A generalization to Elkies's Theorem on infinitely many supersingular primes

Wanlin Li, Centre de Recherches Mathématiques
joint with Elena Mantovan, Rachel Pries and Yunqing Tang
VaNTAGe series 10 , Nov 9, 2021

Elkies's theorem

Theorem (Elkies, 1987)

For every elliptic curve E / \mathbb{Q}, there exist infinitely many primes at which the reduction of E is supersingular.

Remarks:

1. If E is not $C M$, then at 100% of primes, its reduction is ordinary. Heuristically, we expect $\sim X^{1 / 2-o(1)}$ supersingular primes $\leq X$.
2. Elkies (1989) generalized the theorem to a large set of number fields.
3. Analogous results for certain abelian surfaces with quaternionic multiplication were obtained by Jao (2003), Sadykov (2004), and Baba-Grananth (2008).

A generalization to Elkies's theorem

Theorem (L.-Mantovan-Pries-Tang, In preparation)

Let $C: y^{5}=x(x-1)(x-t)$ be a smooth projective curve satisfying:

- $j c:=\frac{\left(t^{2}-t+1\right)^{3}}{t^{2}(t-1)^{2}} \in \mathbb{Q} \cap\left[0, \frac{27}{4}\right]$;
- the reduction of C at 5 is singular;
then there exist infinitely many primes at which the reduction of $\mathrm{Jac}(C)$ is "supersingular".

Here "supersingular" means the p-divisible group over $\overline{\mathbb{F}}_{p}$,

$$
\operatorname{Jac}(C)\left[p^{\infty}\right] \sim\left\{\begin{array}{l}
\operatorname{ord}^{2} \oplus \mathrm{ss}^{2}, p \equiv 1 \bmod 5 ; \\
\mathrm{ss}^{4}, p \equiv 2,3,4 \bmod 5
\end{array}\right.
$$

where ord is $E\left[p^{\infty}\right]$ for an ordinary elliptic curve and ss is $E\left[p^{\infty}\right]$ for a supersingular elliptic curve.

Newton locus

Given an abelian variety $A / \overline{\mathbb{F}}_{p}$, the isogeny class of the p-divisible group $A\left[p^{\infty}\right]$ is determined by its Newton polygon.

The set of symmetric Newton polygons of dimension g and height $2 g$ form a poset and give a stratification of $\mathcal{A}_{g, \overline{\mathbb{F}}_{p}}$, where the largest locus is ordinary and the smallest locus is supersingular.

Consider the 1-dimensional family of curves $y^{5}=x(x-1)(x-t)$ parameterized by $t \in \overline{\mathbb{F}}_{p}, p \neq 5$.

There are two Newton strata on the Torelli image of this family: one is open and dense, called μ-ordinary; the other consists of finitely many points, called basic or "supersingular".

Remarks

1. With Cantoral Farfán, Mantovan, Pries and Tang, we are working towards proving that for 100% of rational primes, the reduction of a non-CM Jac(C) is μ-ordinary.
(Recall: for 100% of rational primes, the reduction of a non-CM E / \mathbb{Q} is ordinary.)
2. We can extend the theorem to $j(t) \in \mathbb{Q}(\sqrt{5})$ with an extra local condition on C.
3. We are working on extending the theorem to more curves in this family (relaxing $j(t) \in\left[0, \frac{27}{4}\right]$ and $C \bmod 5$ being singular), and curves in several other superelliptic families (e.g. $y^{7}=x(x-1)(x-t)$).

Parameterization of $y^{5}=x(x-1)(x-t)$

Given a curve C : $y^{5}=x(x-1)(x-t)$, the invariant

$$
j_{c}:=\frac{\left(t^{2}-t+1\right)^{3}}{t^{2}(t-1)^{2}}
$$

uniquely determines its isomorphism class over $\overline{\mathbb{Q}}$.
So $j(t)$ is a parameter for the coarse moduli space $\mathcal{S} \simeq \mathbb{P}_{\mathbb{Q}}^{1}$ of the family.
In the theorem, having $j(t) \in \mathbb{Q}$ means the field of moduli for C is \mathbb{Q}.

Geometry of $\mathcal{S}(\mathbb{C})$

Over $\mathbb{Q}\left(\zeta_{5}\right), C: y^{5}=x(x-1)(x-t)$ admits an automorphism

$$
(x, y) \mapsto\left(x, \zeta_{5} y\right) .
$$

This induce $\mathbb{Q}\left(\zeta_{5}\right) \hookrightarrow \operatorname{End}_{\mathbb{Q}}^{0}(\operatorname{Jac}(C))$ and $\mathcal{S} \hookrightarrow \operatorname{Sh}\left(\mathbb{Q}\left(\zeta_{5}\right)\right)$, a compact Shimura curve with reflex field $\mathbb{Q}\left(\zeta_{5}\right)$.

We get $\mathcal{S}(\mathbb{C}) \simeq \Delta(2,3,10) \backslash \mathbb{H}$. Its fundamental domain is two copies of the hyperbolic triangle with vertices $j=0, \frac{27}{4}, \infty$.

Newton strata for $\mathcal{S}\left(\overline{\mathbb{F}}_{p}\right)$

For any $p \neq 5, \mathcal{S}$ has good reduction at p and $\mathcal{S}_{\mathbb{F}_{p}} \simeq \mathbb{P}_{\mathbb{F}_{p}}^{1}$ has two Newton loci, μ-ordinary and basic ("supersingular").

The μ-ordinary locus is open and dense and the "supersingular" locus is 0 -dim consisting of finitely many points.

There is only one Newton locus for $\mathcal{S}_{\overline{\mathbb{F}}_{5}}$ and it is supersingular.

strategy of proof

Goal: "Catch" primes p s.t. $(C \bmod p) \in$ "supersingular" locus of $\mathcal{S}_{\mathbb{F}_{p}}$.
Call this set of primes \mathcal{T}.
Strategy: Construct curves C_{1}, C_{2}, \cdots and define sets

$$
T_{i}=\left\{p \mid C \simeq C_{i} \bmod p\right\}
$$

such that

1. For each $i, T_{i} \cap \mathcal{T} \neq \emptyset$;
2. For any $p \in T_{i} \cap T_{j} \Rightarrow p \notin \mathcal{T}$;
3. For each $i,\left(C_{i} \bmod 5\right)$ is smooth.

A sketch of proof

Given C and a finite set \mathcal{S} of primes, construct a "supersingular" $p \notin S$.

1. For totally positive prime element $\lambda \in \mathbb{Q}(\sqrt{5})$, construct CM curves C_{λ}. Moreover, $\operatorname{Jac}\left(C_{\lambda}\right)$ admits "supersingular" reduction at \mathfrak{p} where

$$
\binom{-\lambda}{\mathfrak{p}} \neq 1, \mathfrak{p} \text { a prime of } \mathbb{Q}(\sqrt{5}) \text {; }
$$

2. Define $P_{\lambda}(x) \in \mathbb{Q}(\sqrt{5})[x]$ such that $v_{\mathfrak{p}}\left(P_{\lambda}(j c)\right)>0$ implies $\left(C \simeq C_{\lambda} \bmod \mathfrak{p}\right)$.
3. By deformation theory, the numerator and denominator of $\left(j c-\frac{27}{4}\right) P_{\lambda}(j c)$ are $\equiv \square \bmod \lambda$. (or a similar statement with a change of coordinate holds)
4. Find congruence conditions on λ which imply $P_{\lambda}(x)$ having a unique real root (for each $\mathbb{Q}(\sqrt{5}) \hookrightarrow \mathbb{R}$).

A sketch of proof

5. λ can be chosen such that primes above p split if $p \in \mathcal{S}-\{5\}$ or $v_{p}\left(j_{c}-\frac{27}{4}\right) \neq 0$ and C_{λ} is smooth at 5 (WLOG,assume $5 \in \mathcal{S}$).
6. From analyzing quadratic forms over $\mathbb{Q}(\sqrt{5})$ and applying Hecke's equidistribution theorem simultaneously for the two embeddings $\lambda \hookrightarrow \mathbb{R}$, we obtain the existence of λ satisfying the desired congruence conditions and $\frac{1+\sqrt{5}}{2}\left(j c-\frac{27}{4}\right) P_{\lambda}(j c)$ is totally positive.
7. From

$$
\binom{\left(j c-\frac{27}{4}\right) P_{\lambda}\left(j_{c}\right)}{\lambda} \neq-1, \text { and }\binom{\frac{1+\sqrt{5}}{2}}{\lambda}=-1,
$$

we conclude that there exists a totally positive prime element $\pi_{\mathfrak{p}}$ with $v_{p}\left(P_{\lambda}(j c)\right)>0$ such that

$$
\binom{\pi_{\mathfrak{p}}}{\lambda}=\binom{-\lambda}{\pi_{\mathfrak{p}}} \neq 1
$$

Thus, we get a "supersingular" prime for C outside of \mathcal{S}.

CM cycles and its reduction

$\operatorname{dim} \operatorname{Jac}(C)=4 ;\left[\mathbb{Q}\left(\zeta_{5}\right): \mathbb{Q}\right]=4$. Let $\lambda \in O_{F}$ be a totally positive prime, then E is a $C M$ field with $[E: \mathbb{Q}]=8$. Consider $\operatorname{Jac}\left(C_{\lambda}\right)$ with $C M$ by O_{E}.

There is a unique (primitive) CM type compatible with the signature.
By Shimura-Taniyama formula, if a prime \mathscr{P} lies above $\mathfrak{p} \subset F$ non-split in $F(-\lambda) / F$, then the reduction of $\operatorname{Jac}\left(C_{\lambda}\right)$ at \mathscr{P} is "supersingular".

Real CM points: uniqueness

A real CM point C_{λ} corresponds to a principally polarized abelian variety with CM by O_{E} and isomorphic to its complex conjugate.

From CM theory, it is given by a pair (\mathfrak{a}, ξ) where \mathfrak{a} is an ideal class of E fixed by complex conjugation and $\xi \in E$ induces a principal polarization.

By analyzing the parity of the class number of E and the Hasse unit index $\left[N\left(\mathcal{U}_{E}\right): \mathcal{U}_{E_{0}}^{2}\right]$, we give congruence conditions on λ which guarantees the number of real CM points being 1 .

Real CM points: distribution

Denote the image of λ under two embeddings $\mathbb{Q}(\sqrt{5}) \hookrightarrow \mathbb{R}$ as λ, λ^{τ}.
Denote the unique real root for $P_{\lambda}(x)$ (resp. $P_{\lambda^{\tau}}(x)$) as j_{λ} (resp. $j_{\lambda^{\tau}}$).
Want $\frac{1 \pm \sqrt{5}}{2} P_{\lambda}\left(j_{c}\right)$ totally positive, i.e. $\left(j_{c}-j_{\lambda}\right)\left(j_{c}-j_{\lambda^{\tau}}\right)<0$.

j_{λ} corresponds to $x, y \in O_{F}$ satisfying $\lambda=3 x^{2}-(5+\sqrt{5}) x y+\frac{5+\sqrt{5}}{2} y^{2}$. Apply Hecke's equidistribution theorem to conclude $j_{\lambda}, j_{\lambda^{\tau}}$ dense on $Q R$.

Thank you for your attention!

