian varieties over \mathbb{F}_{q} \}
(pairs (T, F), where $T \simeq_{\mathbb{Z}} \mathbb{Z}^{2 g}$ and $T \xrightarrow{F} T$ s.t. $)$

- $F \otimes \mathbb{Q}$ is semisimple
- the roots of char ${ }_{F \otimes \mathbb{Q}}(x)$ have abs. value \sqrt{q}
$(T(A), F(A))$
- half of them are p-adic units
$-\exists V: T \rightarrow T$ such that $F V=V F=q$
- Ordinary A / \mathbb{F}_{q} can be canonically lifted: $\rightsquigarrow \mathscr{A}_{\text {can }} / \operatorname{Witt}\left(\mathbb{F}_{q}\right) \ldots$
- ... characterized by: $\operatorname{End}_{\mathbb{F}_{q}}(A)=\operatorname{End}_{\text {Witt }\left(\mathbb{F}_{q}\right)}\left(\mathscr{A}_{\text {can }}\right)$.
- Put $T(A):=H_{1}\left(\mathscr{A}_{\text {can }} \otimes \mathbb{C}, \mathbb{Z}\right)$ and $F(A):=$ the induced Frobenius.

Squarefree case

- Fix an ordinary squarefree q-Weil polynomial h :
- \rightsquigarrow an isogeny class $\mathscr{C}_{h} / \mathbb{F}_{q}$.
- Put $K:=\mathbb{Q}[x] /(h)=\mathbb{Q}[F]$, an étale algebra = product of number fields.
- Put $V=q / F$. Deligne's equivalence induces:

Theorem
$\left\{\right.$ abelian varieties over \mathbb{F}_{q} in $\left.\mathscr{C}_{h}\right\} / \simeq$
$\{$ fractional ideals of $\mathbb{Z}[F, V] \subset K\} / \simeq=: \operatorname{ICM}(\mathbb{Z}[F, V])$ ideal class monoid

- Problem: $\mathbb{Z}[F, V]$ might not be maximal \rightsquigarrow non-invertible ideals.

ICM : Ideal Class Monoid

Let R be an order in an étale \mathbb{Q}-algebra K.

- Recall: for fractional R-ideals $/$ and J

$$
I \simeq_{R} J \Longleftrightarrow \exists x \in K^{\times} \text {s.t. } x I=J
$$

- We have

$$
\operatorname{ICM}(R) \supseteq \operatorname{Pic}(R)=\{\text { invertible fractional } R \text {-ideals }\} / \simeq_{R}
$$ with equality \} iff $R=\mathscr{O}_{K}$

- ...and actually

$$
\operatorname{ICM}(R) \supseteq \underset{\substack{R \subseteq S \subseteq \mathscr{O}_{K} \\ \text { over-orders }}}{\bigsqcup^{2}} \operatorname{Pic}(S) \quad \text { with equality iff } R \text { is Bass }
$$

- Hofmann-Sircana [HS20]: computation of over-orders.

simplify the problem

First, locally: Dade-Taussky-Zassenhaus [DTZ62].

- weak equivalence:

$$
\begin{gathered}
I_{\mathfrak{p}} \simeq{R_{\mathfrak{p}}} J_{\mathfrak{p}} \text { for every } \mathfrak{p} \in \mathrm{mSpec}(R) \\
\hat{\Downarrow} \\
1 \in(I: J)(J: I) \text { easy to check! }
\end{gathered}
$$

- Let $\mathscr{W}(R)$ be the set of weak eq. classes... ...whose representatives can be found in

$$
\left\{\text { sub- } R \text {-modules of } \mathscr{O}_{K} / f_{R}\right\} \quad \begin{aligned}
& \text { finite! and most of the } \\
& \text { time not-too-big ... }
\end{aligned}
$$

where $\mathfrak{f}_{R}=\left(R: \mathscr{O}_{K}\right)$ is the conductor of R.

Compute ICM (R)

Partition w.r.t. the multiplicator ring:

$$
\begin{aligned}
\mathscr{W}(R) & =\bigsqcup_{R \subseteq S \subseteq \mathscr{O}_{K}} W_{S}(R) \\
\mathrm{ICM}(R) & =\underset{R \subseteq S \subseteq \mathscr{O}_{K}}{\bigsqcup} \operatorname{ICM}_{S}(R)
\end{aligned}
$$

the "pedix" -s means "only classes with multiplicator ring S"

Theorem ([Mar20b])
For every over-order S of $R, \operatorname{Pic}(S)$ acts freely on $\operatorname{ICM}_{S}(R)$ and

$$
W_{S}(R)=\operatorname{ICM}_{S}(R) / \operatorname{Pic}(S)
$$

Repeat for every $R \subseteq S \subseteq \mathscr{O}_{K}$:

$$
\rightsquigarrow \operatorname{ICM}(R) .
$$

To sum up:

- To sum up:
- Given a ordinary squarefree q-Weil polynomial $h \ldots$
- ... \rightsquigarrow algorithm to compute the isomorphism classes of AVs in \mathscr{C}_{h}.
- We can actually get a lot more!

Dual varieties and Polarizations

Howe [How95] : dual varieties and polarizations on Deligne modules.

Theorem ([Mar21])

Let $A \in \mathscr{C}_{h}$ with h ordinary and squarefree. If $A \leftrightarrow I$, then:

- $A^{\vee} \leftrightarrow \bar{I}^{t}:=\{\bar{x} \in K: \operatorname{Tr}(x l) \subseteq \mathbb{Z}\}$.
- a polarization μ of A corresponds to a $\lambda \in K^{\times}$such that
- $\lambda I \subseteq \bar{I}^{t}$ (isogeny of $\operatorname{deg} \underline{\mu}=\left[\bar{I}^{t}: \lambda I\right]$);
$-\lambda$ is totally imaginary $(\bar{\lambda}=-\lambda)$;
- λ is Φ-positive $(\Im \varphi(\lambda)>0$ for all $\varphi \in \Phi)$,
where Φ is a CM-type of K satisf. the Shimura-Taniyama formula.
- if $(A, \mu) \leftrightarrow(I, \lambda)$ is a princ. polarized ab. var. and $S=(I: I)$ then

$$
\left\{\begin{array}{l}
\text { non-isomorphic princ. } \\
\text { polarizations of } A
\end{array}\right\} \longleftrightarrow \frac{\left\{\text { totally positive } u \in S^{\times}\right\}}{\left\{v \bar{v}: v \in S^{\times}\right\}}, \begin{gathered}
\text { similar } \\
\text { statement } \\
\text { for } \operatorname{deg} \mu>1
\end{gathered}
$$

- and $\operatorname{Aut}(A, \mu)=\{$ torsion units of $S\}$.

Principal Polarizations

We have an algorithm to enumerate principal polarizations up to isomorphism:
(1) Compute i_{0} such that $i_{0} I=\bar{l}^{t}$.
(2) Loop over the representatives u of the finite quotient

$$
\frac{S^{\times}}{\left\{v \bar{v}: v \in S^{\times}\right\}}
$$

(3) If $\lambda:=i_{0} u$ is totally imaginary and Φ-positive ...
(9) ... then we have one principal polarization.
(9) By the previous Theorem, we have all princ. polarizations up to isom.

Example

- Let $h(x)=x^{8}-5 x^{7}+13 x^{6}-25 x^{5}+44 x^{4}-75 x^{3}+117 x^{2}-135 x+81$.
- \rightsquigarrow isogeny class of an simple ordinary abelian varieties over \mathbb{F}_{3} of dimension 4.
- Let F be a root of $h(x)$ and put $R:=\mathbb{Z}[F, 3 / F] \subset \mathbb{Q}(F)$.
- 8 over-orders of R : two of them are not Gorenstein.
- $\# \mathrm{ICM}(R)=18 \rightsquigarrow 18$ isom. classes of AV in the isogeny class.
- 5 are not invertible in their multiplicator ring.
- 8 classes admit principal polarizations.
- 10 isomorphism classes of princ. polarized AV.

Example

Concretely:

$$
\begin{aligned}
I_{1}= & 2645633792595191 \mathbb{Z} \oplus(F+836920075614551) \mathbb{Z} \oplus\left(F^{2}+1474295643839839\right) \mathbb{Z} \oplus \\
& \oplus\left(F^{3}+1372829830503387\right) \mathbb{Z} \oplus\left(F^{4}+1072904687510\right) \mathbb{Z} \oplus \\
& \oplus \frac{1}{3}\left(F^{5}+F^{4}+F^{3}+2 F^{2}+2 F+6704806986143610\right) \mathbb{Z} \oplus \\
& \oplus \frac{1}{9}\left(F^{6}+F^{5}+F^{4}+8 F^{3}+2 F^{2}+2991665243621169\right) \mathbb{Z} \oplus \\
& \oplus \frac{1}{27}\left(F^{7}+F^{6}+F^{5}+17 F^{4}+20 F^{3}+9 F^{2}+68015312518722201\right) \mathbb{Z}
\end{aligned}
$$

principal polarizations:

$$
\begin{aligned}
x_{1,1}=\frac{1}{27}(& -121922 F^{7}+588604 F^{6}-1422437 F^{5}+ \\
& \left.+1464239 F^{4}+1196576 F^{3}-7570722 F^{2}+15316479 F-12821193\right) \\
x_{1,2}=\frac{1}{27} & \left(3015467 F^{7}-17689816 F^{6}+35965592 F^{5}-\right. \\
& \left.-64660346 F^{4}+121230619 F^{3}-191117052 F^{2}+315021546 F-300025458\right)
\end{aligned}
$$

$\operatorname{End}\left(I_{1}\right)=R$
$\# \operatorname{Aut}\left(I_{1}, x_{1,1}\right)=\# \operatorname{Aut}\left(I_{1}, x_{1,2}\right)=2$

Example

$$
\begin{aligned}
I_{7}= & 2 \mathbb{Z} \oplus(F+1) \mathbb{Z} \oplus\left(F^{2}+1\right) \mathbb{Z} \oplus\left(F^{3}+1\right) \mathbb{Z} \oplus\left(F^{4}+1\right) \mathbb{Z} \oplus \frac{1}{3}\left(F^{5}+F^{4}+F^{3}+2 F^{2}+2 F+3\right) \mathbb{Z} \oplus \\
& \oplus \frac{1}{36}\left(F^{6}+F^{5}+10 F^{4}+26 F^{3}+2 F^{2}+27 F+45\right) \mathbb{Z} \oplus \\
& \oplus \frac{1}{216}\left(F^{7}+4 F^{6}+49 F^{5}+200 F^{4}+116 F^{3}+105 F^{2}+198 F+351\right) \mathbb{Z}
\end{aligned}
$$

principal polarization:

$$
x_{7,1}=\frac{1}{54}\left(20 F^{7}-43 F^{6}+155 F^{5}-308 F^{4}+580 F^{3}-1116 F^{2}+2205 F-1809\right)
$$

$$
\operatorname{End}\left(I_{7}\right)=\mathbb{Z} \oplus F \mathbb{Z} \oplus F^{2} \mathbb{Z} \oplus F^{3} \mathbb{Z} \oplus F^{4} \mathbb{Z} \oplus \frac{1}{3}\left(F^{5}+F^{4}+F^{3}+2 F^{2}+2 F\right) \mathbb{Z} \oplus
$$

$$
\oplus \frac{1}{18}\left(F^{6}+F^{5}+10 F^{4}+8 F^{3}+2 F^{2}+9 F+9\right) \mathbb{Z} \oplus
$$

$$
\oplus \frac{1}{108}\left(F^{7}+4 F^{6}+13 F^{5}+56 F^{4}+80 F^{3}+33 F^{2}+18 F+27\right) \mathbb{Z}
$$

\#Aut $\left(l_{7}, x_{7,1}\right)=2$
I_{1} is invertible in R, but I_{7} is not invertible in $\operatorname{End}\left(I_{7}\right)$.

The Power-of-a-Bass case

- Another case we understand well: $h=g^{r}$ for g square-free and ordinary.
- Every A in $\mathscr{C g}^{r}$ is $A \sim B^{r}$ for $B \in \mathscr{C} g$.
- Put $R:=\mathbb{Z}[F, V] \subset K_{g}:=\mathbb{Q}[x] /(g)=\mathbb{Q}[F]$.
- Under these assumption, Deligne's theorem induces:

$$
\left\{\text { abelian varieties in } \mathscr{C}_{g} r\right\} \longleftrightarrow\left\{R \text {-modules } M \subseteq K_{g}^{r}\right\} \text {. }
$$

- Recall: an order R is Bass if all its over-orders S are Gorenstein, ...
- ... or equivalently $\operatorname{ICM}(R)=\bigsqcup_{S} \operatorname{Pic}(S)$. (see [Bas63])
- Eg: quadratic orders are Bass \rightsquigarrow powers of ordinary elliptic curves E^{r}.
- If R is Bass, then M is isomorphic to a direct sum of frac. R-ideals.

The Power-of-a-Bass case

Theorem ([Mar19])
If $R=\mathbb{Z}[F, V]$ is Bass then
$\left\{\right.$ abelian varieties in $\left.\mathscr{C}_{g^{r}}\right\} / \simeq \longleftrightarrow\left\{I_{1} \oplus \ldots \oplus I_{r}: I_{j}\right.$ a frac. R-ideal $/ / \simeq$

$$
\begin{aligned}
& \text { we have a } \\
& \text { classification: }
\end{aligned} \longleftrightarrow\left\{\left(S_{1} \subseteq S_{2} \subseteq \ldots \subseteq S_{r},[I]_{\simeq}\right): \begin{array}{l}
R \subseteq S_{j} \text { orders, } \\
\text { I a frac. } R \text {-ideal } \\
\text { with }(I: I)=S_{r}
\end{array}\right\}
$$

Corollary
If $A \in \mathscr{C}_{g^{r}}$ then $A \simeq C_{1} \times \ldots \times C_{r}$, for $C_{j} \in \mathscr{C}_{g}$. $\begin{aligned} & \text { everything } \\ & \text { is a product! }\end{aligned}$

- Howe's results on polarizations carry over ...
- ... but computing them in general is harder!
- Solved for E^{r} by Kirschmer-Narbonne-Ritzenthaler-Robert [KNRR21].

Outside of the ordinary...

Theorem (Centeleghe-Stix [CS15])
There is an equivalence of categories:

- Now, $T(A):=\operatorname{Hom}\left(A, A_{w}\right)$, where A_{w} has minimal End among the varieties with Weil support $w=w(A)$.
- $F(A)$ is the induced Frobenius.

Outside of the ordinary...isomorphism classes

- Everything I told so far about isomorphism classes works in the same way using the Centeleghe-Stix functor:
- both in the squarefree and Power-of-Bass cases, over \mathbb{F}_{p}.
- For polarizations, the results by Howe do not apply immediately to the Centeleghe-Strix case:
- in general we cannot lift canonically each abelian variety.

Outside of the ordinary...polarizations

- New strategy: jt. Jonas Bergström and Valentijn Karemaker [BKM21].
- Consider \mathscr{C}_{h} with h squarefree $/ \mathbb{F}_{q} \rightsquigarrow K=\mathbb{Q}[F]$.
- Chai-Conrad-Oort: A (p-adic) CM-type (K, Φ) satisfies the Residual Reflex Condition if:
(1) the Shimura-Taniyama formula holds for Φ.
(2) the residuel field k_{E} of the reflex field E of (K, Φ) satisfies: $k_{E} \subseteq \mathbb{F}_{q}$.

Theorem ([CCO14])

If (K, Φ) satisfies the $R R C$ then in \mathscr{C}_{h} there exists an abelian variety A admitting a canonical lifting \mathscr{A}.

- If we understand the polarizations of A we can 'spread' them to the whole isogeny class.

Outside of the ordinary...polarizations

Now \mathscr{C}_{h} over \mathbb{F}_{p} : let \mathscr{G} be the Centeleghe-Stix functor. Assume that there exists A admitting a canonical lifting \mathscr{A}. Let $f: A \rightarrow B$ be an isogeny.

Note that $\mathscr{G}\left(f^{*}\right)$ is multiplication by the totally positive element $\overline{\mathscr{G}(f)} \mathscr{G}(f)$: it sends totally imaginary elements to totally imaginary elements and Φ-positive elements to Φ-positive elements. The only 'issue' is the α. We study when we can 'pretend' $\alpha=1$.

Some related work

- Base field extensions and twists (ordinary case) [Mar20a].
- Period matrices of the canonical lift (ordinary case) [Mar21].
- with Caleb Springer [MS21]: every finite abelian group occur as the group of points of an ordinary $A V$ over $\mathbb{F}_{2}, \mathbb{F}_{3}, \mathbb{F}_{5}$.
- Magma implementations of the algorithms are on GitHub!
- Results of computations will appear on the LMFDB.

Summary

We group isogeny classes into:
square-free (SQ), pure-power (PP) and 'mixed' (eg. $E_{1}^{2} \times E_{2}$).

		ordinary	F_{p} and no real roots	$\begin{aligned} & \mathbb{F}_{p^{k}} \text { or } \\ & \text { real roots } \end{aligned}$
functor		[Del69]	[CS15]	[CS21] new!
isomorphism classes	SQ	[Mar21]		work in prog.
	PP	[Mar19] (?
	mixed	?	?	?
polarizations	SQ	[How95]+[Mar21]	[BKM21]	?
	PP	$\begin{gathered} {\left[\text { KNRR21] }\left(E^{r}\right),\right.} \\ \text { [Mar19] (descr. but } \\ \text { no algorithm) } \end{gathered}$?	?
	mixed	?	?	?

More comments:

- in [JKP ${ }^{+}$18]: a functor for isogeny classes of the form E^{r}.
- in [OS20]+[BKM21]: almost-ordinary SQ with polarizations.
- in [CS21]: they use $\operatorname{Hom}_{\mathbb{F}_{p^{k}}}\left(-, A_{w}\right)$ as in [CS15], but A_{w} is more complicated.
[Bas63] Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28. MR 0153708 (27 \#3669)
[BKM21] Jonas Bergström, Valentijn Karemaker, and Stefano Marseglia, Polarizations of Abelian Varieties Over Finite Fields via Canonical Liftings, International Mathematics Research Notices (2021), rnab333.
[CCO14] Ching-Li Chai, Brian Conrad, and Frans Oort, Complex multiplication and lifting problems, Mathematical Surveys and Monographs, vol. 195, American Mathematical Society, Providence, RI, 2014. MR 3137398
[CS15] Tommaso Giorgio Centeleghe and Jakob Stix, Categories of abelian varieties over finite fields, I: Abelian varieties over \mathbb{F}_{p}, Algebra Number Theory 9 (2015), no. 1, 225-265. MR 3317765
[CS21] Tommaso Giorgio Centeleghe and Jakob Stix, Categories of abelian varieties over finite fields II: Abelian varieties over finite fields and Morita equivalence, arXiv e-prints (2021), arXiv:2112.14306.
[Del69] Pierre Deligne, Variétés abéliennes ordinaires sur un corps fini, Invent. Math. 8 (1969), 238-243. MR 0254059
[DTZ62] E. C. Dade, O. Taussky, and H. Zassenhaus, On the theory of orders, in particular on the semigroup of ideal classes and genera of an order in an algebraic number field, Math. Ann. 148 (1962), 31-64. MR 0140544 (25 \#3962)
[Hon68] Taira Honda, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968), 83-95. MR 0229642
[How95] Everett W. Howe, Principally polarized ordinary abelian varieties over finite fields, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2361-2401. MR 1297531
[HS20] Tommy Hofmann and Carlo Sircana, On the computation of overorders, Int. J. Number Theory 16 (2020), no. 4, 857-879. MR 4093387
[JKP ${ }^{+}$18] Bruce W. Jordan, Allan G. Keeton, Bjorn Poonen, Eric M. Rains, Nicholas Shepherd-Barron, and John T. Tate, Abelian varieties isogenous to a power of an elliptic curve, Compos. Math. 154 (2018), no. 5, 934-959. MR 3798590
[KNRR21] Markus Kirschmer, Fabien Narbonne, Christophe Ritzenthaler, and Damien Robert, Spanning the isogeny class of a power of an elliptic curve, Math. Comp. 91 (2021), no. 333, 401-449. MR 4350544
[Mar19] Stefano Marseglia, Computing abelian varieties over finite fields isogenous to a power, Res. Number Theory 5 (2019), no. 4, Paper No. 35, 17. MR 4030241
[Mar20a] Stefano Marseglia, Computing base extensions of ordinary abelian varieties over finite fields, arXiv:2003.09977, 2020.
[Mar20b] Stefano Marseglia, Computing the ideal class monoid of an order, J. Lond. Math. Soc. (2) 101 (2020), no. 3, 984-1007. MR 4111932
[Mar21] ___ Computing square-free polarized abelian varieties over finite fields, Math. Comp. 90 (2021), no. 328, 953-971. MR 4194169
[MS21] Stefano Marseglia and Caleb Springer, Every finite abelian group is the group of rational points of an ordinary abelian variety over $\mathbb{F}_{2}, \mathbb{F}_{3}$ and \mathbb{F}_{5}, arXiv e-prints (2021), arXiv:2105.08125.
[OS20] Abhishek Oswal and Ananth N. Shankar, Almost ordinary abelian varieties over finite fields, J. Lond. Math. Soc. (2) 101 (2020), no. 3, 923-937. MR 4111929
[Tat66] John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144. MR 0206004

Thank you!

