A generalization to Elkies's Theorem on infinitely many supersingular primes

Wanlin Li, Centre de Recherches Mathématiques joint with Elena Mantovan, Rachel Pries and Yunqing Tang VaNTAGe series 10 , Nov 9, 2021

Theorem (Elkies, 1987)

For every elliptic curve E/\mathbb{Q} , there exist infinitely many primes at which the reduction of E is supersingular.

Remarks:

- 1. If *E* is not CM, then at 100% of primes, its reduction is ordinary. Heuristically, we expect $\sim X^{1/2-o(1)}$ supersingular primes $\leq X$.
- 2. Elkies (1989) generalized the theorem to a large set of number fields.
- 3. Analogous results for certain abelian surfaces with quaternionic multiplication were obtained by Jao (2003), Sadykov (2004), and Baba-Grananth (2008).

A generalization to Elkies's theorem

Theorem (L.–Mantovan–Pries–Tang, In preparation)

Let $C: y^5 = x(x-1)(x-t)$ be a smooth projective curve satisfying:

•
$$j_{\mathcal{C}} := \frac{(t^2 - t + 1)^3}{t^2(t - 1)^2} \in \mathbb{Q} \cap [0, \frac{27}{4}];$$

• the reduction of C at 5 is singular;

then there exist infinitely many primes at which the reduction of Jac(C) is "supersingular".

Here "supersingular" means the *p*-divisible group over $\overline{\mathbb{F}}_p$,

$$\mathsf{Jac}(C)[p^{\infty}] \sim \begin{cases} \mathsf{ord}^2 \oplus \mathsf{ss}^2, p \equiv 1 \mod 5; \\ \mathsf{ss}^4, p \equiv 2, 3, 4 \mod 5; \end{cases}$$

where ord is $E[p^{\infty}]$ for an ordinary elliptic curve and ss is $E[p^{\infty}]$ for a supersingular elliptic curve.

Given an abelian variety $A/\overline{\mathbb{F}}_p$, the isogeny class of the *p*-divisible group $A[p^{\infty}]$ is determined by its Newton polygon.

The set of symmetric Newton polygons of dimension g and height 2g form a poset and give a stratification of $\mathcal{A}_{g,\mathbb{F}_p}$, where the largest locus is ordinary and the smallest locus is supersingular.

Consider the 1-dimensional family of curves $y^5 = x(x-1)(x-t)$ parameterized by $t \in \overline{\mathbb{F}}_p, p \neq 5$.

There are two Newton strata on the Torelli image of this family:

one is open and dense, called μ -ordinary; the other consists of finitely many points, called basic or "supersingular".

Remarks

 With Cantoral Farfán, Mantovan, Pries and Tang, we are working towards proving that for 100% of rational primes, the reduction of a non-CM Jac(C) is μ-ordinary.

(Recall: for 100% of rational primes, the reduction of a non-CM E/\mathbb{Q} is ordinary.)

- 2. We can extend the theorem to $j(t) \in \mathbb{Q}(\sqrt{5})$ with an extra local condition on *C*.
- 3. We are working on extending the theorem to more curves in this family (relaxing $j(t) \in [0, \frac{27}{4}]$ and C mod 5 being singular),

and curves in several other superelliptic families (e.g. $y^7 = x(x - 1)(x - t)$).

Parameterization of $y^5 = x(x-1)(x-t)$

Given a curve $C: y^5 = x(x-1)(x-t)$, the invariant

$$j_C := rac{(t^2 - t + 1)^3}{t^2(t - 1)^2}$$

uniquely determines its isomorphism class over $\overline{\mathbb{Q}}$.

So j(t) is a parameter for the coarse moduli space $\mathcal{S} \simeq \mathbb{P}^1_{\mathbb{Q}}$ of the family.

In the theorem, having $j(t) \in \mathbb{Q}$ means the field of moduli for C is \mathbb{Q} .

Geometry of $\mathcal{S}(\mathbb{C})$

Over $\mathbb{Q}(\zeta_5)$, $C: y^5 = x(x-1)(x-t)$ admits an automorphism $(x,y)\mapsto (x,\zeta_5y).$

This induce $\mathbb{Q}(\zeta_5) \hookrightarrow \operatorname{End}_{\overline{\mathbb{Q}}}^0(\operatorname{Jac}(\mathcal{C}))$ and $\mathcal{S} \hookrightarrow \operatorname{Sh}(\mathbb{Q}(\zeta_5))$, a compact Shimura curve with reflex field $\mathbb{Q}(\zeta_5)$.

We get $S(\mathbb{C}) \simeq \Delta(2,3,10) \setminus \mathbb{H}$. Its fundamental domain is two copies of the hyperbolic triangle with vertices $j = 0, \frac{27}{4}, \infty$.

For any $p \neq 5$, S has good reduction at p and $S_{\overline{\mathbb{F}}_p} \simeq \mathbb{P}^1_{\overline{\mathbb{F}}_p}$ has two Newton loci, μ -ordinary and basic ("supersingular").

The μ -ordinary locus is open and dense and the "supersingular" locus is 0-dim consisting of finitely many points.

There is only one Newton locus for $\mathcal{S}_{\bar{\mathbb{F}}_5}$ and it is supersingular.

Goal: "Catch" primes p s.t. $(C \mod p) \in$ "supersingular" locus of $S_{\overline{\mathbb{F}}_p}$. Call this set of primes \mathcal{T} .

Strategy: Construct curves C_1, C_2, \cdots and define sets

 $T_i = \{p \mid C \simeq C_i \bmod p\}$

such that

- 1. For each *i*, $T_i \cap T \neq \emptyset$;
- 2. For any $p \in T_i \cap T_j \Rightarrow p \notin T$;
- 3. For each i, ($C_i \mod 5$) is smooth.

A sketch of proof

Given C and a finite set S of primes, construct a "supersingular" $p \notin S$.

- 1. For totally positive prime element $\lambda \in \mathbb{Q}(\sqrt{5})$, construct CM curves
 - ${\mathcal C}_{\lambda}.$ Moreover, ${\sf Jac}({\mathcal C}_{\lambda})$ admits "supersingular" reduction at ${\mathfrak p}$ where

$$\begin{pmatrix} -\lambda \\ \mathfrak{p} \end{pmatrix} \neq 1, \ \mathfrak{p} \text{ a prime of } \mathbb{Q}(\sqrt{5});$$

- 2. Define $P_{\lambda}(x) \in \mathbb{Q}(\sqrt{5})[x]$ such that $v_{\mathfrak{p}}(P_{\lambda}(j_{\mathcal{C}})) > 0$ implies $(\mathcal{C} \simeq \mathcal{C}_{\lambda} \mod \mathfrak{p}).$
- By deformation theory, the numerator and denominator of (j_C - ²⁷/₄)P_λ(j_C) are ≡ □ mod λ.
 (or a similar statement with a change of coordinate holds)
- Find congruence conditions on λ which imply P_λ(x) having a unique real root (for each Q(√5) → R).

A sketch of proof

- 5. λ can be chosen such that primes above p split if $p \in S \{5\}$ or $v_p(j_C \frac{27}{4}) \neq 0$ and C_{λ} is smooth at 5 (WLOG,assume $5 \in S$).
- 6. From analyzing quadratic forms over Q(√5) and applying Hecke's equidistribution theorem simultaneously for the two embeddings λ → ℝ, we obtain the existence of λ satisfying the desired congruence conditions and 1+√5/2(j_C 27/4)P_λ(j_C) is totally positive.
- 7. From

$$\binom{(j_{\mathcal{C}}-\frac{27}{4})P_{\lambda}(j_{\mathcal{C}})}{\lambda} \neq -1, \text{ and } \binom{1+\sqrt{5}}{2}{\lambda} = -1,$$

we conclude that there exists a totally positive prime element $\pi_{\mathfrak{p}}$ with $v_{\mathfrak{p}}(P_{\lambda}(j_{C})) > 0$ such that

$$\begin{pmatrix} \pi_{\mathfrak{p}} \\ \lambda \end{pmatrix} = \begin{pmatrix} -\lambda \\ \pi_{\mathfrak{p}} \end{pmatrix} \neq 1$$

Thus, we get a "supersingular" prime for C outside of S.

CM cycles and its reduction

dim Jac(C) = 4; $[\mathbb{Q}(\zeta_5) : \mathbb{Q}] = 4$. Let $\lambda \in O_F$ be a totally positive prime, then E is a CM field with $[E : \mathbb{Q}] = 8$. Consider Jac(C_λ) with CM by O_E .

There is a unique (primitive) CM type compatible with the signature. By Shimura–Taniyama formula, if a prime \mathscr{P} lies above $\mathfrak{p} \subset F$ non-split

in $F(-\lambda)/F$, then the reduction of $Jac(C_{\lambda})$ at \mathscr{P} is "supersingular".

Real CM points: uniqueness

A real CM point C_{λ} corresponds to a principally polarized abelian variety with CM by O_E and isomorphic to its complex conjugate.

From CM theory, it is given by a pair (\mathfrak{a}, ξ) where \mathfrak{a} is an ideal class of E fixed by complex conjugation and $\xi \in E$ induces a principal polarization.

By analyzing the parity of the class number of *E* and the Hasse unit index $[N(\mathcal{U}_E) : \mathcal{U}_{E_0}^2]$, we give congruence conditions on λ which guarantees the number of real CM points being 1.

Real CM points: distribution

Denote the image of λ under two embeddings $\mathbb{Q}(\sqrt{5}) \hookrightarrow \mathbb{R}$ as λ, λ^{τ} . Denote the unique real root for $P_{\lambda}(x)$ (resp. $P_{\lambda^{\tau}}(x)$) as j_{λ} (resp. $j_{\lambda^{\tau}}$). Want $\frac{1\pm\sqrt{5}}{2}P_{\lambda}(j_{C})$ totally positive, i.e. $(j_{C} - j_{\lambda})(j_{C} - j_{\lambda^{\tau}}) < 0$.

 j_{λ} corresponds to $x, y \in O_F$ satisfying $\lambda = 3x^2 - (5 + \sqrt{5})xy + \frac{5 + \sqrt{5}}{2}y^2$. Apply Hecke's equidistribution theorem to conclude $j_{\lambda}, j_{\lambda^{\tau}}$ dense on QR.

Thank you for your attention !