


Goal
Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.

E(Q) ∼= E(Q)tors ⊕ ZRE/Q

Donald Anderson, first poster child.

The torsion subgroups over Q
are the “poster child” of what an
arithmetic group should be like.
Torsion subgroups are:

Computable
Classified
Parametrized in families
Statistically understood
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Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.

E(Q) ∼= E(Q)tors ⊕ ZRE/Q
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The curve E : y2 + xy + y = x3 + x2 − 4x + 5 (42.a5)
has torsion subgroup 〈(−1, 3)〉 ∼= Z/8Z.

Computable
I Nagell–Lutz theorem.
I Division polynomials.
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Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.
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The curve E : y2 + xy + y = x3 + x2 − 4x + 5 (42.a5)
has torsion subgroup 〈(−1, 3)〉 ∼= Z/8Z.

Classified
I Mazur’s theorem:

E(Q)tors '

{
Z/MZ, or
Z/2Z⊕ Z/2NZ

where 1 ≤ M ≤ 10 or M = 12,
and 1 ≤ N ≤ 4.
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Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.

E(Q) ∼= E(Q)tors ⊕ ZRE/Q
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The curve E : y2 + xy + y = x3 + x2 − 4x + 5 (42.a5)
has torsion subgroup 〈(−1, 3)〉 ∼= Z/8Z.

Parametrized in families
I Kubert et al.:

e.g.,
elliptic curves with Z/8Z tors.:

E : y2+(1−a)xy−by2 = x3−bx2

with b = (2t − 1)(t − 1) and
a = b/t , for any t 6= 0,1/2,1.
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Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.

E(Q) ∼= E(Q)tors ⊕ ZRE/Q
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The curve E′ : y2 + 1
3 xy − 2

9 y = x3 − 2
9 x2 (∼=Q 42.a5)

has torsion subgroup 〈(−1, 3)〉 ∼= Z/8Z.

Parametrized in families
I Kubert et al.:

e.g.,
elliptic curves with Z/8Z tors.:

E : y2+(1−a)xy−by2 = x3−bx2

with b = (2t − 1)(t − 1) and
a = b/t , for any t 6= 0,1/2,1.



Goal
Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.

E(Q) ∼= E(Q)tors ⊕ ZRE/Q
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The curve E : y2 + xy + y = x3 + x2 − 4x + 5 (42.a5)
has torsion subgroup 〈(−1, 3)〉 ∼= Z/8Z.

Statistically understood
I Harron–Snowden (2013):

Let NG(X ) be the number of
elliptic curves E/Q with (naive)
height ≤ X and E(Q)tors ∼= G.
Then, there are positive
constants C1,C2,d(G) such
that

C1X d(G) ≤ NG(X ) ≤ C2X d(G).

E.g., d({0}) = 5/6 and
d(Z/8Z) = 1/12.
∗ Also see recent similar work by Boggess–Sankar
counting elliptic curves with N-isogenies!



Goal
Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.

E(Q) ∼= E(Q)tors ⊕ ZRE/Q

The curve E : y2 = x3 − 4x + 4 (88.a1) has trivial torsion
subgroup and rank 1, with E(Q) = 〈(2,−2)〉 ∼= Z.

How about the rank?
· Computable?
· Classified?
· Parametrized in families?
· Statistically understood?



Goal
Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.

E(Q) ∼= E(Q)tors ⊕ ZRE/Q

The curve E : y2 = x3 − 4x + 4 (88.a1) has trivial torsion
subgroup and rank 1, with E(Q) = 〈(2,−2)〉 ∼= Z.

How about the rank?
· Computable? Maybe
· Classified? No
· Parametrized in families? No
· Statistically understood? No



Is the Rank Computable?

Analytically? Yes∗, if we assume B–S-D, the rank is the order of
vanishing of L(E , s) at s = 1. (∗Computing values requires≈

√
NE Fourier coefficients, and

issues certifying zeroes numerically.)

Algebraically? Yes∗, if we assume X(E/Q)[p∞] is finite, for
some prime p. (∗Computing the rank may involve computing models for high p-descendants.)

Recall:

0 −→ E(Q)/2E(Q) −→ Sel2(E/Q) −→X(E/Q)[2] −→ 0,

where Seln(E/Q) is a finite, computable, cohomological group
defined by finitely many local conditions.



Is the Rank Computable?

Analytically? Yes∗, if we assume B–S-D, the rank is the order of
vanishing of L(E , s) at s = 1. (∗Computing values requires≈

√
NE Fourier coefficients, and

issues certifying zeroes numerically.)

Algebraically? Yes∗, if we assume X(E/Q)[p∞] is finite, for
some prime p. (∗Computing the rank may involve computing models for high p-descendants.)

Recall:

0 −→ E(Q)/4E(Q) −→ Sel4(E/Q) −→X(E/Q)[4] −→ 0,

where Seln(E/Q) is a finite, computable, cohomological group
defined by finitely many local conditions.



Is the Rank Computable?

Analytically? Yes∗, if we assume B–S-D, the rank is the order of
vanishing of L(E , s) at s = 1. (∗Computing values requires≈

√
NE Fourier coefficients, and

issues certifying zeroes numerically.)

Algebraically? Yes∗, if we assume X(E/Q)[p∞] is finite, for
some prime p. (∗Computing the rank may involve computing models for high p-descendants.)

Recall:

0 −→ E(Q)/8E(Q) −→ Sel8(E/Q) −→X(E/Q)[8] −→ 0,

where Seln(E/Q) is a finite, computable, cohomological group
defined by finitely many local conditions.



Is the Rank Computable?

Analytically? Yes∗, if we assume B–S-D, the rank is the order of
vanishing of L(E , s) at s = 1. (∗Computing values requires≈

√
NE Fourier coefficients, and

issues certifying zeroes numerically.)

Algebraically? Yes∗, if we assume X(E/Q)[p∞] is finite, for
some prime p. (∗Computing the rank may involve computing models for high p-descendants.)

Recall:

0 −→ E(Q)/2mE(Q) −→ Sel2m (E/Q) −→X(E/Q)[2m] −→ 0,

where Seln(E/Q) is a finite, computable, cohomological group
defined by finitely many local conditions.



Is the Rank Computable?

Analytically? Yes∗, if we assume B–S-D, the rank is the order of
vanishing of L(E , s) at s = 1. (∗Computing values requires≈

√
NE Fourier coefficients, and

issues certifying zeroes numerically.)

Algebraically? Yes∗, if we assume X(E/Q)[p∞] is finite, for
some prime p. (∗Computing the rank may involve computing models for high p-descendants.)

Recall:

0 −→ E(Q)/2mE(Q) −→ Sel2m (E/Q) −→X(E/Q)[2∞] −→ 0,

where Seln(E/Q) is a finite, computable, cohomological group
defined by finitely many local conditions.



Is the Rank Computable?

Analytically? Yes∗, if we assume B–S-D, the rank is the order of
vanishing of L(E , s) at s = 1. (∗Computing values requires≈

√
NE Fourier coefficients, and

issues certifying zeroes numerically.)

Algebraically? Yes∗, if we assume X(E/Q)[p∞] is finite, for
some prime p. (∗Computing the rank may involve computing models for high p-descendants.)

Recall:

0 −→ E(Q)/2m+1E(Q) −→ Sel2m+1(E/Q) −→X(E/Q)[2∞] −→ 0,

where Seln(E/Q) is a finite, computable, cohomological group
defined by finitely many local conditions.



2-Descent



2-Descent: Example
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2-Descent: Example



Rank Statistics?

The average is the simplest statistic... so what is the “average rank”?

We will consider elliptic curves (up to isomorphism over Q) given
by a minimal short Weierstrass model over Z, that is,

E = {E/Q : y2 = x3 + Ax + B, with A,B ∈ Z},

with 4A3 + 27B2 6= 0, and such that if d4|A and d6|B, then d = ±1.
The naive height of E ∈ E is defined by

ht(E) = max{4|A|3,27B2}.

E(X ) = {E ∈ E : ht(E) ≤ X}, all elliptic curves up to height X .
πE(X ) = #E(X ).



Rank Statistics?

The average is the simplest statistic... so what is the average rank?

E = {E/Q : y2 = x3 + Ax + B, with A,B ∈ Z}.
ht(E) = max{4|A|3,27B2}.
E(X ) = {E ∈ E : ht(E) ≤ X}.
πE(X ) = #E(X ).

We would like to understand the behavior of

AveRankE(X ) =

∑
E∈E(X) rank(E(Q))

πE(X )
.



Rank Statistics?
We would like to understand the behavior of

AveRankE(X ) =

∑
E∈E(X) rank(E(Q))

πE(X )
.

1 B–S-D together with the functional equation of L(E , s) implies that
the rank parity is dictated by the sign of the functional equation
(root number). ∗Progress on B–S-D/parity! (e.g., Kolyvagin, Nekovář, Dokchitser-Dokchitser, etc.).

2 Root numbers are believed to be nicely distributed (because they
are defined by local conditions). ∗Progress! (e.g., Helfgott, Rohrlich).

3 This leads to the Parity Principle: 50% of elliptic curves have odd
rank, and 50% of elliptic curves have even rank.

4 In addition, the Minimalist Principle proclaims that there are as few
rational points on elliptic curves as is possible, given the constraint
of the parity principle.



Rank Statistics?
We would like to understand the behavior of

AveRankE(X ) =

∑
E∈E(X) rank(E(Q))

πE(X )
.

The Parity Principle plus the Minimalist Principle put together:

The Minimalist Conjecture
Fix a global field k . Asymtotically, 50% of elliptic curves over k have
rank 0, and 50% have rank 1. Moreover, the average rank is 1/2, that is

AveRankE(X ) =

∑
E∈E(X) rank(E(k))

πE(X )
−→ 1

2
as X →∞.

Theorem (Bhargava, Dokchitser2, Shankar, Skinner, Urban, Zhang,...)

For k = Q, we have 0.261 < lim∗X→∞ AveRankE(X ) < 0.885.
∗The limit is not known to exist! The bounds are for the liminf and limsup.



Rank Statistics?
The Minimalist Conjecture was first proposed over families of quadratic
twists. For E : y2 = x3 + Ax + B, let Ed : y2 = x3 + Ad2x + Bd3.

Goldfeld’s Conjecture (∼ 79)
Let E/Q be an elliptic curve. Then:

lim
X→∞

∑
|d |<X rank(Ed (Q))

#{d : fund. disc. with |d | < X}
=

1
2
.

Progress!

Support from random matrix theory and work over function fields
(Keating-Snaith, Conrey-Keating-Rubinstein-Snaith, Katz-Sarnak),
including heuristics on twists of even parity and positive rank.

Smith has proved that B–S-D implies Goldfeld in many cases.

Kriz has shown Goldfeld holds for the congruent number family.



Data



A Brief History of Elliptic Curve Data

Birch–Kuyk–Swinnerton-Dyer, Antwerp 1972’s “Numerical Tables
on Elliptic Curves,” list of all curves with conductor NE ≤ 200.

Brumer–McGuinness, 1990, found 311,219 curves of prime
conductor NE ≤ 108.

Cremona, 1997, found all 782,493 curves up to conductor
NE ≤ 120,000.

Stein–Watkins, 2002, found all curves of prime conductor ≤ 1010,
and those with |∆E | ≤ 1012 and NE ≤ 108.

...



The Average Rank in the Stein–Watkins Database

Let
ESW(X ) = {E ∈ E : NE ≤ X and |∆E | ≤ 1012},
πE,SW(X ) = #ESW(X ), and

AveRankE,SW(X ) =

∑
E∈ESW(X) rank(E(Q))

πE,SW(X )
.

Then...



The Average Rank in the Stein–Watkins Database

S–W average rank as a function of the conductor.
(Note: last value is 0.8664 . . .).

Source: “The Average Rank of Elliptic Curves,” Bhargava, 2011.



The Average Rank in the Stein–Watkins Database

S–W average rank as a function of log of the conductor.
Source: “Average ranks of elliptic curves: tension between data and conjecture,” Bektemirov, Mazur, Stein, Watkins, 2007.



A Brief History of Elliptic Curve Data
Birch–Kuyk–Swinnerton-Dyer, Antwerp 1972’s “Numerical Tables
on Elliptic Curves,” (“presumably complete”) list of all curves with
conductor NE ≤ 200.

Brumer–McGuinness, 1990, found 311,219 curves of prime
conductor NE ≤ 108.

Cremona, 1997, found all 782,493 curves up to conductor
NE ≤ 120,000. As of 2019, the database contains all 3,064,705
curves of conductor NE ≤ 500,000. Data also available at LMFDB.

Stein–Watkins, 2002, found all curves of prime conductor ≤ 1010,
and those with |∆E | ≤ 1012 and NE ≤ 108.

The BHKSSW database (Balakrishnan, Ho, Kaplan, Spicer, Stein,
Weigandt), 2016, covers all 238,764,310 elliptic curves up to naive
height 26,998,673,868 ≈ 2.7 · 1010.

I Also six large-height data sets of 100,000 curves with height ∼ 10k

for k = 11,12,13,14,15,16.



The Average Rank in the BHKSSW Database

Average rank as a function of the naive height.

Notes: the local max (≈ 0.90838 . . .) happens at X ≈ 7.8 · 108. At
X = 2.7 · 1010 the average rank is 0.90197580 . . ..



The Average Rank in the BHKSSW Database

Average rank as a function of the naive height.

Notes: the local max (≈ 0.90838 . . .) happens at X ≈ 7.8 · 108. At
X = 2.7 · 1010 the average rank is 0.90197580 . . ..



The Average Rank in the BHKSSW Database

Average rank as a function of the naive height.

Notes: the local max (≈ 0.90838 . . .) happens at X ≈ 7.8 · 108. At
X = 2.7 · 1010 the average rank is 0.90197580 . . ..



Signal Analysis: Contributions by Rank

Average rank as a function of the naive height (blue).

Contributions by rank (color): rank 1 (red), rank 2 (green), rank 3
(orange), rank 4 (black), and rank 5 (grey).



Signal Analysis: Contributions by Rank

Contribution to the average from rank 1 curves.

AveRank rank 1(X ) =
1

πE(X )
·

∑
E∈E(X)

rank(E(Q))=1

1.



Signal Analysis: Contributions by Rank

Contribution to the average from rank 2 curves.

AveRank rank 2(X ) =
1

πE(X )
·

∑
E∈E(X)

rank(E(Q))=2

2.



Signal Analysis: Contributions by Rank

Contribution to the average from rank 3 curves.

AveRank rank 3(X ) =
1

πE(X )
·

∑
E∈E(X)

rank(E(Q))=3

3.



Signal Analysis: Contributions by Rank

Contribution to the average from rank 4 curves.

AveRank rank 4(X ) =
1

πE(X )
·

∑
E∈E(X)

rank(E(Q))=4

4.



Signal Analysis: Contributions by Rank

Contribution to the average from rank 5 curves.

AveRank rank 5(X ) =
1

πE(X )
·

∑
E∈E(X)

rank(E(Q))=5

5.



Goals

Question
If the Minimalist Conjecture holds, at what naive height X should we
expect AveRankE(X ) ≈ 0.5?

GOAL 1: A (probabilistic) model that explains the graph of the average
rank up to height X .

GOAL 2: A model that explains the proportion of elliptic curves of each
rank r ≥ 0 up to height X .

In 2016, we proposed a probabilistic (Cramér-like) model for ranks.



Probabilistic Model: Average Rank Predictions

Values of AveRankE(X ) from the BHKSSW database (blue dots), and
the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank Predictions (zoom in)

Values of AveRankE(X ) from the BHKSSW database (blue dots), and
the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank 1 Predictions

Values of AveRank rank 1(X ) from the BHKSSW database (blue dots),
and the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank 2 Predictions

Values of AveRank rank 2(X ) from the BHKSSW database (blue dots),
and the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank 3 Predictions

Values of AveRank rank 3(X ) from the BHKSSW database (blue dots),
and the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank 4 Predictions

Values of AveRank rank 4(X ) from the BHKSSW database (blue dots),
and the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank 5 Predictions

Values of AveRank rank 5(X ) from the BHKSSW database (blue dots),
and the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank (zoom in)

Values of AveRankE(X ) from the BHKSSW database (blue dots), and
the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank (zoom out!)

Values of AveRankE(X ) from the BHKSSW database (blue dots), and
the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank (zoom out!!)

Values of AveRankE(X ) from the BHKSSW database (blue dots), and
the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank (zoom out!!)

Values of AveRankE(X ) from the BHKSSW database (blue dots), and
the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank (zoom OUT!)

Values of AveRankE(X ) from the BHKSSW database (blue dots), and
the approximations predicted by our model (in red).



X AveRank(X ) X AveRank(X )

1010 0.905665 1050 0.548880

1015 0.846828 1075 0.512531

1020 0.766868 10100 0.503256

1030 0.649901 10150 0.500215

1040 0.585108 10200 0.500006

Conjectural approximate values of AveRankE(X ) obtained using our
model.



Probabilistic Model: Rank Predictions
Let Rr (X ) = {E ∈ E(X ) : rank(E(Q)) = r}, πRr (X ) = #Rr (X ).

r = 1 2 3 4 5

πRr (2.7 · 1010) 113128929 40949289 6259157 380519 6481

Approx. value 113133971 41005107 6273138 381272 6438

|Error| 5042 55818 13981 753 43

Error % 0.00445 0.13631 0.22336 0.19788 0.66347

≈ sr · X 1/2 68848.72 45942.96 13112.47 1749.97 111.73

Table: Values of πRr (2.7 · 1010) from the BHKSWW database, the
approximate values (rounded to the closest integer) given by the model, the
absolute error, the error as a percentage of the actual value of πRr , and the
size of the predicted error sr · (2.7 · 1010)1/2.



The Probabilistic Model



Cramér’s random model of the prime numbers

The prime number theorem suggests that an integer X ≥ 3 is prime
with probability 1/ log X .

Cramér’s model (1936): Let B3,B4, . . . ,BX , . . . be bins with red and
white balls, one for each integer X ≥ 3.

1 The chance of drawing a red ball from bin BX is 1/ log X .
2 Draw one ball from each bin, and let qn ∈ N be the index of the bin

where we got the n-th red ball.
3 Let C be the space of all sequences {qn}n≥1.
4 Then, we predict properties of prime numbers from the asymptotic

statistics of C.



How does the probabilistic model work?
Recall the short exact sequence

0→ E(Q)/2E(Q)→ Sel2(E/Q)→X(E/Q)[2]→ 0.

We define the (2-)Selmer rank (or selrank) of E(Q) by

selrank(E(Q)) = dimF2 Sel2(E/Q)− dimF2 E(Q)[2].

Then,

rank(E(Q)) ≤ selrank(E(Q)).

We model the distribution of M–W ranks for a fixed selrank = n and a
fixed naive height X .

For each n ≥ 0, we define EX = {E ∈ E : ht(E) = X} and

SX
n = {E ∈ EX : selrank(E(Q)) = n}.



Model



Model



Model



Model



Model



Model



Model



Model
For example,

If n = 4, (the expected value of) the number of elliptic curves of
Selmer rank 4, and Mordell–Weil ranks 0, 2, and 4 are given
respectively by

(X,X,X,X) ⇒ #EX · θ4(X ) · (1− ρ4(X ))2,

(X,X,MW ,MW ) ⇒ #EX · θ4(X ) · 2ρ4(X )(1− ρ4(X )),

(MW ,MW ,MW ,MW ) ⇒ #EX · θ4(X ) · ρ4(X )2.

If n = 5, the number of elliptic curves of Selmer rank 5, and
Mordell–Weil ranks 1, 3, and 5 are given respectively by

(X,X,X,X,MW ) ⇒ #EX · θ5(X ) · (1− ρ5(X ))2,

(X,X,MW ,MW ,MW ) ⇒ #EX · θ5(X ) · 2ρ5(X )(1− ρ5(X )), and

(MW ,MW ,MW ,MW ,MW ) ⇒ #EX · θ5(X ) · ρ5(X )2.

∗Warning! Events are not independent! A covariance factor needs to be calculated to correctly compute the expected values.



Figure: Distribution of Mordell–Weil ranks (in blue) among elliptic curves in
E([2 · 1010,2.025 · 1010]) by Selmer rank n = 2,3,4,5, and compared to the
predicted M–W ranks (in green) that we would expect from the models.



Model

n πSn (I) M–W ranks observed in Sn M–W ranks predicted

2 509,845 [180128,0,329717,0,0,0] [181246.58,0,328598.41,0,0,0]

3 111,926 [0,60149,0,51777,0,0] [0,60455.09,0,51470.90,0,0]

4 8399 [803,0,4321,0,3275,0] [836.68,0,4256.52,0,3305.78,0]

5 158 [0,22,0,76,0,60] [0,21.24,0,73.38,0,63.36]

Mordell–Weil ranks observed and the ranks predicted by the models in the
height interval I = [2 · 1010,2.025 · 1010].



Test Elliptic Curves

A test elliptic curve is a triple E = (X ,n,Sel2) consisting of:
a positive integer X ≥ 1, the height of E , also denoted X = ht(E),
a non-negative integer n, the Selmer rank of E , also denoted
n = selrank(E), and
a vector Sel2(E) = (sE ,1, sE ,2, . . . , sE ,bn/2c) of bn/2c test Selmer
elements. Each Selmer element is a symbol, which is either a
MW, or a X symbol.

We define:
Ẽ , the set of all test elliptic curves,
ẼX , test elliptic curves with height X ,
S̃X

n , test elliptic curves with height X and Selmer rank n,
rank(E) = (n mod 2) + 2 ·#{MW elements in Sel2(E)}.



Test Elliptic Curves

To each ordinary elliptic curve we can attach a test elliptic curve.

Example

Let E/Q be the elliptic curve y2 = x3 + 2993x .
Height is X = 4 · 29933 = 107245762628.
A 2-descent shows Sel2(E/Q) ∼= (Z/2Z)5. Since
E(Q)tors ∼= Z/2Z, it follows that selrank(E) = 4.
A 4-descent shows that E(Q) ∼= Z/2Z⊕ Z2, and
X(E/Q)[2] ∼= (Z/2Z)2.

Hence, this elliptic curve would be represented as a test elliptic curve
by the triple

(107245762628,4, (MW,X)).



Pieces of the Probabilistic Model

To put our probabilistic model together we need estimates of

#EX : the number of elliptic curves of height X .

#SX
n : the number of elliptic curves of height X , selrank n.

θn(X ) = #SX
n /#EX : the proportion of ell. curves of height X and

selrank n, among all curves of height X (when #EX 6= 0).

ρn(X ) : the probability that a non-E(Q)tors Selmer element coming
from a selrank-n elliptic curve of height X is a MW element.



#EX

Theorem (Brumer)
The number of elliptic curves of height up to X satisfies∣∣∣∣∣πE(X )− 24/3X 5/6

33/2ζ(10)

∣∣∣∣∣ ≤ 2X 1/2

33/2ζ(6)
+ O(X 1/3),

for any ε > 0. In particular, πE(X ) = κX 5/6 + O(X 1/2) where the
constant κ = 24/3 · (ζ(10) · 33/2)−1 ≈ 0.484462004349 . . .

Thus (on average), we have

πE((X ,X + N]) ≈ 5κ
6

∫ X+N

X

1
H1/6 dH + O

(
N

X 1/2

)
.



Figure: Values of πE(X ) from the BHKSSW database (blue dots), and the
function 0.4844620043 · X 5/6 (in red).



#SX
n : Elliptic Curves of Selmer Rank n, Height X

Following work on quadratic twists by Heath-Brown, Monsky, Kane,
and Swinnerton-Dyer:

Conjecture (Poonen–Rains, for p = 2)

sn = Prob(selrank(E(Q)) = n) = lim
X→∞

πSn (X )

πE(X )

=

∏
j≥0

1
1 + 2−j

 ·( n∏
k=1

2
2k − 1

)
.

s0 s1 s2 s3 s4 s5

0.209711 0.419422 0.279614 0.079889 0.010651 0.000687



Let S̃n be the subset of test elliptic curves of selrank n, and S̃X
n ⊆ ẼX .

In our model: The probability of picking a test curve in S̃X
n out of ẼX is

given by θn(X ), where θn(X ) is a function such that limX→∞ θn(X ) = sn.

Hypothesis A (HA)

Let n ≥ 0, let X ≥ 0, and let YSel,n,X : ẼX → {0,1} be the function that
takes values

YSel,n,X (E) =

{
1 if selrank(E) = n,
0 otherwise.

Then, YSel,n,X (E) is a random variable that follows a Bernoulli
distribution with probability θn(X ), such that limX→∞ θn(X ) = sn.



Proportion of Curves of Each Selrank at Each Height

Figure: Graphs of the ratios θn(X ) for n = 1 (blue), 2 (green), 3 (red), 4 (gray),
5 (purple), based on the BHKSSW data.



Refined Hypothesis A (HA)

Let n ≥ 0, let X ≥ 0, and let YSel,n,X : ẼX → {0,1} be the function that takes
values

YSel,n,X (E) =

{
1 if selrank(E) = n,
0 otherwise.

Then, YSel,n,X (E) is a random variable that follows a Bernoulli distribution with
probability θn(X ), where

θn(X ) =
sn

1 + CnX−en
,

for some constants Cn and en.

n 1 2 3 4 5

Cn −0.401169 1.411086 11.182227 179.717499 95474.850980

en 0.085402 0.123486 0.140615 0.203396 0.399370

Table: The coefficients of the best-fit regression θn(X ) ≈ sn/(1 + CnX−en ).



Proportion of Curves of Each Selrank and Model

Figure: Graphs of the ratios θn(X ) for n = 1 (blue), 2 (green), 3 (red), and the
corresponding models of the form sn/(1 + CnX−en ).



Proportion of Curves of Each Selrank and Model

Figure: Graphs of the ratios θn(X ) for n = 4 (gray), 5 (purple), and the
corresponding models of the form sn/(1 + CnX−en ), in red.



Noise in the Distribution of Selranks

Corollary

Assume HA, and let E = {E1, . . . ,Em} ⊆ ẼX be a sample of m test elliptic
curves with height X chosen independently. Then, the number of curves in E
of selrank n follows a binomial distribution B(m, θn(X )). In particular

E
(

#(E ∩ S̃n)/#E
)

= θn(X )

with standard error
√

1
mθn(X )(1− θn(X )).

Note: for large values of m, the binomial is well approximated by a gaussian
distribution.



Figure: Histogram of the distribution of 10000 experiments of picking 100
elliptic curves of height ≈ 9 · 109, at random, and counting the number of
Selmer ranks equal to n = 1,2,3,4, and the normal dist. predicted by HA.



Proposition

Assume HA. Then, the expected value of πS̃n
(X ) is given by

E(πS̃n
(X )) =

5κ
6

∫ X

1

θn(H)

H1/6 dH + O
(

X 1/2
)
,

where κ = 24/3 · (ζ(10) · 33/2)−1. If in addition we assume the refined version
of HA, then

E(πS̃n
(X )) =

5κsn

6

∫ X

1

1
H1/6(1 + CnH−en )

dH + O
(

X 1/2
)
.



Figure: Values of πSn (X ) using the BHKSSW database are represented by
dots for n = 1 (blue), 2 (green), 3 (red), and the corresponding predictions
from HA (curves in red, except for n = 3 in blue).



ρn(X ) : Height X , Selrank n, MW vs X

In our model: The probability that a test Selmer element sE ∈ Sel2(E), for
E ∈ S̃X , is a MW element, is given by ρn(X ), where ρn(X ) is a function such
that limX→∞ ρn(X ) = 0.

Hypothesis B (HB)

For each 1 ≤ i ≤ bn/2c, let Yi : S̃X
n → {0,1} be the function that takes values

Yi (E) =

{
1 if sE,i is a MW element,
0 otherwise,

where Sel2(E) = (sE,1, . . . , sE,bn/2c). Then, Yi is a random variable that
follows a Bernoulli distribution with probability ρn(X ), and lim

X→∞
ρn(X ) = 0.

∗There is an additional “equicorrelation” condition. Warning! The variables Yi and Yj are not necessarily independent.



Recall: rank(E) = (n mod 2) + 2 ·#{MW elements in Sel2(E)}.

Corollary

Let E1, . . . ,Em be distinct (non-isomorphic) test elliptic curves chosen
independently of Selmer rank n and heights X1, . . . ,Xm. Then, the expected
value of the average rank is

E

(
1
m

m∑
i=1

rank(Ei )

)
= (n mod 2) +

2bn/2c
m

m∑
i=1

ρn(Xi )

with standard error given by

1
m

√√√√bn/2c m∑
i=1

(ρn(Xi )(1− ρn(Xi )) + (bn/2c − 1)Cn
1,1(Xi )),

where Cn
1,1(Xi ) is a certain covariance factor.



ρn(X ) : Height X , Selrank n, MW vs X

Figure: Graphs of the ratios ρn(X ) for n = 2 (green), 3 (red), 4 (gray stars), 5
(purple), based on the BHKSSW data.



Refined Hypothesis B

Hypothesis HB holds and, for every n ≥ 2, there are constants Dn and fn such
that

ρn(X ) =
Dn

X fn
.

n 2 3 4 5

Dn 1.12465347 1.30937016 1.07928016 1.79161787

fn 0.02344245 0.04412662 0.02158211 0.04383626

Table: The coefficients of the best-fit linear regression ρn(X ) ≈ Dn/X fn .



ρn(X ) : Height X , Selrank n, MW vs X

Figure: Graphs of the ratios ρn(X ) for n = 2 (green), 3 (red), 4 (gray stars), 5
(purple), and the corresponding models of the form Dn/X fn (in blue for
n = 2,3 and red for n = 4,5).



Here we consider the average rank contributions from the subsets of elliptic
curves of each Selmer rank n ≥ 1:

AveRankSn (X ) =

∑
E∈Sn(X) rank(E(Q))

πE(X )
.

Theorem

Assume HA and HB, and let n ≥ 1 be fixed. Then, the expected value of
AveRankS̃n

(X ) is given by

5κ
6πE(X )

·
∫ X

0

θn(H)

H1/6

(
(n mod 2) + 2

⌊n
2

⌋
ρn(H)

)
dH + O(X−1/3).

Moreover, the error in approximating AveRankS̃n
(X ) by its expected value is

approximately given by√
5κbn/2c
6πE(X )2

∫ X

0

θn(H)

H1/6 (ρn(H)(1− ρn(H)) + (bn/2c − 1)Cn
1,1(H)) dH + O(X−7/6)



Corollary

If we assume the refined versions of HA and HB, then there are constants τn
such that the expected value of AveRankẼ(X ) is given by

E

( ∞∑
n=1

AveRankS̃n
(X )

)
=

∞∑
n=1

sn·

(
τn

X 5/6 +
∞∑

m=0

(
(n mod 2)(−Cn)m

1− (6/5)men
+ X−fn 2

⌊ n
2

⌋
Dn(−Cn)m

1− (6/5)(fn + men)

)
X−men

)

+O(X−1/3) with standard error ≤
∑∞

n=2

√
bn/2c · (bn/2c − 3/4) · sn√

κX 5/12 .

In particular,

lim
X→∞

AveRankẼ(X ) =
∞∑

n=1

sn · (n mod 2) =
∞∑

k=0

s2k+1 =
1
2
,

in the sense that the expected value goes to 1/2 with standard error going to
0 as X →∞.



Figure: Values of AveRankE(X ) from the BHKSSW database (blue dots), and
numerical integration of the approximation given in Corollary (in red).

According to the database, we have AveRankE(2.7 · 1010) = 0.90197580
while our approximation gives 0.90244770. Thus, the absolute error is
0.00047189 (note (2.7 · 1010)−1/3 ≈ 0.0003), which is a 0.0523% of the value.



X
∑5

n=1 AveRankSn (X ) X
∑5

n=1 AveRankSn (X )

1010 0.905665 1050 0.548880

1015 0.846828 1075 0.512531

1020 0.766868 10100 0.503256

1030 0.649901 10150 0.500215

1040 0.585108 10200 0.500006

Table: Conjectural approximate values of
∑5

n=1 AveRankSn (X ) obtained using
numerical integration of the formulas. The integration was done with
SageMath, which reports an absolute error in the numerical integration less
than 4 · 10−7 in all cases. The limit should be s1 + s3 + s5 = 0.49999965 . . ..
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