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Elkies’s theorem

Theorem (Elkies, 1987)

For every elliptic curve E/Q, there exist infinitely many primes at which

the reduction of E is supersingular.

Remarks:

1. If E is not CM, then at 100% of primes, its reduction is ordinary.

Heuristically, we expect ∼ X 1/2−o(1) supersingular primes ≤ X .

2. Elkies (1989) generalized the theorem to a large set of number fields.

3. Analogous results for certain abelian surfaces with quaternionic

multiplication were obtained by Jao (2003), Sadykov (2004), and

Baba-Grananth (2008).
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A generalization to Elkies’s theorem

Theorem (L.–Mantovan–Pries–Tang, In preparation)

Let C : y5 = x(x − 1)(x − t) be a smooth projective curve satisfying:

• jC := (t2−t+1)3

t2(t−1)2 ∈ Q ∩ [0, 27
4 ];

• the reduction of C at 5 is singular;

then there exist infinitely many primes at which the reduction of Jac(C )

is “supersingular”.

Here “supersingular” means the p-divisible group over Fp,

Jac(C )[p∞] ∼

{
ord2 ⊕ ss2, p ≡ 1 mod 5;

ss4, p ≡ 2, 3, 4 mod 5;

where ord is E [p∞] for an ordinary elliptic curve and ss is E [p∞] for a

supersingular elliptic curve.
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Newton locus

Given an abelian variety A/Fp, the isogeny class of the p-divisible group

A[p∞] is determined by its Newton polygon.

The set of symmetric Newton polygons of dimension g and height 2g

form a poset and give a stratification of Ag ,F̄p
, where the largest locus is

ordinary and the smallest locus is supersingular.

Consider the 1-dimensional family of curves y5 = x(x − 1)(x − t)

parameterized by t ∈ Fp, p ̸= 5.

There are two Newton strata on the Torelli image of this family:

one is open and dense, called µ-ordinary; the other consists of finitely

many points, called basic or “supersingular”.
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Remarks

1. With Cantoral Farfán, Mantovan, Pries and Tang, we are working

towards proving that for 100% of rational primes, the reduction of a

non-CM Jac(C ) is µ-ordinary.

(Recall: for 100% of rational primes, the reduction of a non-CM

E/Q is ordinary.)

2. We can extend the theorem to j(t) ∈ Q(
√
5) with an extra local

condition on C .

3. We are working on extending the theorem to more curves in this

family (relaxing j(t) ∈ [0, 27
4 ] and C mod 5 being singular),

and curves in several other superelliptic families

(e.g. y7 = x(x − 1)(x − t)).
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Parameterization of y 5 = x(x − 1)(x − t)

Given a curve C : y5 = x(x − 1)(x − t), the invariant

jC :=
(t2 − t + 1)3

t2(t − 1)2

uniquely determines its isomorphism class over Q.

So j(t) is a parameter for the coarse moduli space S ≃ P1
Q of the family.

In the theorem, having j(t) ∈ Q means the field of moduli for C is Q.
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Geometry of S(C)

Over Q(ζ5), C : y5 = x(x − 1)(x − t) admits an automorphism

(x , y) 7→ (x , ζ5y).

This induce Q(ζ5) ↪→ End0Q(Jac(C )) and S ↪→ Sh(Q(ζ5)), a compact

Shimura curve with reflex field Q(ζ5).

P, j = ∞

Q, j = 0 R, j = 27
4

jC

We get S(C) ≃ ∆(2, 3, 10) \H. Its fundamental domain is two copies of

the hyperbolic triangle with vertices j = 0, 27
4 ,∞.
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Newton strata for S(Fp)

For any p ̸= 5, S has good reduction at p and SF̄p
≃ P1

F̄p
has two

Newton loci, µ-ordinary and basic (“supersingular”).

The µ-ordinary locus is open and dense and the “supersingular” locus is

0-dim consisting of finitely many points.

There is only one Newton locus for SF̄5
and it is supersingular.
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strategy of proof

Goal: “Catch” primes p s.t. (C mod p) ∈ “supersingular” locus of SF̄p
.

Call this set of primes T .

Strategy: Construct curves C1,C2, · · · and define sets

Ti = {p | C ≃ Ci mod p}

such that

1. For each i , Ti ∩ T ̸= ∅;
2. For any p ∈ Ti ∩ Tj ⇒ p /∈ T ;

3. For each i , (Ci mod 5) is smooth.
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A sketch of proof

Given C and a finite set S of primes, construct a “supersingular” p /∈ S .

1. For totally positive prime element λ ∈ Q(
√
5), construct CM curves

Cλ. Moreover, Jac(Cλ) admits “supersingular” reduction at p where(
−λ

p

)
̸= 1, p a prime of Q(

√
5);

2. Define Pλ(x) ∈ Q(
√
5)[x ] such that vp(Pλ(jC )) > 0 implies

(C ≃ Cλ mod p).

3. By deformation theory, the numerator and denominator of

(jC − 27
4 )Pλ(jC ) are ≡ □ mod λ.

(or a similar statement with a change of coordinate holds)

4. Find congruence conditions on λ which imply Pλ(x) having a unique

real root (for each Q(
√
5) ↪→ R).
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A sketch of proof

5. λ can be chosen such that primes above p split if p ∈ S − {5} or

vp(jC − 27
4 ) ̸= 0 and Cλ is smooth at 5 (WLOG,assume 5 ∈ S).

6. From analyzing quadratic forms over Q(
√
5) and applying Hecke’s

equidistribution theorem simultaneously for the two embeddings

λ ↪→ R, we obtain the existence of λ satisfying the desired

congruence conditions and 1+
√
5

2 (jC − 27
4 )Pλ(jC ) is totally positive.

7. From (
(jC − 27

4 )Pλ(jC )

λ

)
̸= −1, and

(
1+

√
5

2

λ

)
= −1,

we conclude that there exists a totally positive prime element πp

with vp(Pλ(jC )) > 0 such that(
πp

λ

)
=

(
−λ

πp

)
̸= 1

Thus, we get a “supersingular” prime for C outside of S.
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CM cycles and its reduction

dim Jac(C ) = 4; [Q(ζ5) : Q] = 4. Let λ ∈ OF be a totally positive prime,

then E is a CM field with [E : Q] = 8. Consider Jac(Cλ) with CM by OE .

E

Q(ζ5) F (
√
−λ)

F = Q(
√
5)

Q

There is a unique (primitive) CM type compatible with the signature.

By Shimura–Taniyama formula, if a prime P lies above p ⊂ F non-split

in F (−λ)/F , then the reduction of Jac(Cλ) at P is “supersingular”.
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Real CM points: uniqueness

A real CM point Cλ corresponds to a principally polarized abelian variety

with CM by OE and isomorphic to its complex conjugate.

From CM theory, it is given by a pair (a, ξ) where a is an ideal class of E

fixed by complex conjugation and ξ ∈ E induces a principal polarization.

E

Q(ζ5) E0 F (
√
−λ)

F = Q(
√
5)

By analyzing the parity of the class number of E and the Hasse unit

index [N(UE ) : U2
E0
], we give congruence conditions on λ which

guarantees the number of real CM points being 1.
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Real CM points: distribution

Denote the image of λ under two embeddings Q(
√
5) ↪→ R as λ, λτ .

Denote the unique real root for Pλ(x) (resp. Pλτ (x)) as jλ (resp. jλτ ).

Want 1±
√
5

2 Pλ(jC ) totally positive, i.e. (jC − jλ)(jC − jλτ ) < 0.

P, j = ∞

Q, j = 0 R, j = 27
4

jC jλjλτ

jλ corresponds to x , y ∈ OF satisfying λ = 3x2 − (5 +
√
5)xy + 5+

√
5

2 y2.

Apply Hecke’s equidistribution theorem to conclude jλ, jλτ dense on QR.
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P, j = ∞

Q, j = 0 R, j = 27
4

jC jλjλτ

S(R)

Thank you for your attention !
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