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Galois representations of abelian varieties

Let A be an abelian variety over Q, of dimension g :
for any rational prime ℓ, there is a Galois representation

ρA,ℓ : Gal(Q/Q) → GL2g (Qℓ) = End0(H1
ét(AQ,Qℓ))

Let p be a prime of good reduction for A: ρA,ℓ(Frobp) ∈ GL2g (Qℓ)
Consider α an eigenvalue of ρA,ℓ(Frobp):

• (Weil Conjectures) |α|∞ = p
1
2 ;

• what can we say about |α|p ? or equiv. about valp(α)?

Examples

• if A is an elliptic curve (g = 1): {valp(α1), valp(α2)} is
either ord = {0, 1} or ss = {1

2 ,
1
2}

• if A is an abelian surface (g = 2): {valp(αi ) | 1 ≤ i ≤ 4} is
ord2 = {0, 0, 1, 1} or ss2 = {1

2 ,
1
2 ,

1
2 ,

1
2} or ord⊕ ss = {0, 12 ,

1
2 , 1}



Ordinary Primes

Elena Mantovan

A conjecture of
Serre

Shimura
varieties

Main Result

Strategy

Galois
representations

The Proof

Newton Polygons of abelian varieties

The Newton polygon at p of A is the convex polygon of slopes

νp(A) = {valp(α) | α eigenvalues of Frobp on H1
dR(A/Qp)}

A Newton polgyon satisfies

(P1) νp(A) starts as (0, 0) and ends at (2g , g);

(P2) νp(A) is symmetric: λ ∈ νp(X ) iff 1− λ ∈ νp(X );

(P3) all slopes λ ∈ Q ∩ [0, 1].

E.g. the ordinary polygon ordg = {0, . . . , 0, 1, . . . , 1}.

Theorem [Grothendieck–Manin Conjecutre] (Oort, 2000)

Given a Newton polygon ν and a prime p: there exists A/Fp such that νp(A) = ν.

Question: given A/Q and ν, what can we say about Sν(A/Q) = {p | νp(A) = ν}?
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A conjecture of Serre

Conjecture (Serre)

After passing to a finite extension L/Q: the set Sν(A/L) = {p ∈ |L| | νp(X ) = ν}
has natural density 1 if ν = ordg and 0 otherwise.

Hence, Sord(A/Q) = {p ∈ |Q| | νp(X ) = ordg} has positive density ≥ 1
[L:Q] .

Examples

Denote δL = δ(Sord(A/L))
• if A is an elliptic curve over Q:

• (Serre, 1977): if A is not CM: δQ = 1
• (Shimura–Tanayama, 1967): if A is CM: δL = 1 if L = End0C(A) and δQ = 1

2

• if A is an abelian surface over Q:
• (Katz, 1982): δL = 1 for some L/Q.
• (Sawin, 2016): δQ ∈ {1, 1

2 ,
1
4} depending on End0C(A).
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Shimura varieties

Consider a Shimura datum (G ,X ) where G/Q connected reductive group.

(Shimura) X is hermitian locally symmetric domain ⟲ G (R)
• If Γ ⊂ G (Q) is a suff. small discrete subgr. then Γ\X is C-manifold;

• Γ\X = ShΓ(G ,X )(C)an where ShΓ(G ,X ) algebraic variety;

• ShΓ(G ,X ) is defined over a number field EΓ(G ,X );

• EΓ(G ,X ) is determined from the space automorphic forms on G of level Γ.

(Deligne) X is a G (R)-conjugacy class {h : S1 → G (R)} (Hodge structures):

• Γ\X moduli space of Hodge structures

• if G ⊆ GSp2g , and h ∈ X have weights (−1, 0) and (0,−1) (Hodge type)
ShΓ(G ,X ) is moduli space of abelian varieties with additional structures;

• E (G ,X ) is determined from (G ,X ) (the reflex field).
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Shimura varieties of PEL type

Let GSp2g = GSp(V , ⟨ , ⟩).

Examples

Let B semisimple central algebra over F , where F is either CM or totally real field.

• Define a B-module structure on (V , ⟨ , ⟩),

GB = GLB ∩GSp2g

• ShΓ(G
B ,X ) is moduli space of polarized ab. var. with multiplication by B,

B ↪→ End0C(A)

• X prescribes the isom. class of LieC(A) as B ⊗Q C-module, e.g. if B = F

f : Hom(F ,C) → Z≥0, τ 7→ f(τ) = dimC LieC(A)(τ) (the signature of A)
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Geometry of Shimura varieties in positive characteristic

Suppose B ⊆ End0C(A) with signature f: consider Sh = Sh(GB ,Xf)
• if ∀p : ShFp

[ν] = {x | νp(x) = ν} = ∅ then Sν(A) = {p | νp(A) = ν} = ∅

Theorem (Kottwitz, Rapoport–Richartz, Wedhorn, Viehmann-Wedhorn, ...)

Assume p is unramified for (G ,X ).

• ShFp
[ν] is a locally closed subspace (Newton stratum)

• ShFp
[ν] ̸= ∅ iff ν ∈ Bp(G ,X ) (the Kottwitz set)

• ShFp
[ordg ] = ∅ iff p is not totally split in the reflex field E/Q

• there is a unique non-empty open Newton stratum (µ-ordinary stratum)

• µ-ordinary Newton polygon is ordg iff p is totally split in E/Q

Sord(A/Q) = {p | νp(A) = ord} ⊆ S(E/Q) = {p | p tot. split in E/Q}

Note: δ(S(E/Q)) = 1
[E :Q] < 1 if E ̸= Q, and δ(S(E/L)) = 1 if L = E
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The smallest Shimura variety containing A

Let hA : S1 → GSp2g (R) be the Hodge structure of A.

The Mumford–Tate group of A is the smallest subgroup MA ⊆ GSp2g over Q
such that hA : S1 → MA(R) ⊆ GSp2g (R)

• Sh(G ,X ) is moduli space of abelian varieties satisfying MA ⊆ G

• Sh(MA, [hA]) is the smallest Shimura variety containing A.

• If B = End0C(A) then hA : S1 → GB(R) for GB = GLB ∩GSp2g ,

• Sh(GB , [hA]) is the smallest Sh. var. of PEL type containing A.

Note: ∃ A satisfying MA ̸= GB for B = End0C(A) (A has exceptional cycles)
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Abelian varieties of type IV and simple signature

WLOG: A absolutely simple

Assumptions: type IV and simple signature

(A1) End0C(A) = F is a CM field

(A2) fA is simple : (f(τ), f(τ∗)) = (0, n) for all but one pair where is (1, n − 1))

where ∗ is complex conjugation on F and n = 2 dimA
[F :Q] relative dimenion of A.

Then MA ⊆ GF = GLF ∩GSp2g

If (A1− 2): MA = GF (no exceptional cycles)

Proof: all connected reductive algebraic subgroups of GF are of PEL-type.
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Main Theorems

Theorem A (CLMPT) [Serre’s conjecture]

Let A be an abelian variety over a number field Q.

Assume (A1) End0C(A) = F is a CM field and (A2) fA is simple.

• After passing to a finite extension L/Q, the set Sord(A/L) has density 1

Theorem B (CLMPT)

Let A be an abelian variety over a number field Q, satisfying
(A1) End0C(A) = F is a CM field and (A2) fA is simple.

Assume also (A3) F/Q is an abelian Galois extension and (A4) F = End0F (A)

• The set Sµ-ord(A/Q) = {p ∈ |Q| | νp(A) = µ-ordp(G
F ,Xf)} has density 1
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Remarks on Theorem B

For any Newton polygon ν: consider Sν(A/L) = {p ∈ |L| | νp(A) = ν}:
• Thm A computes the density of Sν(A/L) for L/Q sufficiently large.
• Thm B computes the density of Sν(A/L) for any L/Q.

Assume (A1–4). Denote δL the density of Sν(A/L) = {p ∈ |L| | νp(A) = ν} is:

• if ν = ordg : δL = 1
[FL:L]

• if ν ̸= ordg and ν = µ-ordp for some p: Sν(A/L) is infinite
and δL = aν

[FL:L] > 0 if L ̸⊇ F (explicit aν ∈ Z)
• if ν ̸= µ-ordp for all p: δL = 0.

Proof: Recall if E = E (GF ,Xf) is the reflex field of Sh(GF ,Xf) then
Sord(A/Q) ⊆ S(E/Q) = {p | p tot. split in E/Q}

More precisely, Sord(A/Q) = Sµ-ord(A/Q) ∩ S(E/Q)

By (A1− 2) E ≃ F , and by Cheboratev S(F/Q) has the density 1
[F :Q] .
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Previous results

Theorem B:

• (Shimura-Tanayama, 1967) if A is CM then all p ∈ Sµ-ord(A/Q)

• (S-T; Serre, 1977) if g = 1

• (S-T; S; Sawin, 2016) if g = 2

Theorem A:

• (Katz, 1982) if g = 2

• (Pink, 1998) if End0C(A) = Q and MA is small

• (Fité, 2018) if g = 3,
if g = 4 and End0C(A) = F quad. imag. and fA = (2, 2).
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Remark on Assuptions (A1–4)

• ∃ infinitely (F , f) :
(A1) F is a CM field (A2) f is simple (A3) F/Q is an abelian Galois ext.

• (Shimura var. Thy) For any (F , f) satisfying (A1–3) :
∃ infinitely many A/Q with End0C(A) = F and fA = f

∃ infinitely many A/Q satisfying (A1–3) and (A4) F = End0F (A)
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An example

Let C the smooth projective curve given by affine equation

y5 = x(x − 1)(x − t) t ∈ Q− {0, 1}.

Note µ5 ⊆ AutC(C ) by (x , y) 7→ (x , ζ5y).

Let JC be the Jacobian of C . Then Q(ζ5) ⊆ End0C(JC )

• (A3) Q(ζ5)/Q is a CM and abelian extension

• (A4) Q(ζ5) = End0Q(ζ5)
(JC )

If JC is not CM (true for general C ) then

• (Moonen, 2010) (A1) End0C(JC ) = Q(ζ5).

• (Deligne–Mostow, 1987): (A2) the signature is simple: fC = (1, 0, 2, 1).
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Theorem B: a special case

µ-ordp(G
Q(ζ5), fC ) =


ord4 = {0, . . . , 0, 1, . . . , 1} if p ≡ 1 mod 5

ord2 ⊕ ss2 = {0, 0, 12 ,
1
2 , 1, 1} if p ≡ 4 mod 5

(1/4, 3/4) = {1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4} if p ≡ 2, 3 mod 5

Let C the curve y5 = x(x − 1)(x − t), t ∈ Q− {0, 1}. Assume JC is not CM.

δ({p ∈ |Q| | νp(C ) = ν}) =


1
4 if ν = ord4

1
4 if ν = ord2 ⊕ ss
1
2 if ν = (1/4, 3/4)

0 otherwise

δ({p ∈ |Q(ζ5)| | νp(C ) = ν}) =

{
1 if ν = ord4

0 otherwise
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Strategy for g = 1 following Serre

Assume A/Q is not CM. Write Γ = Gal(Q/Q).

Assume g = 1: ρA,ℓ : Γ → GL2(Qℓ)

• νp(A) ̸= ord iff νp(A) = ss iff tr(Frobp | H1
dR(A/Qp)) = 0

• νp(A) ̸= ord iff tr(ρA,ℓ(Frobp)) = 0

Proposition (Serre)

Let G/Qℓ conn’d alg. group, and Z ⊂ G (Qℓ) closed, stable under conjugation.
Assume ρ : Γ → G (Qℓ) has dense image,
If Z ⊂ G (Qℓ) of Haar measure 0 then {p | ρ(Frobp) ∈ Z} has density 0

• Z = {g ∈ GL2(Qℓ) | tr(g) = 0} is closed, conjug. stable, of Haar measure 0.

• if A is not CM then ρA,ℓ(Γ)
Zar

= GL2

If A is CM: ρA,ℓ(Γ)
Zar ̸= GL2 and is not connected
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Strategy for g = 2 following Deligne and Katz

Assume A/Q is not CM. Write Γ = Gal(Q/Q)

Assume g = 2: ρA,ℓ : Γ → GSp4(Qℓ)

• νp(A) = ss2 iff tr(Frobp | H1
dR(A/Qp)) = 0

• νp(A) ̸= ord2 iff either νp(A) = ss2 or νp(A) = ord⊕ ss

(Deligne): νp(A) ̸= ord2 iff p | tr(Frobp | H2
dR(A/Qp))

• iff p | tr
(
∧2ρA,ℓ)(Frobp)

)
for ∧2 : GSp4 ⊂ GL4(Qℓ) → GL6(Qℓ),

• iff tr
(
(χ⊗ ∧2) ◦ ρA,ℓ(Frobp)

)
∈ Z for χ : GSp4(Qℓ) → Qℓ similitude char.

(Weil Conjectures): |tr
(
(χ⊗ ∧2) ◦ ρA,ℓ(Frobp)

)
| ≤ 6

• iff tr
(
(χ⊗ ∧2) ◦ ρA,ℓ(Frobp)

)
= c for c ∈ {−6,−5, . . . , 0, . . . , 5, 6}

(Katz; Fité-Kedlaya-Rotger-Surtherland): Describe ρA,ℓ(Γ)
Zar ⊆ GSp4(Qℓ)
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The ℓ-adic monodromy group of an abelian variety

The ℓ-adic monodromy group of A/Q is GA,ℓ = Im(ρA,ℓ)
Zar ⊆ GL2g (Qℓ)

GA,ℓ might be not connected. Denote π0(GA,ℓ) group of connected components.

Theorem (Silverberg, 1992; Larsen–Pink, 1997)

• π0(GA,ℓ) is independent on ℓ

• ∃ Qconn/Q finite Galois field s.t. ρA,ℓ : Gal(Qconn/Q) ≃ π0(GA,ℓ) for all ℓ

• if A/Q has no exceptional cycles: Qconn is the field of definition of End0C(A)

• After passing to L/Q, may assume GA,ℓ is connected (L = Qconn)

• If (A1-2): (A4) F = End0F (A) is equivalent to Qconn ⊆ F ;

• If (A1-4): ∃ epimorphism of abelian grp. Gal(F/Q)−→π0(GA,ℓ)
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Mumford–Tate conjecture

Let G 0
A,ℓ the identity component of the ℓ-adic monodromy group GA,ℓ of A.

Mumford–Tate Conjecture

G 0
A,ℓ = MA(Qℓ).

• (Faltings, 1987) G 0
A,ℓ = GA(Qℓ) for a conn’d reductive group GA over Q

• (Vasiu, 2008): the Mumford-Tate conjecture holds if (A1-2) .

By Assumptions (A1-2): G 0
A,ℓ = GF (Qℓ).

After passing to Qconn/Q, we may assume GA,ℓ = Im(ρA,ℓ)
Zar

= GF (Qℓ)
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Idea of Proof: Thm A

Step 1: Find suitable invariant ap = a(Frobp):

• it detects ordinariness

if νp(A) ̸= ordg then ap = c for finitely many values

• |ap| ≤ C bounded independently of p (use Weil Conjectures)
• if νp(A) ̸= ordg then ap ∈ Z (use Newton stratification of Shimura variety)

• it is the trace of an algebraic representation of GSp2g .

a(Frobp) = tr(ρA,ℓ(Frobp) | Wℓ) where GSp2g → GL(W )

Step 2: Compute tr(− | Wℓ) on GA,ℓ=GF (Qℓ) ⊂ GSp2g (Qℓ)

• Z =
∐

c{g ∈ GF (Qℓ) | tr(g | Wℓ) = c} is closed, stable under conjugation

• Z has Haar measure 0 =⇒ δ(Sord(A/FQconn)) = 1
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Detecting ordinariness

Recall if νp(A) = ordg then p ∈ S(F/Q) = {p | p tot. split in F/Q}.

WLOG assume p ∈ S(F/Q).

Let Vp = H1
dR(A/Qp) a F ⊗Qp-vector space

• If p ∈ S(F/Q): the action of Frobp on Vp is F ⊗Qp-linear.

• (Kisin) Tp = trF⊗Qp(Frobp | Vp) ∈ OF ⊆ F ⊗Qp

• ap = NmF/Q(Tp) ∈ Z

• (Weil Conjectures) |ap| ≤ Cpd for d = [F :Q]
2

• bp = p−dap ∈ Q satisfies |bp| ≤ C

For p ∈ S(F/Q): if νp(A) ̸= ordg then bp ∈ Z (use Shimura variety)

• bp = tr(ρA,ℓ(Frobp)|Wℓ) where GF → GL(W ) not GSp2g → GL(W )
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Idea of Proof: Thm B

Step 1: Find suitable invariant ap = a(Frobp):

• it detects µ-ordinariness

if νp(A) ̸= µ-ordp then ap = c for finitely many values

• it is the trace of an algebraic representation on a subgroup G ⊆ GSp2g .

a(Frobp) = tr(ρA,ℓ(Frobp) | Wℓ) where G → GL(W )

Step 2: Compute tr(− | Wℓ) on GA,ℓ⊆G (Qℓ) (and GA,ℓ might be not conn’d).

For Z =
∐

c{g ∈ G (Qℓ) | tr(g | Wℓ) = c} and each conn’d comp. G
(σ)
A,ℓ of GA,ℓ:

• Z ∩ G
(σ)
A,ℓ closed, stable under conjugation, of Haar measure 0

By (A3-4): All conn’d comp. G
(σ)
A,ℓ are stable under conjugation.
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Idea of Proof (via the geometry of Shimura variety)

By Assumption (A1-2): Sh is a simple Shimura variety (á la Harris–Taylor)

• the Kottwitz’s set Bp(Sh) can be computed explicitely.

• the Newton stratification of ShFp is totally ordered, for all p good.

• the set Bp(Sh) depends only on Frobp|F ∈ Gal(F/Q)

• for each σ ∈ Gal(F/Q) ∃! a polygon µσ: µ-ordp = µσ if Frobp|F = σ

• Sµ-ord(A/Q) =
∐

σ Sµσ(A/Q) where for each σ we have

Sµσ(A/Q) ⊆ Sσ(F/Q) = {p | Frobp|F = σ}

• (Chebotarev) Sσ(F/Q) has density 1
[F :Q]

For each σ: the sets Sµσ(A/Q) and Sσ(F/Q) have the same density

The complement of Sµσ(A/Q) ⊆ Sσ(F/Q) has density 0 (use Serre’s Proposition)
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Step 1: detecting µ-ordinariness

Fix σ ∈ Gal(F/Q) and assume p ∈ Sσ(F/Q).
Goal: an invariant aσ(Frobp) detecting νp(A) = µσ.

Let Vp = H1
dR(A/Qp) a F ⊗Qp-vect. sp.

• If p ∈ Sσ(F/Q): the action of Frobp on Vp is not F ⊗Qp-linear

• Frobp is K ⊗Qp-linear for K = F ⟨σ⟩ by (A3-4)

• (Kisin) Tp = trK⊗Qp(Frobp | ∧e
K⊗Qp

Vp) ∈ OK ⊆ K ⊗Qp for e = [F : K ]

• (Weil Conjectures) ap = NmK/Q(Tp) ∈ Z satisfies |ap| ≤ Cpd

• bp = p−dap ∈ Q satisfies |bp| ≤ C

For p ∈ Sσ(F/Q): if νp(A) ̸= µσ then bp ∈ Z

• bp = tr(ρA,ℓ(Frobp)|Wℓ) where GK → GL(W ) for GK = GLK ∩GSp2g
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Step 2: Evaluating traces on GA,ℓ

For σ ∈ Gal(F/Q): tr(−,W ) on GK (depending on K = F ⟨σ⟩)

Need: Match to the conn’d component of GA,ℓ .

(A4): Gal(F/Q)−→Gal(Qconn/Q) ≃ π0(GA,ℓ) = GA,ℓ/G
0
A,ℓ

For each σ ∈ Gal(F/Q), there is a conn’d component G
(σ)
A,ℓ of GA,ℓ

• if p ∈ Sσ(F/Q) then ρA,ℓ(Frobp) ∈ G
(σ)
A,ℓ

• G
(σ)
A,ℓ ⊆ GK (Qℓ) for K = F ⟨σ⟩

Goal: Z ∩ G
(σ)
A,ℓ =

∐
c{g ∈ G

(σ)
A,ℓ | tr(g | Wℓ) = c} has Haar measure 0

Enough: tr(− | Wℓ) is not constant on G
(σ)
A,ℓ (b/c if it is it takes integral value)

• for σ = id : G
(id)
A,ℓ = G 0

A,ℓ = GF (Qℓ)

• for σ ̸= id : G
(σ)
A,ℓ = B

(σ)
A,ℓ · G

F (Qℓ) ⊂ GK (Qℓ) for some B
(σ)
A,ℓ ∈ GK (Qℓ)
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Bounding π0(GA,ℓ)

Need: Compute cosets representative B
(σ)
A,ℓ ∈ GSp2g for π0(GA,ℓ)

Caveat: These depend on A/Q
Strategy: Remove dependence on A/Q

• Compute a list of potential cosets representatives that is independent of A/Q

Idea: Bound π0(GA,ℓ) = GA,ℓ/G
0
A,ℓ ⊆ GSp2g (Qℓ)/G

F (Qℓ) independently on A/Q

For each coset [α] ∈ GSp2g (Qℓ)/G
F (Qℓ):

• choose Bα ∈ GSp2g (Qℓ) • show tr(− | Wℓ) is not constant on Bα · GF (Qℓ)

Careful: need to match [α] and σ ∈ Gal(F/Q) s.t. Bα · GF (Qℓ) ⊂ GK (Qℓ)

There is a monomorphism ϕ : π0(GA,ℓ) ↪→ H/H1

where H ⊆ Weyl(GSp2g ,T ) and H1 = Weyl(GF ,T ) independent of A/Q.

For each σ ∈ Gal(F/Q): identify Iσ ⊂ H/H1 such that

• ϕ(G
(σ)
A,ℓ ) ∈ Iσ and • Bα ∈ GK (Qℓ) for all [α] ∈ Iσ
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Thank you!


