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Goal

Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.

E(Q) = E(Q)ors ® zRere

The torsion subgroups over Q
are the “poster child” of what an
arithmetic group should be like.
Torsion subgroups are:

@ Computable

@ Classified

@ Parametrized in families
@ Statistically understood
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Donald Anderson, first poster child.



Goal

Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.
E(@) = E(@)tors @ ZRE/Q

o @ Computable

; » Nagell-Lutz theorem.
?f ‘ ‘ ‘ » Division polynomials.

ThecurveE:y2+xy+y:x3+x2—4x+5(42‘a5)

has torsion subgroup ((—1, 3)) =~ Z/8Z.



Goal

Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.
E(Q) = E(Q)tors D ZRE/Q

9 @ Classified
5 » Mazur’s theorem:

P : i g Z/MZ, or
E ~ ’
s (Qrors {Z/2Z & 7/2NZ
” where 1 <M <10or M =12,
B and 1 < N <4,

ThecurveE:y2+xy+y: X3+ X2 — 4x +5(42.a5)
has torsion subgroup ((—1, 3)) = Z/8Z.



Goal

Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.

E(Q) = E(Q)tors @ 7Fer

" @ Parametrized in families
5 » Kubert et al.:

e.g.,
5 elliptic curves with Z/8Z tors.:

E: y*+(1—a)xy—by? = x3—bx?

with b= (2t — 1)(t — 1) and
a=>b/t,forany t #0,1/2,1.

Thecurve E: y2 + xy + y = x3 + x2 — 4x + 5 (42.a5)
has torsion subgroup ((—1,3)) = Z/8Z.



Goal

Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.

E(Q) = E(Q)tors @ 7Fer

" @ Parametrized in families
5 » Kubert et al.:

e.g.,
9 elliptic curves with Z/8Z tors.:

E: y*+(1—a)xy—by? = x3—bx?

with b= (2t — 1)(t — 1) and
a=>b/t,forany t #0,1/2,1.
The curve E/ : y? + Ixy—2y= x3 — %xz (=g 42.a5)

has torsion subgroup ((—1, 3)) =~ Z/8Z.



Goal

Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.
E(@) = E(Q)tors D ZRE/Q

@ Statistically understood
» Harron—-Snowden (2013):

/ Let Ng(X) be the number of
J—— elliptic curves E/Q with (naive)

z : ; ; height < X and E(Q)ors = G.
5 Then, there are positive
constants Cy, Gy, d(G) such
that

CiX¥@ < Ng(X) < CoX99,

Ve B 2 X = X3 X2 — 4x .a —
Theed r?aftor};io:sgb;gup ((—1+, 3)) %4Z/+82.(42 K Eg’ d({O}) - 5/6 and
d(z/8Z) = 1/12.

* Also see recent similar work by Boggess—Sankar
counting elliptic curves with N-isogenies!



Goal
Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.

E(Q) = E(Q)tors ® Zer0

20

107 How about the rank?

- Computable?

- Classified?

- Parametrized in families?
- Statistically understood?

The curve E : y? = x3 — 4x + 4 (88.a1) has trivial torsion
subgroup and rank 1, with E(Q) = ((2, —2)) =~ Z.



Goal

Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.
E(Q) = E(Q)tors ® Zer0

20

10 How about the rank?

The curve E : y? = x3 — 4x + 4 (88.a1) has trivial torsion
subgroup and rank 1, with E(Q) = ((2, —2)) =~ Z.



Is the Rank Computable?

@ Analytically? Yes*, if we assume B—S-D, the rank is the order of
VaniShing of L(E7 S) ats=1. (* Computing values requires = /Ng Fourier coefficients, and

issues certifying zeroes numerically.)

@ Algebraically? Yes*, if we assume III(E/Q)[p] is finite, for

some prime - (* Computing the rank may involve computing models for high p-descendants.)

Recall:
0 — E(Q)/2E(Q) — Selx(E/Q) — II(E/Q)[2] — O,

where Sel,(E/Q) is a finite, computable, cohomological group
defined by finitely many local conditions.



Is the Rank Computable?

@ Analytically? Yes*, if we assume B—S-D, the rank is the order of
VaniShing of L(E7 S) ats=1. (* Computing values requires = /Ng Fourier coefficients, and

issues certifying zeroes numerically.)

@ Algebraically? Yes*, if we assume III(E/Q)[p] is finite, for

some prime - (* Computing the rank may involve computing models for high p-descendants.)

Recall:
0 — E(Q)/4E(Q) — Sels(E/Q) — LI(E/Q)[4] — O,

where Sel,(E/Q) is a finite, computable, cohomological group
defined by finitely many local conditions.



Is the Rank Computable?

@ Analytically? Yes*, if we assume B—S-D, the rank is the order of
VaniShing of L(E7 S) ats=1. (* Computing values requires = /Ng Fourier coefficients, and

issues certifying zeroes numerically.)

@ Algebraically? Yes*, if we assume III(E/Q)[p] is finite, for

some prime - (* Computing the rank may involve computing models for high p-descendants.)

Recall:
0 — E(Q)/8E(Q) — Selg(E/Q) — II(E/Q)[8] — O,

where Sel,(E/Q) is a finite, computable, cohomological group
defined by finitely many local conditions.



Is the Rank Computable?

@ Analytically? Yes*, if we assume B—S-D, the rank is the order of
VaniShing of L(E7 S) ats=1. (* Computing values requires = /Ng Fourier coefficients, and

issues certifying zeroes numerically.)

@ Algebraically? Yes*, if we assume III(E/Q)[p] is finite, for

some prime - (* Computing the rank may involve computing models for high p-descendants.)

Recall:
0 — E(Q)/2"E(Q) — Selom(E/Q) — II(E/Q)[2™] — O,

where Sel,(E/Q) is a finite, computable, cohomological group
defined by finitely many local conditions.



Is the Rank Computable?

@ Analytically? Yes*, if we assume B—S-D, the rank is the order of
VaniShing of L(E7 S) ats=1. (* Computing values requires = /Ng Fourier coefficients, and

issues certifying zeroes numerically.)

@ Algebraically? Yes*, if we assume III(E/Q)[p] is finite, for

some prime - (* Computing the rank may involve computing models for high p-descendants.)

Recall:
0 — E(Q)/2"E(Q) — Selom(E/Q) — HI(E/Q)[2°] — O,

where Sel,(E/Q) is a finite, computable, cohomological group
defined by finitely many local conditions.



Is the Rank Computable?

@ Analytically? Yes*, if we assume B—S-D, the rank is the order of
VaniShing of L(E7 S) ats=1. (* Computing values requires = /Ng Fourier coefficients, and

issues certifying zeroes numerically.)

@ Algebraically? Yes*, if we assume III(E/Q)[p] is finite, for

some prime - (* Computing the rank may involve computing models for high p-descendants.)

Recall:
0 — E(Q)/2™"E(Q) — Selym1(E/Q) — TII(E/Q)[2™] — O,

where Sel,(E/Q) is a finite, computable, cohomological group
defined by finitely many local conditions.
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Rank Statistics?

The average is the simplest statistic... so what is the “average rank”?
@ We will consider elliptic curves (up to isomorphism over Q) given
by a minimal short Weierstrass model over Z, that is,
E={E/Q:y?=x3+Ax+ B, with A BeZ},

with 4A3% 42782 + 0, and such that if d*|A and d®|B, then d = +1.
@ The naive height of E € £ is defined by

ht(E) = max{4|A|®,27B%}.

@ £(X)={E €& :ht(E) < X}, all elliptic curves up to height X.
@ me(X) = #E(X).



Rank Statistics?

The average is the simplest statistic... so what is the average rank?

0 £E={E/Q:y?=x+Ax+ B, with A BcZ}.
@ ht(E) = max{4|AJ]3,27B?}.

o £(X)={E & h(E) < X).

o me(X) = #&(X).

We would like to understand the behavior of

dEee(x rank(E(Q))‘

AveRankg(X) = X
e




Rank Statistics?
We would like to understand the behavior of

> eee(x) rank(E(Q))
7rg(X) '

AveRankg(X) =

@ B-S-D together with the functional equation of L(E, s) implies that
the rank parity is dictated by the sign of the functional equation
(rOO'[ number). *Progress on B-S-D/parity! (e.g., Kolyvagin, NekovaF, Dokchitser-Dokchitser, etc.).

© Root numbers are believed to be nicely distributed (because they
are defined by local conditions). *progress! (e.g., Helfgott, Rohriich).

@ This leads to the Parity Principle: 50% of elliptic curves have odd
rank, and 50% of elliptic curves have even rank.

© In addition, the Minimalist Principle proclaims that there are as few
rational points on elliptic curves as is possible, given the constraint
of the parity principle.



Rank Statistics?

We would like to understand the behavior of

AveRanks(X) = ZEee<x73;?;l)<(E(@)>

The Parity Principle plus the Minimalist Principle put together:

The Minimalist Conjecture

Fix a global field k. Asymtotically, 50% of elliptic curves over k have
rank 0, and 50% have rank 1. Moreover, the average rank is 1/2, that is

rank(E(k
AveRankg(X) = LEce) (X)( () — % as X — oo.
Te

Theorem (Bhargava, Dokchitser?, Shankar, Skinner, Urban, Zhang,...)
For k = Q, we have 0.261 < lim}_, . AveRankg(X) < 0.885.

*The limit is not known to exist! The bounds are for the liminf and limsup.




Rank Statistics?

The Minimalist Conjecture was first proposed over families of quadratic
twists. For E : y2 = x3 + Ax + B, let E9 : y? = x® + Ad?x + BdC.

Goldfeld’s Conjecture (~ 79)
Let E/Q be an elliptic curve. Then:

i > jaj<x rank(EY(Q)) 1
X—oo #{d : fund. disc. with |d| < X} 2’

Progress!

@ Support from random matrix theory and work over function fields
(Keating-Snaith, Conrey-Keating-Rubinstein-Snaith, Katz-Sarnak),
including heuristics on twists of even parity and positive rank.

@ Smith has proved that B-S-D implies Goldfeld in many cases.

@ Kriz has shown Goldfeld holds for the congruent number family.
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A Brief History of Elliptic Curve Data

@ Birch—Kuyk—Swinnerton-Dyer, Antwerp 1972’s “Numerical Tables
on Elliptic Curves,” list of all curves with conductor Ng < 200.

@ Brumer—McGuinness, 1990, found 311,219 curves of prime
conductor Ng < 108.

@ Cremona, 1997, found all 782,493 curves up to conductor
Nge < 120,000.

@ Stein—Watkins, 2002, found all curves of prime conductor < 1019,
and those with |Ag| < 102 and Ng < 108,



The Average Rank in the Stein—Watkins Database

Let
o Eqw(X)={E € &: Ne < X and |Ag| < 102},
@ 7 sw(X) = #Ew(X), and
 DEegsu(x) ANK(E(Q))

AveRankg,SW(X) - e sw(X)

Then...



The Average Rank in the Stein—Watkins Database

0.87 i —
]
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S—-W average rank as a function of the conductor.
(Note: last value is 0.8664 . . .).

Source: “The Average Rank of Elliptic Curves,” Bhargava, 2011.



The Average Rank in the Stein—Watkins Database
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S—W average rank as a function of log of the conductor.

Source: “Average ranks of elliptic curves: tension between data and conjecture,” Bektemirov, Mazur, Stein, Watkins, 2007.



A Brief History of Elliptic Curve Data

@ Birch—Kuyk—Swinnerton-Dyer, Antwerp 1972’s “Numerical Tables
on Elliptic Curves,” (“presumably complete”) list of all curves with
conductor Ng < 200.

@ Brumer—McGuinness, 1990, found 311,219 curves of prime
conductor Ng < 108.

@ Cremona, 1997, found all 782,493 curves up to conductor
Ng < 120,000. As of 2019, the database contains all 3,064,705
curves of conductor Ng < 500,000. Data also available at LMFDB.

@ Stein—-Watkins, 2002, found all curves of prime conductor < 1079,
and those with |Ag| < 102 and Ng < 108.

@ The BHKSSW database (Balakrishnan, Ho, Kaplan, Spicer, Stein,
Weigandt), 2016, covers all 238,764,310 elliptic curves up to naive
height 26,998,673,868 ~ 2.7 - 10'°,

» Also six large-height data sets of 100,000 curves with height ~ 10%
for k =11,12,13,14,15,16.



The Average Rank in the BHKSSW Database
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Average rank as a function of the naive height.
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X =2.7-10'° the average rank is 0.90197580. . ..



The Average Rank in the BHKSSW Database
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The Average Rank in the BHKSSW Database
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Signal Analysis: Contributions by Rank
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Average rank as a function of the naive height (blue).

Contributions by rank (color): rank 1 (red), rank 2 (green), rank 3
(orange), rank 4 (black), and rank 5 (grey).



Signal Analysis: Contributions by Rank
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Signal Analysis: Contributions by Rank
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Signal Analysis: Contributions by Rank
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Contribution to the average from rank 3 curves.
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Signal Analysis: Contributions by Rank
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rank(E(Q))=4



Signal Analysis: Contributions by Rank
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Goals

Question

If the Minimalist Conjecture holds, at what naive height X should we
expect AveRankg(X) ~ 0.5?

A (probabilistic) model that explains the graph of the average
rank up to height X.

A model that explains the proportion of elliptic curves of each
rank r > 0 up to height X.

In 2016, we proposed a probabilistic (Cramér-like) model for ranks.



Probabilistic Model: Average Rank Predictions
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Values of AveRankg(X) from the BHKSSW database (blue dots), and
the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank Predictions (zoom in)
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Values of AveRankg(X) from the BHKSSW database (blue dots), and
the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank 1 Predictions
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Values of AveRank 4n 1(X) from the BHKSSW database (blue dots),
and the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank 2 Predictions
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Values of AveRank (4nk 2(X) from the BHKSSW database (blue dots),
and the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank 3 Predictions
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Values of AveRank 4nk 3(X) from the BHKSSW database (blue dots),
and the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank 4 Predictions
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Values of AveRank 4nk 4(X) from the BHKSSW database (blue dots),
and the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank 5 Predictions
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Values of AveRankK 4nk 5(X) from the BHKSSW database (blue dots),
and the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank (zoom in)
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Probabilistic Model: Ave. Rank (zoom out!)
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Values of AveRankg(X) from the BHKSSW database (blue dots), and
the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank (zoom out!!)
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Probabilistic Model: Ave. Rank (zoom out!!)
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Values of AveRankg(X) from the BHKSSW database (blue dots), and
the approximations predicted by our model (in red).



Probabilistic Model: Ave. Rank (zoom OUT!)
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Values of AveRankg(X) from the BHKSSW database (blue dots), and
the approximations predicted by our model (in red).



X | AveRank(X) X | AveRank(X)

10'9 | 0.905665 1050 0.548880
10'5 | 0.846828 107 0.512531
1020 | 0.766868 10190 | 0.503256
10%° | 0.649901 10'5° | 0.500215

100 | 0.585108 10290 | 0.500006

Conjectural approximate values of AveRankg(X) obtained using our
model.



Probabilistic Model: Rank Predictions

Let R,(X) = {E € &(X) : rank(E(Q)) = r}, 7. (X) = #R(X).

r=1 2 3 4 5
7, (2.7-1010) | 113128929 40949289 6259157 380519 6481
Approx. value | 113133971 41005107 6273138 381272 6438
|Error| 5042 55818 13981 753 43
Error % 0.00445 0.13631 0.22336 0.19788 0.66347

~ s - X/? 68848.72  45942.96 13112.47

1749.97

Table: Values of 7z, (2.7 - 10'°) from the BHKSWW database, the
approximate values (rounded to the closest integer) given by the model, the
absolute error, the error as a percentage of the actual value of 7%,, and the

size of the predicted error s, - (2.7 - 100)1/2,

111.73



The Probabilistic Model



Cramér’s random model of the prime numbers

The prime number theorem suggests that an integer X > 3 is prime
with probability 1/log X.

Cramér’s model (1936): Let B3, B*, ..., BX, ... be bins with red and
white balls, one for each integer X > 3.
@ The chance of drawing a red ball from bin BX is 1/log X.

© Draw one ball from each bin, and let g, € N be the index of the bin
where we got the n-th red ball.

© Let C be the space of all sequences {qn}n>1.

© Then, we predict properties of prime numbers from the asymptotic
statistics of C.



How does the probabilistic model work?
Recall the short exact sequence

0 — E(Q)/2E(Q) — Selz(E/Q) — LI(E/Q)[2] — 0.
We define the (2-)Selmer rank (or selrank) of E(Q) by
selrank(E(Q)) = dimg, Selz(E/Q) — dimg, E(Q)[2].

Then,

‘ rank(E(Q)) < selrank(E(Q)). ‘

We model the distribution of M—W ranks for a fixed selrank = n and a
fixed naive height X.

For each n > 0, we define £X = {E € £ : ht(E) = X} and

SX = {E € £X : selrank(E(Q)) = n}.



Model

b (B)=X



Model L (E)=X



Model L (E)=X

X
| E/q € o
Sé.l / <
S s&, €
Mw e s
€



Model L (E)=X

X
| E/q € o
/ o
Séll / g X
Y Ein
G\MV\] SEJ— S,E)(3
€



Model L (E)=X

X
| E/@q € o
/ \SH(X)
Sé.l / X
M See g o
£ 0 /UL e Sl



Model LEE1X

« Mw f,(x)
e st Sen €
S Y

£, () V. ‘U oTocw ~ Bowmnll: (£.00)



Model W E15x

S, . vw A
e SY ) gem c
oM e sk Woew
£, () € o<
h / L open L ~ Beananlls (ﬂ(x))
- £, )
- -
~ Biewid (2], £ (0)



Model

For example,

@ If n =4, (the expected value of) the number of elliptic curves of
Selmer rank 4, and Mordell-Weil ranks 0, 2, and 4 are given
respectively by

(LI IL I = #8X-04(X) - (1 — pa(X))?,
(I, 1L, MW, MW) = #EX - 04(X) - 2pa(X)(1 — pa(X)),
(MW, MW, MW, MW) = #EX - 04(X) - pa(X)?.

@ If n =5, the number of elliptic curves of Selmer rank 5, and
Mordell-Weil ranks 1, 3, and 5 are given respectively by

(LI, 1L IO, I, M) = #E% - 05(X) - (1 — ps(X))?,
( ) 7MW7MW7MW) = #EX-(95(X)-2p5(X)(1—p5(X)),
(MW, MW, MW, MW, MW) = #EX.05(X) - ps(X)>?.

*Warning! Events are notindependent! A covariance factor needs to be calculated to correctly compute the expected values.



4000 -

3000 -

2000 -

1000

1

2

3

4

5

60000

50000

40000

30000 (-

20000

10000

70

60

50

40

30

20}

10

0
05 1 15 2 25 3 35 4

1 2 3 4 5

o

Figure: Distribution of Mordell-Weil ranks (in blue) among elliptic curves in
£([2-10'9,2.025 - 10'°]) by Selmer rank n = 2, 3,4,5, and compared to the
predicted MW ranks (in green) that we would expect from the models.



Model

n| ms, (/) M-W ranks observedin S, M-W ranks predicted

2 | 509,845 [180128,0,329717,0,0,0] [181246.58,0,328598.41,0,0,0]
3| 111,926  [0,60149,0,51777,0,0] [0,60455.09,0,51470.90, 0, 0]
4 | 8399 [803,0,4321,0,3275,0]  [836.68,0,4256.52,0,3305.78, 0]
5 158 [0,22,0,76,0,60] [0,21.24,0,73.38,0,63.36]

Mordell-Weil ranks observed and the ranks predicted by the models in the
height interval / = [2-10"°,2.025 - 10'9].



Test Elliptic Curves

A test elliptic curve is a triple E = (X, n, Sely) consisting of:
@ a positive integer X > 1, the height of E, also denoted X = ht(E),

@ a non-negative integer n, the Selmer rank of E, also denoted
n = selrank(E), and

@ avector Selx(E) = (Sg,1,Se2; - - -5 SE,|n/2)) Of [ n/2] test Selmer
elements. Each Selmer element is a symbol, which is either a
MW, or a III symbol.

We define:
@ &, the set of all test elliptic curves,
@ £X test elliptic curves with height X,
@ SX, test elliptic curves with height X and Selmer rank n,
@ rank(E) = (nmod 2) + 2 - #{MW elements in Sel,(E)}.



Test Elliptic Curves

To each ordinary elliptic curve we can attach a test elliptic curve
Example

Let £/Q be the elliptic curve y? = x3 + 2993x.
@ Heightis X = 4 -2993% = 107245762628.

@ A 2-descent shows Sely(E/Q) = (Z/27Z)°. Since
E(Q)iors = Z /27, it follows that selrank(E) = 4.

@ A 4-descent shows that £(Q) = 7 /27 ¢ 72, and
I(E/Q)[2] = (z/2Z)>.

Hence, this elliptic curve would be represented as a test elliptic curve
by the triple

(107245762628, 4, (MW, TIT)).




Pieces of the Probabilistic Model

To put our probabilistic model together we need estimates of

@ #£&% : the number of elliptic curves of height X.
@ #SX : the number of elliptic curves of height X, selrank n.

@ 0,(X) = #S)/#E% - the proportion of ell. curves of height X and
selrank n, among all curves of height X (when #&X + 0).

@ py(X) : the probability that a non-E(Q)iors Selmer element coming
from a selrank-n elliptic curve of height X is a MW element.



#EX

Theorem (Brumer)
The number of elliptic curves of height up to X satisfies

04/3 x5/6
~ 33/2¢(10)

_ 2)(1/2
= 372(6)

TE

O(X™7?),

for any e > 0. In particular, w¢(X) = kX%/® + O(X/?) where the
constant k = 24/3 . (¢(10) - 3%/2)~1 ~ 0.484462004349 . ..

Thus (on average), we have

5k [XTN 4 N
me((X, X + N]) ~ o H1/6dH+O<X1/2)
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Figure: Values of m¢(X) from the BHKSSW database (blue dots), and the
function 0.4844620043 - X5/6 (in red).



#S8X : Elliptic Curves of Selmer Rank n, Height X

Following work on quadratic twists by Heath-Brown, Monsky, Kane,
and Swinnerton-Dyer:

Conjecture (Poonen—Rains, for p = 2)

i o ms(X)
S = Prob(selrank(E(Q)) = n) = lim_ me(X)
1 T2 )
= i (5=
(/>o 1+2 ,) (H 2k —1
So S S2 53 > =

0.209711 | 0.419422 | 0.279614 | 0.079889 | 0.010651 | 0.000687




Let S, be the subset of test elliptic curves of selrank n, and [9?7( C EX,

In our model: The probability of picking a test curve in SX out of £X is
given by 6,(X), where 0,(X) is a function such that limx_, . 6,(X) = sp.
Hypothesis A (Ha)

Letn>0, let X >0, and let Ysg| n x : EX = {0, 1} be the function that
lakes values

1 if selrank(E) = n,

0 otherwise.

YSeI,n,X(E) = {

Then, Yse n x(E) is a random variable that follows a Bernoulli
distribution with probability 6,(X), such that limy_, .. On(X) = sp.
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Figure: Graphs of the ratios 0,(X) for n =1 (blue), 2 (green), 3 (red), 4 (gray),
5 (purple), based on the BHKSSW data.



Refined Hypothesis A (H,)

Letn> 0, let X >0, and let Ysei n x : X {0, 1} be the function that takes
values

1 if selrank(E) = n,

0 otherwise.

YSeI,n,X(E) = {

Then, Ysen x(E) is a random variable that follows a Bernoulli distribution with
probability 6,(X), where

for some constants C, and e;,.

n 1 2 3 4 5

Cn || —0.401169 | 1.411086 | 11.182227 | 179.717499 | 95474.850980

€en 0.085402 | 0.123486 | 0.140615 0.203396 0.399370

Table: The coefficients of the best-fit regression 0,(X) ~ s,/(1 + C,X ).
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Figure: Graphs of the ratios 0,(X) for n =1 (blue), 2 (green), 3 (red), and the

corresponding models of the form s,/(1 + C,X ).
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Figure: Graphs of the ratios 6,(X) for n = 4 (gray), 5 (purple), and the
corresponding models of the form s,/(1 + C,X~®), in red.



Noise in the Distribution of Selranks

Corollary

Assume Hp, and let € = {Eq,..., Epn} C EX be a sample of m test elliptic
curves with height X chosen independently. Then, the number of curves in &
of selrank n follows a binomial distribution B(m, 6,(X)). In particular

E (#(e nSn) /#e) = 0n(X)

with standard error |/ 10,(X)(1 — 6(X)).

Note: for large values of m, the binomial is well approximated by a gaussian
distribution.
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Figure: Histogram of the distribution of 10000 experiments of picking 100
elliptic curves of height ~ 9 - 10%, at random, and counting the number of
Selmer ranks equal to n = 1,2, 3,4, and the normal dist. predicted by Ha.




Proposition

Assume Hy. Then, the expected value of ng (X) is given by

X
B () = 5 [ T

dH + o(x1/2),

where k = 2*/3 . (¢(10) - 3%/2)='. If in addition we assume the refined version
of Ha, then

5ksy [ 1 1/2
E(W§H(X)) = 6 n/1 H1/6(1 + CyH—en) dH +0 (X / ) )
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Figure: Values of s, (X) using the BHKSSW database are represented by
dots for n = 1 (blue), 2 (green), 3 (red), and the corresponding predictions
from Hp (curves in red, except for n = 3 in blue).



pn(X) : Height X, Selrank n, MW vs III

In our model: The probability that a test Selmer element s¢ € Sely(E), for

E € 8%, is a MW element, is given by pn(X), where p,(X) is a function such
that limx_, o, pn(X) = 0.

Hypothesis B (Hpg)

Foreach1 < i< |n/2], letY;: SX — {0,1} be the function that takes values

Y/(E) = 1 ifsg;is a MW element,
"7/ 10 otherwise,

where Selx(E) = (Se1,- - -, SE,|n/2))- Then, Y; is a random variable that
follows a Bernoulli distribution with probability pn(X), and Xlim pn(X) = 0.
bde el

* There is an additional “equicorrelation” condition. Warning! The variables Y; and Y/ are not necessarily independent.




Recall: rank(E) = (nmod 2) + 2 - #{MW elements in Selx(E)}.
Corollary

Let E4, ..., En be distinct (non-isomorphic) test elliptic curves chosen
independently of Selmer rank n and heights Xy, ..., Xn. Then, the expected
value of the average rank is

( Zrank ) (nmod 2) +

with standard error given by

$ n/2JZ pn(X)(1 = pn(X)) + (Ln/2] = 1)C74(X))),

where C{ ,(X;) is a certain covariance factor.




pn(X) : Height X, Selrank n, MW vs III
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Figure: Graphs of the ratios pn(X) for n = 2 (green), 3 (red), 4 (gray stars), 5
(purple), based on the BHKSSW data.



Refined Hypothesis B

Hypothesis Hg holds and, for every n > 2, there are constants D,, and f, such
that
Dy

pn(X) = Xh

n 2 3 4 5
D, || 1.12465347 | 1.30937016 | 1.07928016 | 1.79161787
0.02344245 | 0.04412662 | 0.02158211 | 0.04383626

5’\

Table: The coefficients of the best-fit linear regression pp(X) ~ D,/ X".



pn(X) : Height X, Selrank n, MW vs III
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Figure: Graphs of the ratios p,(X) for n = 2 (green), 3 (red), 4 (gray stars), 5
(purple), and the corresponding models of the form D,/ X" (in blue for
n=2,3andredfor n=4,5).



Here we consider the average rank contributions from the subsets of elliptic
curves of each Selmer rank n > 1:

> Ecs,x) FaNk(E(Q))

AveRankg, (X) = &4
Te

Theorem

Assume Ha and Hg, and let n > 1 be fixed. Then, the expected value of
AveRankgz (X) is given by

5k (% 0a(H)
671'5(X) 0 H1/6

((nmod 2)+2 [gJ pa(H)) aH + O(X~173).

Moreover, the error in approximating AveRankg (X) by its expected value is
approximately given by

X
\/2:&?@ A 9;3(1%)(/’"(”)(1 — pa(H)) + (Ln/2) — 1)C7 ,(H)) dH + O(X~7/6)




Corollary

If we assume the refined versions of Hsy and Hg, then there are constants T,
such that the expected value of AveRankz(X) is given by

E (i AveRankgn(X)> =

n=1
— Tn = ((nmod 2)(=C))™  ,_; 2[3] Do(=Cn)" e
;Sn~<m+;< 1 (6/5)me, + X f1(é/5)(fn+men)>x )

Yo VIn/2] - (In/2] —3/4) - 55
JrX5/12 :

+O(X~1/3) with standard error <

In particular,

) o0 oo 1

Jim AveRankz(X) = > sp-(nmod2) = spiy = 5
n=1 k=0

in the sense that the expected value goes to 1/2 with standard error going to

0as X — oc.
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Figure: Values of AveRank¢(X) from the BHKSSW database (blue dots), and
numerical integration of the approximation given in Corollary (in red).

According to the database, we have AveRankg (2.7 - 10'%) = 0.90197580
while our approximation gives 0.90244770. Thus, the absolute error is
0.00047189 (note (2.7 - 1010)‘1/3 ~ 0.0003), which is a 0.0523% of the value.



X | 3% AveRanks,(X) | X | 32>, AveRanks,(X)
1010 0.905665 1050 0.548880
105 0.846828 1075 0.512531
1020 0.766868 10100 0.503256
10%0 0.649901 10150 0.500215
1040 0.585108 10200 0.500006

Table: Conjectural approximate values of Zi:1 AveRankg, (X) obtained using
numerical integration of the formulas. The integration was done with
SageMath, which reports an absolute error in the numerical integration less
than 4 - 10~7 in all cases. The limit should be s; + s3 + 55 = 0.49999965 . . ..



Thank You
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