# Galois groups and the dynamics of Cantor actions

Olga Lukina Leiden University, The Netherlands

October 28, 2025

This talk combines problems/tools from a few areas of mathematics:

### ► The object of interest:

Arboreal representations of absolute Galois groups of number fields

- were initially introduced as a tool to compute density of prime divisors in non-linear recurrence relations.
- are separable profinite groups acting on the boundary of a tree.
- can be studied by the methods of topological dynamics and geometric group theory.

#### Results:

- Use dynamical invariants to classify profinite groups arising from arboreal representations.
- Give descriptions of certains arboreal representations using the methods of topological dynamics and geometric group theory.

## Dynamics on the boundary of a rooted tree

**Build a regular tree**: Choose a positive integer  $d \geq 2$ .

#### Vertex sets:

Let 
$$V_0 = \{*\}$$
, and  $|V_n| = d^n$ .



#### Edge sets:

Join each  $v_n \in V_n$  to d vertices in  $V_{n+1}$ , so that each  $v_{n+1} \in V_{n+1}$  is joined to a single vertex in  $V_n$ .

#### Path space:

The set of all infinite paths in T is the boundary

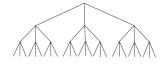
$$\partial T = \{(v_n)_{n \ge 1} : [v_n, v_{n+1}] \text{ is an edge } \} \subset \prod_{n \ge 1} V_n.$$

 $\partial T$  is a Cantor set, i.e. a totally disconnected compact metrizable space without isolated points.

### Actions by tree automorphisms:

Let G be a discrete countable group.

The group  $\operatorname{Aut}(T)$  consists of maps  $g:T\to T$  which preserve its tree structure:



- (1) Vertices are mapped to vertices, and edges to edges.
- (2) For each  $n \ge 1$ , and  $g \in G$ ,  $g|V_n$  is permutation, i.e. there is a homomorphism

$$\Phi_n: G \to \operatorname{Perm}(V_n): (g, v_n) \mapsto gv_n.$$

- (3) Permutations on consecutive levels are compatible, i.e. two vertices joined by an edge are mapped to two vertices joined by an edge.
- (4) In addition, we require that  $\Phi_n(G)$  is a transitive subgroup of  $\operatorname{Perm}(V_n)$ , for each  $n \geq 1$ .

Open problems

The collection of maps  $\Phi_n: G \to \operatorname{Perm}(V_n)$  defines an action of G on the boundary Cantor set  $\partial T$  by homeomorphisms

$$\Phi(g) = \lim_{\longleftarrow} \Phi_n(g) : \partial T \to \partial T : (v_n)_{n \ge 1} \mapsto (gv_n)_{n \ge 1}.$$

Since G is countable, the orbits of the action are countable subsets of  $\partial T$ .

Condition (4) implies that every orbit

$$Orb((v_n)_{n\geq 1}) = \{(gv_n)_{n\geq 1} : g \in G\}$$

is dense in  $\partial T$ , i.e. the action of G on  $\partial T$  is **minimal**.

The closure  $\mathcal{G}=\Phi(G)\subset \operatorname{Homeo}(\partial T)$  is a profinite group (the inverse limit of finite groups), called the **Ellis group** of the action.

 $\mathcal{G}$  acts on  $\partial T$  transitively, i.e. there is a single orbit of the action of  $\mathcal{G}$ .

### Example

### **Odometer**

An **odometer**, or an **adding machine** is an element  $\sigma \in \operatorname{Aut}(T)$  such that the restriction  $\sigma|V_n$  a transitive permutation of  $V_n$ , for all  $n \geq 1$ .

Let  $\sigma$  be the adding machine, then  $G = \mathbb{Z}$ .

Choosing a path  $v=(v_n)_{n\geq 1}\in \partial T$ , we can use the action of  $\sigma$  to identify

$$V_n \cong \mathbb{Z}/d^n\mathbb{Z},$$

with the action of  $\sigma$  as addition of 1. Then

$$\partial T \cong \mathbb{Z}_d = \lim_{\longleftarrow} \{ \mathbb{Z}/d^n \mathbb{Z} \to \mathbb{Z}/d^{n-1} \mathbb{Z} \}$$

as topological spaces, and

$$\mathcal{G}\cong\mathbb{Z}_d$$

as groups.

# Arboreal representations of absolute Galois groups

Let f(x) be a polynomial of degree d over a number field K.

Fix  $\alpha \in K$ .

For  $n \ge 1$  and  $f^n = f \circ f^{n-1}$  consider the equation

$$f^n(x) - \alpha = 0.$$

Let  $V_n = f^{-n}(\alpha)$  be the set of its solutions.



Assume that  $f^n(x) - \alpha$  is irredicible for all  $n \ge 1$ .

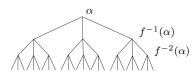
Then  $|V_n| = d^n$  since  $K \supset \mathbb{Q}$ .

We have  $a \in V_{k+1}$  and  $b \in V_k$  joined by an edge if f(a) = b.

Thus each  $V_n$  defines a field extension  $K(V_n)$ .

The Galois groups  $H_n$  permutes the solutions of  $f^n(x) = \alpha$  preserving the tree structure.

Since  $f^n(x)$  is irreducible, then  $H_n$  acts transitively on  $V_n$ .



The arboreal representation of the absolute Galois group of K associated to f(x) and  $\alpha$  is the inverse limit group

$$\operatorname{Gal}_{f,\alpha} = \lim_{\longleftarrow} \{ H_n \to H_{n-1} \mid n \ge 1 \} \subset \operatorname{Aut}(T).$$

 $\operatorname{Gal}_{f,\alpha}$  is a profinite group which acts transitively on the Cantor set  $\partial T$ .

Cubic

### Some history: density of primes

Given  $\alpha \in K$ , consider the set  $S = \{f(\alpha), f^2(\alpha), \ldots\}$ .

What is the density of prime divisors of elements in S?

**Odoni 1985**: Obtained an upper bound for this density by counting fixed points of elements of  $\rho_{f,\alpha}$ .

Jones 2013: A survey of related work on arboreal representations.

Many contributions since 2013, in the works of **Benedetto**, **Ferraguti**, **Jones**, **Juul**, **Looper**, **Pagano**, **Tucker**, and others.

One of the questions asked: for which f, K and  $\alpha$  does the group  $\operatorname{Gal}_{f,\alpha}$  have finite index in  $\operatorname{Aut}(T)$ ?

## From arboreal representations to dynamics of actions

In topological dynamics and geometric group theory, one studies actions of discrete groups, while an arboreal representation is a profinite group.

## Construction (Lukina 2019<sup>1</sup>)

- 1.  $\operatorname{Gal}_{f,\alpha}$  is the inverse limit of a sequence of finite groups indexed by natural numbers, and so contains a dense countably generated subgroup  $G_0$ .
- 2. Give  $G_0$  discrete topology.
- 3. The Galois group  $\operatorname{Gal}_{f,\alpha}$  is identified with the uniform closure  $\overline{\Phi(G_0)} \subset Homeo(X)$ .

The choice of  $G_0$  is not unique.

Therefore, one has to look at the dynamical invariants of actions of countable groups which are the **invariants of the profinite closure** of the action.

O. Lukina, Arboreal Cantor actions, JLMS 2019

## Equivalences in dynamical systems

#### Isomorphism:

Let G,G' be (discrete or profinite) groups, acting on Cantor sets  $\partial T$ ,  $\partial T'$ .

The actions  $(\partial T, G)$  and  $(\partial T', G')$  are **isomorphic** if there exist:

- 1. a homeomorphism  $\phi: \partial T \to \partial T'$ ,
- 2. and a group isomorphism  $\psi:G\to G'$  such that for any  $g\in G$  and any  $v\in\partial T$

$$\phi(gv) = \psi(g)\phi(v).$$

**Remark:** A slightly stronger notion, for  $\psi=\mathrm{id}$ , is that of a **conjugacy** of the dynamical systems.

Introduction Cantor actions Arboreal representations Dynamical invariants Profinite IMGs Quadratic Cubic Open problems

## Elements with fixed points (isotropy groups)

Consider the action of a profinite (Ellis) group  $\mathcal G$  on the boundary  $\partial T$  of a rooted tree.

Look at elements of  $\mathcal{G}$  which fix a given path  $v \in \partial T$ .

These elements are of two types:

- 1.  $g \in \mathcal{G}$  such that  $g \cdot v = v$  and g fixes every point in an open neighborhood  $U \subset \partial T$  of v.
- 2.  $g \in \mathcal{G}$  such that  $g \cdot v = v$  and for any open neighborhood  $U \subset \partial T_d$  of v the restriction g|U is not the identity map.

#### Approach (developed in a series of joint works with Hurder):

We consider the behavior of such elements on smaller and smaller neighborhoods of  $v \in \partial T$ .

We see this as an analogue to studying infinitesimal dynamical properties of the system in the absence of derivatives.

Elements which fix a given path  $v=(v_1,v_2,\ldots)\in\partial T$  form the isotropy subgroup (= the stabilizer) of the action at v

$$\mathcal{D}_v = \{ \widehat{h} \in \mathcal{G} \mid \widehat{h} \cdot v = v \} \subset G_{\infty},$$

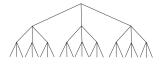
called the *discriminant group* (not the same notion as the discriminant group of a polynomial!).

The discriminant group may be trivial, finite or a profinite (Cantor) group.

Then  $\partial T$  is a homogeneous space

$$\partial T \cong \mathcal{G}/\mathcal{D}_v$$
.

**Remark:**  $\mathcal{D}_v$  is computable using *group chains*, see



J. Dyer, S. Hurder and O. Lukina, The discriminant invariant of Cantor group actions, Topology Appl., 2016.

For  $v_n \in V_n$ , the subtree  $T_{v_n}$  contains all paths in

$$U_{n,v_n} = \{(w_1, w_2, \ldots) \mid w_n = v_n\},\$$

which is also a Cantor set.

Elements which preserve  $U_{n,v_n}$  form a subgroup  $\widehat{U}_{n,v_n}\subset \mathcal{G}$  and

$$U_{n,v_n} \cong \widehat{U}_{n,v_n}/\mathcal{D}_v.$$

The adjoint action of  $\mathcal{D}_v$  on  $\widehat{U}_{n,v_n}$  is well-defined

$$Ad_n: \mathcal{D}_v \times \widehat{U}_{n,v_n} \to \widehat{U}_{n,v_n}: (\widehat{h},\widehat{g}) \mapsto \widehat{h}\widehat{g}\widehat{h}^{-1}.$$

**Remark:** If  $Ad_n(\widehat{h})=id$ , then  $\widehat{h}$  fixes every point in  $U_{n,v_n}$ .



$$K_n = \{ \widehat{h} \in \mathcal{D}_v : \widehat{h} | U_{n,v_n} = id \}$$
 ( $\widehat{h}$  fixes every point in  $U_{n,v_n}$ )

$$Z_n = \{\widehat{h} \in \mathcal{D}_v : Ad(\widehat{h}) | \widehat{U}_{n,v_n} = id\}$$
  $(Ad(\widehat{h}) \text{ fixes every point in } \widehat{U}_{n,v_n}).$ 

Then  $Z_n \subset K_n$ , for all  $n \geq 0$ .

Form direct limit groups with respect to inclusions  $\iota_{n+1}^n:K_n\to K_{n+1}$ 

$$\mathcal{K} = \bigsqcup_{n \ge 0} K_n / \{ a \sim b \text{ iff } \iota_s^k(a) = \iota_s^m(b), \ s \ge k, m \},$$

$$\mathcal{Z} = \bigsqcup_{n \ge 0} Z_n / \{ a \sim b \text{ iff } \iota_s^k(a) = \iota_s^m(b), \ s \ge k, m \}.$$

### Theorem (Hurder and Lukina 2021<sup>2</sup>)

The isomorphism classes of the direct limit groups K and Z are invariants of the conjugacy class of  $(\partial T, \mathcal{G})$ .

<sup>&</sup>lt;sup>2</sup> S. Hurder and O. Lukina, Limit group invariants for non-free Cantor actions, Ergod. Theory Dynam. Systems, 2021.

We say that the direct limit group K is bounded, if there exists  $m \ge 0$  such that for all  $n \ge m$  the inclusions  $\iota : K_n \to K_{n+1}$  are isomorphisms.

The following classification was introduced in Hurder and Lukina 2021:

#### Stable and wild actions

A group action  $(\partial T, \mathcal{G})$  is *stable* if the group chain  $\mathcal{K}$  is bounded, and the action is *wild* otherwise.

**Remark:** If  $\mathcal K$  is bounded with m=0, then the space  $\partial T$  contains a dense subset of points which are fixed only by the identity element, i.e. the action is topologically free.

**Remark:** The invariants above are motivated by questions about the nature of attractors and exceptional minimal sets of foliations in dynamical systems and foliation theory.

**Remark:** A finer, more detailed classification using the properties of  $\mathcal{K}$  and  $\mathcal{Z}$  is introduced in **Hurder and Lukina 2021**.

More examples can be found in Álvarez López, Barral Lijó, Lukina and Nozawa 2022.

## **Examples**

### Theorem (Lukina JLMS 2019)

Let p and d be distinct odd primes, let K be a finite unramified extension of the p-adic numbers  $\mathbb{Q}_p$ , and let

$$f(x) = (x+p)^d - p.$$

Then the action of  $Gal_{f,0}$  on  $\partial T$  is stable.

### Theorem (Lukina JLMS 2019)

Suppose the arboreal representation  $\operatorname{Gal}_{f,\alpha}$  is a subgroup of finite index in  $\operatorname{Aut}(T)$ . Then the action  $(\partial T,\operatorname{Gal}_{f,\alpha})$  is wild.

### Profinite IMGs

Let t be a transcendental element, and let K(t) be a field of functions.

Let f(x) be a polynomial of degree  $d \ge 2$  with coefficients in K.

Repeating the arboreal representation construction as before for the solutions of  $f^n(x) = t$ , we obtain

- the arithmetic iterated monodromy group  $\operatorname{Gal}_{\operatorname{arith}}(f) \subset \operatorname{Aut}(T)$  and
- the geometric iterated monodromy group  $Gal_{geom}(f) \subseteq Gal_{arith}(f)$ .

Specializing to  $t = \alpha$ ,  $\alpha \in K$ , one gets an arboreal representation  $Gal_{f,\alpha}$ .

Generically,  $\operatorname{Gal}_{f,\alpha} \cong \operatorname{Gal}_{\operatorname{arith}}(f)$ .

## "Small" profinite IMGs

### Observation (Jones 2013):

If a polynomial f(x) of degree d is **post-critically finite (PCF)**, then the image of its arboreal representation has infinite index in  $\operatorname{Aut}(T)$ .

Let C be the set of critical points of f(x). On the Riemann sphere this includes  $\infty$ , which is a fixed point of f(x).

**Recall:** A polynomial f(x) is **(PCF)**, if the set of images

$$P_C = \{ f^i(c) : c \in C, i \ge 1 \}$$

of its critical set C under the forward iterations of f is finite.

**Example:** If f(x) is a quadratic PCF polynomial, and  $c \neq \infty$ , then the orbit of c may be periodic or strictly pre-periodic;  $\infty$  is a fixed point.





**Remark (Pink 2013):** If K is a number field,  $\mathrm{Gal}_{\mathrm{geom}}(f)$  can be computed over  $\mathbb{C}(t)$ .

On the other hand,  $f^n$  define a sequence of coverings of a punctured Riemann sphere, which are used to construct the discrete iterated monodromy group  $\mathrm{IMG}(f)$ .

### Proposition (Nekrashevych 2005, attributed to Pink)

Suppose f(x) has a finite post-critical set  $P_C$ . Then the closure  $\mathrm{IMG}(f)$  in Aut(T) is isomorphic to  $\mathrm{Gal}_{\mathrm{geom}}(f)$  over  $\mathbb{C}(t)$ .

#### A geometric group theory method:

Elements of  $\mathrm{IMG}(f)$  can be written recursively using the presentation of  $\mathrm{Aut}(T)$  as the iterated wreath product of the groups  $\mathrm{Perm}(\{1,\ldots,d\})$ , with a generator  $g_p$  for every point  $p \in P_C$ .

**Pink 2013** provided a detailed description of  $Gal_{geom}(f)$  and  $Gal_{arith}(f)$  in this case.

Let  $P_c = P_C \setminus \{\infty\}$ .

### Theorem 1 (profinite geometric IMGs)<sup>3</sup>

Let f(x) be a quadratic PCF polynomial over a number field K. Then the following holds.

- 1. If  $\#P_c=1$ , then the action of  $\mathrm{Gal}_{\mathrm{geom}}(f)$  is stable with trivial discriminant group.
- 2. If  $\#P_c=2$  and the post-critical orbit is pre-periodic, then the action of  $\mathrm{Gal}_{\mathrm{geom}}(f)$  is stable with finite discriminant group.
- 3. In all other cases when  $\#P_c$  is finite, the action of  $\operatorname{Gal}_{\mathrm{geom}}(f)$  is wild.

<sup>&</sup>lt;sup>3</sup> O. Lukina, Galois groups and Cantor actions, Trans. Amer. Math. Soc., 2021.

## Theorem 2 (profinite arithmetic IMGs)<sup>3</sup>

Arboreal representations

Let f(x) be a quadratic PCF polynomial over a number field K. Then the following holds.

- 1. If  $\#P_c = 1$ , then the action of  $\operatorname{Gal}_{\operatorname{arith}}(f)$  is stable with profinite discriminant group.
- 2. If  $\#P_c=2$  and the post-critical orbit is pre-periodic, then the action of  $Gal_{arith}(f)$  is stable with profinite discriminant group.
- 3. In all other cases when  $\#P_c$  is finite, the action of  $\operatorname{Gal}_{\operatorname{arith}}(f)$  is wild.

O. Lukina, Galois groups and Cantor actions, Trans. Amer. Math. Soc., 2021.

## Higher degrees: invariable generation

#### Pink 2013:

Let f(x) be quadratic PCF with  $\#P_c = r \ge 1$  ( $P_c$  does not include  $\infty$ ), and let  $\mathrm{Gal}_{geom}(f)$  be the associated geometric IMG.

Then there exist a set of elements  $\{g_1, \ldots, g_r\} \subset \operatorname{Aut}(T)$ , depending only on the length of  $P_c$ , and the length of a periodic cycle in  $P_c$ , such that, for some  $w \in \operatorname{Aut}(T)$ 

$$wGw^{-1} = \operatorname{Gal}_{geom}(f),$$

where  $G = \langle g_1, \dots, g_r \rangle$ . Here  $g_1 g_2 \cdots g_r = g_{\infty}$ , where  $g_{\infty}$  is an odometer, and T is a binary tree.

**Remark:**  $g_{\infty}$  is the generator corresponding to  $\infty$ .

We call the generators  $\{g_1, \ldots, g_r, g_\infty\}$  the **model generators**.

Cubic

### Issues:

1.  $\operatorname{Gal}_{geom}(f)$  has a countable dense subgroup generated by r elements, but each generator  $h_i$  is only determined up to a conjugation by  $w_i \in \operatorname{Aut}(T)$ . Even if each  $w_i \in \operatorname{Gal}_{geom}(f)$ , the set

$$\{w_i h_i w_i^{-1} : 1 \le i \le r\}$$

need not be a generating set for  $Gal_{geom}(f)$ .

2. For  $w \in \operatorname{Aut}(T)$ , the sets  $\{wh_iw^{-1}: 1 \leq i \leq r\}$  and  $\{g_i: 1 \leq i \leq r\}$  may topologically generate the same profinite group, but different countable groups.

Issue 1 leads to the notion of an invariable generating set of a group.

### Invariable generating set

A set S invariably generates a group G, if, for any choice of  $g_s \in G$ , the set  $\{g_s s g_s^{-1} : s \in S\}$  generates G.

## p-adic case, p prime

If d=2, then the restriction  $G|_{T_n}$  to the first n levels of T is a 2-adic group, and so nilpotent.

The fact that the set of model generators  $S=\{g_1,\ldots,g_r\}$  is an invariable generating set follows from that.

## Corollary

If f(x) is a quadratic PCF polynomial, then every subsets of |S| elements from the set  $S \cup \{a\}$ , where  $a = g_1 \cdots g_r$  is an odometer, is a generating set for  $G = \overline{\langle S \rangle}$ .

For  $d \geq 3$ , the restrictions  $G|T_n$  need not be nilpotent, even for d prime.

### Unicritical case

A polynomial f(x) is **unicritical** if it has a single critical point  $c \in \mathbb{C}$ .

Then  $C = \{c, \infty\}$ , and we denote  $P_c = P_C \setminus \{\infty\}$ .

### Theorem (Adams and Hyde 2025)

Let f(x) be a unicritical PCF polynomial of degree  $d \geq 2$ , and let  $\mathrm{Gal}_{geom}(f)$  be the associated geometric monodromy group.

Then there is a set of model generators S of cardinality  $|P_c|$ , depending only on  $|P_c|$  and the length of the periodic cycle in  $P_c$ , such that:

- 1. S is an invariable generating set for  $G = \overline{\langle S \rangle}$ .
- 2. There exists  $w \in Aut(T)$ , such that

$$wGw^{-1} = \operatorname{Gal}_{geom}(f).$$

**Remark:** thus G has an invariable generating set without an odometer  $g_{\infty} = g_1 \cdots g_r$ .

Introduction Cantor actions Arboreal representations Dynamical invariants Profinite IMGs Quadratic Cubic Open problems

### Non-unicritical cubic case

Let f(x) be a PCF cubic polynomial over a number field K.

Let  $P_C$  denote the postcritical set (including  $\infty$ ).

#### Joint work with Hlushchanka and Wardell:

profinite geometric IMGs for cubic polynomials satisfying the assumption below.

**Assumption (Y):** for each  $p \in P_C \setminus \{\infty\}$ ,  $f^{-1}(p)$  contains a point that is neither critical nor postcritical.

### New phenomenon

For cubic polynomials satisfying Assumption (Y), an invariable generating set **must include an odometer**.

### Theorem (Hlushchanka, Lukina, Wardell 2025<sup>4</sup>)

Let f(x) be a cubic PCF polynomial satisfying the Assumption (Y), with post-critical set  $P_C$  ( $P_C$  includes  $\infty$ ).

Then there exist a set of model generators  $S = \{g_1, \dots, g_r, g_\infty\}$  such that:

- 1. An invariable generating set for  $G = \overline{\langle S \rangle}$  must contain an odometer; in particular, S is an invariable generating set for G.
- 2. There exists  $w \in Aut(T)$ , such that

$$wGw^{-1} = \operatorname{Gal}_{geom}(f).$$

**Remark:** Most likely, the cardinality of a minimal generating set for G is |S|-1, and such a set must contain  $g_{\infty}$ .

M. Hlushchanka, O. Lukina and D. Wardell, Profinite geometric iterated monodromy groups of postcritically finite polynomials in degree 3, arXiv: 2507.05033.

### Stable or wild?

## Theorem (Hlushchanka, Lukina, Wardell $2025^4$ )

Let f(x) be a cubic PCF polynomial satisfying the Assumption (Y).

Let  $Gal_{geom}(f)$  be the profinite iterated monodromy group.

Then  $Gal_{geom}(f)$  is regular branch.

**Remarks:** A regular branch group is weakly branch.

The action of a weakly branch group is wild.

For  $H \subset G$ , if the action of H is wild, then the action of G is wild.

**Corollary:** Let f(x) be a cubic PCF polynomial satisfying Assumption (Y).

Then the actions of  $\operatorname{Gal}_{geom}(f)$  and of  $\operatorname{Gal}_{arith}(f)$  are both wild.

<sup>&</sup>lt;sup>4</sup> M. Hlushchanka, O. Lukina and D. Wardell, Profinite geometric iterated monodromy groups of postcritically finite polynomials in degree 3, arXiv: 2507.05033.

Introduction Cantor actions Arboreal representations Dynamical invariants Profinite IMGs Quadratic Cubic Open problems

## Further work and open problems

The works cited above generated a range of concrete doable open problems and trends for further research.

The answer to the following problem will make the connection between Cantor dynamics and number theory more remarkable:

### Main open question

- What difficult problems in number theory be solved using Cantor dynamics?
- What difficult problems in dynamics or foliation theory can be solved using arboreal representations of Galois groups?

Introduction Cantor actions Arboreal representations Dynamical invariants Profinite IMGs Quadratic Cubic Open problems

#### References:

- O. Adams, T. Hyde, Profinite iterated monodromy groups of unicritical polynomials, arXiv: 2504.13028.
- M. Hlushchanka, O. Lukina and D. Wardell, Profinite geometric iterated monodromy groups of postcritically finite polynomials in degree 3, arXiv: 2507.05033.
- S. Hurder and O. Lukina, Limit group invariants for non-free Cantor actions, Ergod. Theory Dynam. Systems, 46(1) 2021, 1751–1794.
- R. Jones, Galois representations from pre-image trees: an arboreal survey, in Actes de la Conférence "Théorie de Nombres et Applications", 2013, 107-136.
- O. Lukina, Arboreal Cantor actions, J. Lond. Math. Soc., 99(3) 2019, 678-706.
- O. Lukina, Galois groups and Cantor actions, Trans. Amer. Math. Soc., 374(3) 2021, 1579-1621.
- V. Nekrashevych, Self-similar groups, Math. Surveys and Monographs, Vol 117.
- R. Pink, Profinite iterated monodromy groups arising from quadratic polynomials, arXiv:1307.5678.

#### Thank you for your attention!