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Dynamically special subvarieties
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Dynamically special subvarieties

Holly Krieger University of Cambridge Equidistribution and unlikely intersections in arithmetic dynamics

[ DYNAMICAL MANIN - MUMFORD CONJECTURE]

Necessity of condition :

Fakhruddin : f polarized ⇒ Ii :X → 1PM
,

F : IP
"
→ Ip
" such that':i¥" if i

Fn # m - pH → IP
"

F

F-
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Dynamically special subvarieties

The dynamical Manin-Mumford conjecture generalizes the ‘classical’
Manin-Mumford conjecture.

X an abelian variety over C
f = [m] with m > 1,

then f is polarized, and a subvariety Y is preperiodic if and only if Y is a
torsion translate of an abelian subvariety.

Theorem of the cube )

[m]⇤L ' L
m2

+m
2 ⌦ L

m2�m
2 .

So for ample, symmetric L on X abelian variety, we have

[m]⇤L ' L
m2

.
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Dynamically special subvarieties
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E : cm elliptic curve
,
End(E) = R order in imaginary quadratic

• L
, p

E R ,
I al - Ipl .
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E square
lattice)

Then DE is prepeiodic for (Ex] , Cp]) : EXE → EXE
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The dynamical Manin-Mumford conjecture
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The dynamical Manin-Mumford conjecture
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The dynamical Manin-Mumford conjecture
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The arithmetic

K a number field, f : X ! X a dominant endomorphism of a projective variety,
polarized by f

⇤
L ' L

d , d � 2, all defined over K .

Theorem (Néron-Tate, Call-Silverman)

There is a well-defined function hf : X (K) ! R�0 given by

hf (P) := lim
n!1

h(f n(P))
dn

,

known as the canonical dynamical height associated to f . This height has the

following properties:

hf (f (P)) = dhf (P),

hf (P) = h(P) +O(1),

hf has a local decomposition. If P 2 L/K is not in the support of L,

hf (P) =
1

[L : K ]

X

v2ML

[Lv : Kv ]�f ,L,v (P),

where the �f ,L,v are local canonical height functions.
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The arithmetic
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The arithmetic

Holly Krieger University of Cambridge Equidistribution and unlikely intersections in arithmetic dynamics

EAT

→ [ 2]unramified
Et→ Et

2-to - I → it f f I
IP

'
→ Ipl

degree 4 self -map-s ft

of IP
'

⑧

⇒

Prep (ft ) dense in IPL .



Complex polynomial dynamics terminology

For self-maps of P1, these local heights are not mysterious! They are most
easily understood for polynomials, where they are Green’s functions for the
dynamical object known as a filled Julia set.

Let’s look at the archimedean setting, viewing f as a dynamical system
f : P1

C ! P1

C by composition.

Fatou set of f : the collection of ↵ 2 C for which the iterates {f n}n2N
form a normal family on a neighborhood of ↵ (orbits near ↵ behave like
the orbit of ↵).

Julia set J (f ): the complement of the Fatou set; no prediction possible
for orbits near ↵.

if f is a polynomial filled Julia set K(f ) of f : the collection of ↵ 2 C
which remain bounded under iteration:

K(f ) := {↵ 2 C : |f n(↵)| 6! 1}.

For polynomials, the Julia set is alternately characterized as the topological
boundary of the filled Julia set K(f ).
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Complex polynomial dynamics examples
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A simple dynamical system

Example: f (z) = z
2.

We can actually compute f
�n(z) = z

2
n
.

|↵| < 1 ) f
n(↵) ! 0

|↵| > 1 ) f
n(↵) ! 1

|↵| = 1 behavior depends on whether ↵ is a root of unity or not.

Immediate consequence: J (f ) = S
1.

General phenomena illustrated:

All but finitely many preperiodic points are contained in the Julia
set.

There is an invariant measure µf supported on the Julia set:
f
⇤µf = dµf , f⇤µf = µf . This is known as the equilibrium measure

for f .
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Archimedean equidistribution: a first result
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Archimedean equidistribution: a first result
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Archimedean equidistribution: a second result

Holly Krieger University of Cambridge Equidistribution and unlikely intersections in arithmetic dynamics

points of period ne 11,434,5}

for flz) = Eti .



Arithmetic equidistribution: the hammer

Note that the relation hf (f (↵)) = dhf (↵) implies that if ↵ is a point and xn an
nth preimage of ↵ (all algebraic), then

hf (xn) =
1
dn

hf (↵) ! 0 as n ! 1.

Thus in the arithmetic setting, the previous two equidistribution results are
unified if we view {x : f n(x) = ↵} and Pern(f ) as Galois orbits of points of
small height, as done by Szpiro, Ullmo, and Zhang.

Theorem (Baker-Rumely, Chambert-Loir, Favre-Rivera-Letelier)

Let f : P1
! P1

be a degree d morphism defined over a number field K . Let

xn 2 P1(K) be a set of points satisfying h(xn) ! 0 as n ! 1, and write

Gn = Gal(K̄/K)xn for the Galois orbit of xn. Then for any v 2 MK ,

1
|Gn|

X

x2Gn

�x �! µf ,v in the weak-star topology,

where µf ,v is the v -adic equilibrium measure for f on P1,an
v .
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Arithmetic equidistribution: the hammer
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Arithmetic equidistribution: the hammer
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The strategy: split dynamical Manin-Mumford

Let’s return to the split dynamical Manin-Mumford question.

General plan of attack over Q, based on ideas of Szpiro-Ullmo-Zhang and
Baker-DeMarco.

Let f , g : P1
! P1 be degree d � 2 morphisms defined over a number field K .

Suppose the diagonal subvariety � ⇢ P1
⇥ P1 contains infinitely many

preperiodic points for (f , g). Then f and g have infinitely many common
preperiodic points.

Step 1: equidistribution. By arithmetic equidistribution, infinitely many
common preperiodic points ensures that f and g have the same:

adelic equilibrium measures,

adelic dynamical height functions,

set of preperiodic points,

Julia sets.
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The strategy: split dynamical Manin-Mumford

Step 2: measure classification.

Theorem (Levin ’90)

If two rational maps f , g of degree d � 2 of P1

C share the same equilibrium

measures and the same set of preperiodic points, then either f , g are

exceptional, or f
k
� g

k = f
2k

for some k � 1.

From this we see that (f k , g k)(�) ⇢ (f 2k , g 2k)(�), so by irreducibility � is
preperiodic as conjectured.

The classification theorem really must be a global statement: there are
plenty of rational maps with Julia set P1, for example.

Generalities: algebraic correspondence instead of equality, working in higher
dimensions, results over C, ...
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Example: quadratic polynomials

Let f (z) = z
2
� 2 and g(z) = z

2
� 6. µf ,v = µg,v for all non-archimedean

places v 2 MQ, the Julia sets at the archimedean place have infinite overlap,
and each has all finite preperiodic points contained in the interval [�3, 3].

Figure: archimedean Julia overlap for z2 � 2 and z2 � 6.

Nonetheless, z2 � 2 and z
2
� 6 have only finitely many common preperiodic

points, and the diagonal is not preperiodic under (f , g) on P1
⇥ P1.
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Example: Raynaud’s theorem for split genus 2 curves
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Ix : E ,[2] → { 0,2, , 22,23 } It
, ,
tz and IT

, ,tz
⇒

Yitx " EID→ 10,4 .dz , Ls }
double covers

ti : C - Eti

Eti :

y
' -
- xlx - 1) ( x - ti )



Example: Raynaud’s theorem for split genus 2 curves

Let P = (±
p
↵i , 0). We have the following diagram relating torsion points of

X in its Jacobian via jP to preperiodic points on P1
⇥ P1:

If t1, t2 2 Q and t1 6= t2, then the diagonal cannot be preperiodic for (ft1 , ft2),
so jP(X ) \ J(X )tor is finite.

Question (Quantitative dynamical Manin-Mumford)

Suppose f , g : P1
! P1

with hf 6= hg . How large can

|Preper(f ) \ Preper(g)|

be?
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Example: Raynaud’s theorem for split genus 2 curves
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Uniformity in the dynamical Manin-Mumford conjecture

Answer: as large as we want, if we allow the degrees of f , g to grow.

f (z) = z(z � 1)(z � 2) · · · (z � n) g(z) = z
2(z � 1)(z � 2) · · · (z � n)

Conjecture (DeMarco-K.-Ye ’20)

Fix d � 2. There exists a uniform constant Bd so that for all f , g : P1
! P1

of

degree d ,

|Prep(f ) \ Prep(g)|  Bd

whenever hf 6= hg .

By [DeMarco-K.-Ye ’19, ’20], this conjecture holds for:

f (z) = z
2 + c1, g(z) = z

2 + c2

f (z) = ft1(z), g(z) = ft2(z), where fti is the Legendre Lattès map
associated to Eti .

Key ingredients: quantitative equidistribution, arithmetic intersection pairing,
degeneration of dynamical measures in non-compact moduli, ...
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Uniformity in the dynamical Manin-Mumford conjecture

Question (geometric uniform Manin-Mumford question)

Fix g � 2. Does there exist a uniform constant B = B(g) so that for all curves

X of genus g ,

|j(X ) \ J(X )tor|  B

for any Abel-Jacobi embedding j?

Coleman, Hrushovski, Katz-Rabino↵-Zureick-Brown, Dimitrov-Gao-Habegger...

In the 2-dimensional family L2 := {y
2 = x

6
� rx

4 + sx
2
� 1} of genus 2 curves,

the answer by D-K-Y is YES.

Question (uniform dynamical Manin-Mumford conjecture)

Fix N � 1, d � 2, e � 1. Does there exist a uniform bound B = B(N, d , e) so
that whenever f : PN

! PN
is a degree d morphism and X ⇢ PN

an algebraic

subvariety of degree e,

deg(Prep(f ) \ X )  B?
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Lower bounds on the intersection pairing

Let f , g be degree d rational maps of P1 defined over a number field K with
adelic measures µf , µg , respectively. Assume for simplicity that
1 2 Prep(f ) \ Prep(g). We define the height pairing of f and g to be

hf · hg :=
1
2

X

v2MK

nv

✓Z

P1,anv

(�f ,v � �g,v ) dµg,v +

Z

P1,anv

(�g,v � �f ,v ) dµf ,v

◆
.

hf · hg = 0 i↵ hf = hg ; more generally, the pairing gives a quantitative
measure of the di↵erence between the two adelic height functions.

Theorem (DKY)

There exists a positive constant � > 0 so that for all t1 6= t2 2 Q \ {0, 1}, the
Legendre Lattès maps ft1 and ft2 satisfy

hft1
· hft2

� �.
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Lower bounds on the intersection pairing
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Lower bounds on the intersection pairing

Proposition (DeMarco-K.-Nguyen-Tucker-Ye)

Given a dynamical height h, let

S(h) := {A 2 PSL2(Q) : h � A = h}.

If S(h) is finite, then there exists ✏h so that for all PSL2(Q) \ S(h),

h · (h � A) � ✏h.

Question

Fix d � 2. Does there exist a constant �d > 0 so that for all f , g degree d

morphisms of P1
with S(hf ), S(hg ) finite,

hf · hg � �d?
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Moving to moduli
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The end

***pics***
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