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Introduction

This talk combines problems/tools from a few areas of mathematics:

» The object of interest:

Arboreal representations of absolute Galois groups of number fields
— were initially introduced as a tool to compute density of prime
divisors in non-linear recurrence relations.
— are separable profinite groups acting on the boundary of a tree.
— can be studied by the methods of topological dynamics and
geometric group theory.

» Results:
— Use dynamical invariants to classify profinite groups arising from
arboreal representations.
— Give descriptions of certains arboreal representations using the
methods of topological dynamics and geometric group theory.
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Dynamics on the boundary of a rooted tree
Build a regular tree: Choose a positive integer d > 2.

Vertex sets:
Let Vo = {x}, and |V,,| = d".

Edge sets:
Join each v,, € V,, to d vertices in V,, 11, so that each v,11 € V41 is
joined to a single vertex in V,.

Path space:
The set of all infinite paths in T is the boundary

OT = {(vn)n>1 : [Vn, Vn41] is an edge } € ] Va.

n>1

OT is a Cantor set, i.e. a totally disconnected compact metrizable space
without isolated points.
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Cantor actions

Actions by tree automorphisms:
Let G be a discrete countable group.

The group Aut(T) consists of maps
g : T — T which preserve its tree structure:

(1) Vertices are mapped to vertices, and edges to edges.

(2) For eachn > 1, and g € G, g|V,, is permutation, i.e. there is a
homomorphism

D, : G — Perm(V,,) : (g,0n) — gu,.

(3) Permutations on consecutive levels are compatible, i.e. two vertices
joined by an edge are mapped to two vertices joined by an edge.

(4) In addition, we require that ®,,(G) is a transitive subgroup of
Perm(V,,), for each n > 1.
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Cantor actions

The collection of maps ®,, : G — Perm(V,,) defines an action of G on
the boundary Cantor set 9T by homeomorphisms

B(g) = lim B, (g) : O = OT : (vn)nz1 = (Gn)us1.
Since G is countable, the orbits of the action are countable subsets of OT'.

Condition (4) implies that every orbit

Orb((vn)nzl) = {(gvn)n21 H/AS G}

is dense in 9T, i.e. the action of G on 9T is minimal.

The closure G = ®(G) C Homeo(9T) is a profinite group (the inverse
limit of finite groups), called the Ellis group of the action.

G acts on OT transitively, i.e. there is a single orbit of the action of G.
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Example

An odometer, or an adding machine is an element o € Aut(T) such
that the restriction |V}, a transitive permutation of V,,, for all n > 1.

Let o be the adding machine, then G = Z.

Choosing a path v = (v,,)n>1 € 9T, we can use the action of o to
identify
V, = 7/d"Z,

with the action of o as addition of 1. Then

~ 1 m n—1
OT = Zg = lim{Z/d"Z — Z/d"~'Z}

as topological spaces, and
G=2Zqg

as groups.
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Arboreal representations of absolute Galois groups

Let f(z) be a polynomial of degree d over a number field K.
Fix a € K.

Forn>1and f* = f o f"~! consider the equation
M (z) —a=0.
Let V;, = f~" () be the set of its solutions.

Assume that f"(x) — « is irredicible for all n > 1.
Then |V,| = d" since K D Q.
We have a € Vj, 41 and b € V}, joined by an edge if f(a) =b.
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Arboreal representations

Thus each V,, defines a field extension K (V},).
The Galois groups H,, permutes
the solutions of f*(z) = «

. —1
preserving the tree structure. = (@)

Since f™(z) is irreducible, then H,, acts
transitively on V,.

The arboreal representation of the absolute Galois group of K
associated to f(z) and « is the inverse limit group

Galy o = lim{H, — H, 1 |n>1} C Aut(T).
<

Galy « is a profinite group which acts transitively on the Cantor set 97
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Arboreal representations

Some history: density of primes

Given a € K, consider the set S = {f(a), f*(c),...}.

What is the density of prime divisors of elements in S7?

Odoni 1985: Obtained an upper bound for this density by counting fixed
points of elements of pys ..

Jones 2013: A survey of related work on arboreal representations.

Many contributions since 2013, in the works of Benedetto, Ferraguti,
Jones, Juul, Looper, Pagano, Tucker, and others.

One of the questions asked: for which f, K and a does the group
Galy o have finite index in Aut(7")?
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From arboreal representations to dynamics of actions

In topological dynamics and geometric group theory, one studies actions
of discrete groups, while an arboreal representation is a profinite group.

Construction (Lukina 2019')

1. Galy is the inverse limit of a sequence of finite groups indexed by
natural numbers, and so contains a dense countably generated
subgroup Gp.

2. Give G discrete topology.

3. The Galois group Galy ,, is identified with the uniform closure
®(Gy) C Homeo(X).

The choice of G is not unique.

Therefore, one has to look at the dynamical invariants of actions of
countable groups which are the invariants of the profinite closure of
the action.

1 0. Lukina, Arboreal Cantor actions, JLMS 2019
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Equivalences in dynamical systems

Isomorphism:

Let G, G’ be (discrete or profinite) groups, acting on Cantor sets 97,
orT’.
The actions (0T, G) and (01", G’) are isomorphic if there exist:

1. a homeomorphism ¢ : 9T — 9T",

2. and a group isomorphism ¢ : G — G’ such that for any g € G and
any v € 0T
P(gv) = P(g)P(v).

Remark: A slightly stronger notion, for v = id, is that of a conjugacy
of the dynamical systems.
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Dynamical invariants

Elements with fixed points (isotropy groups)

Consider the action of a profinite (Ellis) group G on the boundary 9T of
a rooted tree.

Look at elements of G which fix a given path v € 9T

These elements are of two types:

1. g € G such that g-v = v and g fixes every point in an open
neighborhood U C 9T of v.

2. g € G such that g - v = v and for any open neighborhood U C 0Ty
of v the restriction ¢g|U is not the identity map.

Approach (developed in a series of joint works with Hurder):

We consider the behavior of such elements on smaller and smaller
neighborhoods of v € 9T.

We see this as an analogue to studying infinitesimal dynamical properties
of the system in the absence of derivatives.

12/31



Dynamical invariants

Elements which fix a given path v = (v1,v2,...) € T form the isotropy
subgroup (= the stabilizer) of the action at v

D,={heG|h-v=0}C G,

called the discriminant group (not the same notion as the discriminant
group of a polynomial!).
The discriminant group may be trivial, finite or a profinite (Cantor) group.
Then 0T is a homogeneous space

oT = G/D,.

Remark: D, is computable
using group chains, see

J. Dyer, S. Hurder and O. Lukina, The discriminant invariant of Cantor group
actions, Topology Appl., 2016.
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For v,, € V,,, the subtree T, contains all paths in

Un,vn = {(w17w27 .- ) | Wy = vn}»
which is also a Cantor set.

Elements which preserve U, ,, form a subgroup (7”7% C G and

~
Un,vn = Un,vn /Du~

The adjoint action of D, on ﬁn,q,n is well-defined

Ad,, : D, x (/]\nﬂ,n — ﬁn’vn : (ﬁ,/g\) — /ﬁ@\/f;_l.

Remark: If Ad,(h) = id, then h
fixes every point in U, ,,, .

Cubic

Open problems
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For n > 0, define the groups

K, = {TL €D, : /ﬁ|Un, = id} (/f; fixes every point in U, v, )

Un

Zn ={h € Dy : Ad(h)|Un.., =idt  (Ad(h) fixes every point in Un.v,).
Then Z, C K,, foralln > 0.

Form direct limit groups with respect to inclusions ¢y, 1 : Kn — Kni1
K = UnsoKn/{a ~ biff i5(a) = 2°(b), 5 > k,m},

Z = Un>0Zn/{a ~ biff 1£(a) = T (b), s > k,m}.

Theorem (Hurder and Lukina 20217)

The isomorphism classes of the direct limit groups K and Z are invariants of
the conjugacy class of (97, G).

2'S. Hurder and O. Lukina, Limit group invariants for non-free Cantor actions, Ergod. Theory

Dynam. Systems, 2021.

15/31



Introduction Cantor actions Arboreal representations Dynamical invariants Profinite IMGs Quadratic Cubic Open prc

We say that the direct limit group K is bounded, if there exists m > 0 such
that for all n > m the inclusions ¢ : K,, — K, +1 are isomorphisms.

The following classification was introduced in Hurder and Lukina 2021:

Stable and wild actions

A group action (9T, G) is stable if the group chain K is bounded, and the
action is wild otherwise.

Remark: If K is bounded with m = 0, then the space T contains a dense
subset of points which are fixed only by the identity element, i.e. the action is
topologically free.

Remark: The invariants above are motivated by questions about the nature of
attractors and exceptional minimal sets of foliations in dynamical systems and
foliation theory.

Remark: A finer, more detailed classification using the properties of K and Z
is introduced in Hurder and Lukina 2021.

More examples can be found in Alvarez Lépez, Barral Lijé, Lukina and
Nozawa 2022.

oblems
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Examples

Theorem (Lukina JLMS 2019)

Let p and d be distinct odd primes, let K be a finite unramified extension
of the p-adic numbers Q,, and let

f@)=(@+p)?—p.

Then the action of Galy o on 9T is stable.

Theorem (Lukina JLMS 2019)

Suppose the arboreal representation Galy , is a subgroup of finite index
in Aut(T). Then the action (9T, Galy ) is wild.

oblems
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Profinite IMGs

Profinite IMGs

Let ¢ be a transcendental element, and let K (¢) be a field of functions.
Let f(x) be a polynomial of degree d > 2 with coefficients in K.

Repeating the arboreal representation construction as before for the
solutions of f™(x) = t, we obtain

- the arithmetic iterated monodromy group Gal,,;tn(f) C Aut(T)
and

- the geometric iterated monodromy group Galgeom (f) < Galayign (f)-
Specializing to t = o, & € K, one gets an arboreal representation Galy 4.

Generically, Galy o = Galaitn (f)-

18/31



Profinite IMGs

"Small” profinite IMGs
Observation (Jones 2013):

If a polynomial f(z) of degree d is post-critically finite (PCF), then
the image of its arboreal representation has infinite index in Aut(T).

Let C be the set of critical points of f(z). On the Riemann sphere this
includes oo, which is a fixed point of f(x).

Recall: A polynomial f(z) is (PCF), if the set of images
Po={f'(c):ceC,i>1}

of its critical set C' under the forward iterations of f is finite.

Example: If f(z) is a quadratic PCF polynomial, and ¢ # oo, then the
orbit of ¢ may be periodic or strictly pre-periodic; oo is a fixed point.

e T T P Y
[} [} ® [} [} .\/.
\_/
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Remark (Pink 2013): If K is a number field, Galgeom (f) can be
computed over C(t).

On the other hand, f™ define a sequence of coverings of a punctured
Riemann sphere, which are used to construct the discrete iterated
monodromy group IMG(f).

Proposition (Nekrashevych 2005, attributed to Pink)

Suppose f(z) has a finite post-critical set Po. Then the closure IMG(f)
in Aut(T') is isomorphic to Galgeom (f) over C(¢).

A geometric group theory method:

Elements of IMG(f) can be written recursively using the presentation of
Aut(T) as the iterated wreath product of the groups Perm({1,...,d}),
with a generator g, for every point p € FPc.
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Let d =2, i.e. f(z) is a quadratic polynomial over a number field K.

Pink 2013 provided a detailed description of Galgeom (f) and Galarien (f)
in this case.

Let P, = Po\{co).

Theorem 1 (profinite geometric IMGs)?

Let f(x) be a quadratic PCF polynomial over a number field K. Then
the following holds.

1. If #P, =1, then the action of Galgeom(f) is stable with trivial
discriminant group.

2. If #P, = 2 and the the post-critical orbit is pre-periodic, then the
action of Galgeom(f) is stable with finite discriminant group.

3. In all other cases when #P, is finite, the action of Galgeom(f) is
wild.

3 0. Lukina, Galois groups and Cantor actions, Trans. Amer. Math. Soc., 2021.
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Theorem 2 (profinite arithmetic IMGs)?

Let f(z) be a quadratic PCF polynomial over a number field K. Then
the following holds.
1. If #P. = 1, then the action of Gal,;tn(f) is stable with profinite
discriminant group.
2. If #P. = 2 and the the post-critical orbit is pre-periodic, then the
action of Gal,yitn(f) is stable with profinite discriminant group.

3. In all other cases when #P. is finite, the action of Gal,itn(f) is
wild.

3 0. Lukina, Galois groups and Cantor actions, Trans. Amer. Math. Soc., 2021.
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Higher degrees: invariable generation

Pink 2013:

Let f(z) be quadratic PCF with #P. = r > 1 (P, does not include c0),
and let Galgeom (f) be the associated geometric IMG.

Then there exist a set of elements {g1,..., 9.} C Aut(T), depending
only on the length of P, and the length of a periodic cycle in P,, such
that, for some w € Aut(T)

wGw™ = Galgeom (f),

where G = (g1,...,9-). Here g1g2 -+ gr = goo, Where g is an
odometer, and T is a binary tree.

Remark: ¢ is the generator corresponding to co.

We call the generators {g1, ..., -, goo} the model generators.
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Issues:

1. Galgeom (f) has a countable dense subgroup generated by r
elements, but each generator h; is only determined up to a
conjugation by w; € Aut(T'). Even if each w; € Galgeom (f), the set

{wihyw;*:1<i <7}

need not be a generating set for Galgeom (f).

2. For w € Aut(T), the sets {wh;w=':1<i<r} and
{gi : 1 <i <r} may topologically generate the same profinite
group, but different countable groups.

Issue 1 leads to the notion of an invariable generating set of a group.

Invariable generating set

A set S invariably generates a group G, if, for any choice of g5 € G,
the set {gssg; 1 : s € S} generates G.
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p-adic case, p prime
If d = 2, then the restriction G|z, to the first n levels of T is a 2-adic
group, and so nilpotent.

The fact that the set of model generators S = {g1,...,¢-} is an
invariable generating set follows from that.

Corollary

If f(z) is a quadratic PCF polynomial, then every subsets of |S| elements
from the set S U {a}, where a = gy - - - g, is an odometer, is a generating

set for G = (S).

For d > 3, the restrictions G|T;, need not be nilpotent, even for d prime.
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Unicritical case
A polynomial f(z) is unicritical if it has a single critical point ¢ € C.

Then C' = {¢,o0}, and we denote P. = Po\{oo}.
Theorem (Adams and Hyde 2025)

Let f(z) be a unicritical PCF polynomial of degree d > 2, and let
Galgeom (f) be the associated geometric monodromy group.

Then there is a set of model generators S of cardinality |P.|, depending
only on |P.| and the length of the periodic cycle in P, such that:

1. S is an invariable generating set for G' = (S).
2. There exists w € Aut(T), such that

wGw™! = Galgeom (f)-
Remark: thus G has an invariable generating set without an odometer
Joo = 91" Gr-
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Non-unicritical cubic case

Let f(z) be a PCF cubic polynomial over a number field K.
Let Po denote the postcritical set (including o).
Joint work with Hlushchanka and Wardell:

profinite geometric IMGs for cubic polynomials satisfying the assumption
below.

Assumption (Y): for each p € Pc\{oc}, f~1(p) contains a point that is
neither critical nor postcritical.

New phenomenon

For cubic polynomials satisfying Assumption (), an invariable generating
set must include an odometer.
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Cubic

Theorem (Hlushchanka, Lukina, Wardell 2025%)

Let f(x) be a cubic PCF polynomial satisfying the Assumption (Y), with
post-critical set Po (Pc includes oo).

Then there exist a set of model generators S = {g1,...,9r,goo } such
that:

1. An invariable generating set for G = (S) must contain an odometer;
in particular, S is an invariable generating set for G.

2. There exists w € Aut(T), such that

wGw ™! = Galgeom (f)-

Remark: Most likely, the cardinality of a minimal generating set for G is
|S| — 1, and such a set must contain .

4 M. Hlushchanka, O. Lukina and D. Wardell, Profinite geometric iterated monodromy groups of
postcritically finite polynomials in degree 3, arXiv: 2507.05033.
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Stable or wild?

Theorem (Hlushchanka, Lukina, Wardell 2025%)

Let f(z) be a cubic PCF polynomial satisfying the Assumption ().
Let Galgeom (f) be the profinite iterated monodromy group.

Then Galgeom (f) is regular branch.

Remarks: A regular branch group is weakly branch.

The action of a weakly branch group is wild.

For H C G, if the action of H is wild, then the action of G is wild.
Corollary: Let f(z) be a cubic PCF polynomial

satisfying Assumption ().

Then the actions of Galgeom (f) and
of Galgritn(f) are both wild.

4 M. Hlushchanka, O. Lukina and D. Wardell, Profinite geometric iterated monodromy groups of

postcritically finite polynomials in degree 3, arXiv: 2507.05033. 29/31
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Further work and open problems

The works cited above generated a range of concrete doable open
problems and trends for further research.

The answer to the following problem will make the connection between
Cantor dynamics and number theory more remarkable:

Main open question

» What difficult problems in number theory be solved using Cantor
dynamics?

» What difficult problems in dynamics or foliation theory can be solved
using arboreal representations of Galois groups?
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Thank you for your attention!
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