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I. Weil’s Trichotomy



Analogy between Function Fields and Number Fields

Structural similarity:
F ∼ k(X ),

where F is an algebraic number field and X is a smooth projective
curve over a finite field k = Fq, q = pn.

Also,
Spec(OF ) r T ∼ X r S

S ,T finite sets of closed points (possibly empty).

A better analogy is

C∗(Spec(OF ) r T ) ∼ C∗(X r S),

where C∗ are suitable categories of sheaves with conditions ∗ that
might need adjustment.



Analogy between Function Fields and Number Fields

For example, if C is a category of Q`-sheaves for ` 6= p odd, then
roughly

C(OF )sm ∼ C(X )sm,

where the superscript refers to ‘lisse’ Q`-sheaves satisfying
crystalline conditions on the left at places dividing `.



Analogy between Function Fields and Number Fields

Weil remarks that the analogy between F and k(X ) is

so strict and obvious that there is neither an argument
nor a result in arithmetic that cannot be translated
almost word for word to the function fields.

Substantial consequences, e.g.

–Riemann hypothesis for varieties over finite fields;
–Langlands correspondence for function fields;
–The Fundamental Lemma;
–Weight monodromy conjecture for complete intersections.



Trichotomy (‘Rosetta Stone’)

Weil believed k(X ) to be an intermediate point in a bridge linking
F and

C(Σ),

the field of meromorphic functions on a compact smooth Riemann
surface Σ:

F ∼ k(X ) ∼ C(Σ).

However, his sense of the the similarity between k(X ) and C(Σ) is
expressed more cautiously:

The distance is not so large that a patient study would
not teach us the art of passing from one to the other, and
to profit in the study of the first from knowledge acquired
about the second.

Of course the analogy k(X ) ∼ C(Σ) is not quite right.



Trichotomy: Correction

A better analogy is
k̄(X ) ∼ C(Σ),

where k̄(X ) is the field of rational functions on X̄ , the base-change
of X to the algebraic closure k̄ of k .

Thus, we actually have two separate analogies

k̄(X ) ∼ C(Σ)

F ∼ k(X )

How to extend these to trichotomies

? ∼ k̄(X ) ∼ C(Σ)

F ∼ k(X ) ∼?

Will focus today mostly on the second.



Trichotomy: Correction

Note that
X̄ ∼ Σ,

an analogy of geometric objects and not just fields. Then we have

X̄ ⊂ - X

Spec(k̄)
?

- Spec(k)
?
∼ S1



Trichotomy, Correction

We see that X itself is analogous to a fibered three manifold

Σ ⊂ - M

1
?

- S1
?

with fibre Σ.

This is compatible with an analogy between Spec(OF ) and a
three-manifold, not necessarily fibered, due to Mazur. In short, the
original analogy between function fields and number fields was also
three-dimensional in nature.



II. Quantum Mechanics and Path Integrals



Schroedinger’s Equation
Time evolution in quantum mechanics is expressed by the
differential equation

dψ

dt
= −iHψ

Here, ψ is a time-dependent vector in a Hilbert space H, while H is
a self-adjoint operator called the Hamiltonian, representing energy.

When the space of classical states is T ∗Σ for some manifold Σ,
often

ψ ∈ H = L2(Σ)

H is the quantisation of the symplectic manifold T ∗Σ.

Time evolution can also be expressed via an integral kernel:

[e−iHTψ](x) =

∫
KT (x , y)ψ(y)dy

for some kernel function Kt(x , y) when you start with the initial
condition ψ.



Schroedinger’s Equation: Path Integral

Path integral interpretation:

Kt(x , y) =

∫
P(x ,y)

e iA(q)dq,

where A(q) is the classical action defined on paths

P(x , y) := {q : [0, t] - Σ | q(0) = y , q(t) = x}



Schroedinger’s Equation: Path Integral

For example, for a single particle, we might have

A(q) =

∫ T

0
[(m/2)q′(t)2 − V (q(t))]dt,

for some potential function V on Σ.

The classical Hamiltonian in this case is

h(q, p) = (1/2m)p2 + V (q),

while the quantum Hamiltonian is the operator

H = (−1/2m)∆ + V (q)

acting on L2(Σ).



Schroedinger’s Equation: Path Integral
The usual interpretation of the kernel is as matrix coefficients, so
one has informally

Tr(e−iHT ) =

∫
KT (x , x)dx .

But
KT (x , x) =

∫
P(x ,x)

e iA(γ)dγ

an integral over loops based as x .

Hence,

Tr(e−iHT ) =

∫ ∫
P(x ,x)

e iA(q)dqdx =

∫
Ω
e iA(q)dq,

the last being an integral over all loops

S1 - Σ.



Schroedinger’s Equation: Path Integral

Physicists tend to assume that you can put T = −iβ, leading to

Tr(e−βH) =

∫ ∫
P(x ,x)

e−S(q)dqdx =

∫
Ω
e−S(q)dq,

for a function S(q) call the Euclidean action.

With this substitution, this is called the partition function of the
system.



Path Integrals: Twists

Maps from S1 to Σ are sections of the trivial bundle

S1 × Σ - S1.

Will interpret integral over a space of sections of a non-trivial fibre
bundle

M - S1

In fact, write
M = ([0,T ]× Σ)/F ,

the mapping cylinder, where the monodromy map F : Σ - Σ is
used to glue T × Σ to 0× Σ.



Path Integrals: Twists
Sections can be identified with c : [0,T ] - Σ such that
Fc(T ) = c(0) or c(T ) = F−1c(0).

Integral over sections:∫ ∫
P(F−1x ,x)

e−iA(c)dcdx .

Recall that ∫
P(F−1x ,x)

e iA(c)dc = KT (F−1x , x))

where KT (x , y) is the integral kernel of the operator e−iTH acting
on L2(Σ).

That is,

[e−iTHψ](x) =

∫
KT (x , y)ψ(y)dy .



Path Integrals: Twists

The diffeomorphism F acts on functions as

Fψ(x) = ψ(F−1x).

Hence,

[Fe−iTHψ](x) = [e−iTHψ](F−1x) =

∫
KT (F−1x , y)ψ(y)dy .

That is, KT (F−1x , y) is the integral kernel for the operator

Fe−iTH .



Path Integrals: Twists

Therefore,

Tr(Fe−iTH) =

∫
KT (F−1x , x)dx =

∫ ∫
P(F−1x ,x)

e iA(c)dcdx ,

=

∫
F
e iA(s)ds

an integral over the space F of sections of M - S1.

When the theory is topological so that the Hamiltonian is zero, we
get

Tr(F ) =

∫
F
e iA(s)ds.



More on Quantum Hilbert Spaces

When the space of classical states is a Kaehler manifold X
(symplectic, Riemannian, complex in a compatible way), often have
geometric quantisation, where

H = Γ(X ,L)

for some holomorphic line bundle L.

For example, when X = R2 = C, could take

H = L2(R, dx)

or
H = L2

hol(C, e−|z|
2
idzdz̄).



III. Return to Trichotomy



Return to Trichotomy

X/Fq, a smooth projective curve over a finite field.

X ∼ M ' (Σ× [0, 1])/f ,

where f : Σ ' Σ is a monodromy diffeomorphism.

The analogy is that

X ∼ (X̄ × [0, 1])/Frq.

Similarly, for the Jacobian,

J ∼ (J̄ × [0, 1])/Frq.

The Jacobian J̄ arises as the state space for many kinds of
quantum field theories.



Trichotomy: Hilbert Space

Let Y be a lift of X to W = W (k).

Let L - JY a theta line bundle on the Jacobian of Y , giving a
principal polarisation.

Let N be an odd prime such that q ≡ 1 mod N and

H := Γ(JY , L
N)⊗ C



Trichotomy: Hilbert Space

The vector space H is acted on by the finite Heisenberg group with
centre µN :

HeisN = µN × J[N]

with group structure given by

(λ, a) ◦ (µ, b) = (〈a, b〉1/2λµ, a + b).

It is the unique irreducible representation of HeisN with µN acting
as scalar multiplication via identity character.

Thus, H is the quantisation of the symplectic vector space J[N].



Trichotomy: Hilbert Space

There is also an action of the finite symplectic group of J[N]
(Gurevich and Hadani).

The Frobenius Frq acts on J[N] by symplectic transformations, so
that Frq acts on H.

Formula (with Y. Cheng, A. Venkatesh):

Assume either (i) the Frobenius action on J[N] is semi-simple and√
−1 ∈ Fq, or (ii) there is a Lagrangian subspace in J[N] stabilised

by Frq. Then
Tr(Frq|H) = ±

√
|Cl(X )[N]|



Trichotomy: Application
Proof of Formula:

Assume there is a Lagrangian subspace L ⊂ J[N].

H is the unique (up to almost unique isomorphism) irreducible
representation of HeisN with identity central character.

Thus,
H ' CLo = Fun(J[N]/L,C),

where Lo denotes L with some fixed basis of ∧topL. Hadani and
Gurevich show that there are canonical isomorphisms

TLo ,(L′)o : CLo ' C(L′)o ,

for any pair of oriented Lagrangians.

This is used to define the action of the symplectic group: Given
g ∈ Sp(J[N]),

CLo '◦g
−1

CgLo 'T(gLo ),Lo CLo .



Trichotomy: Application
Proof of Formula (continued):

When gL = L, then Tg(Lo),Lo = ±1. Thus,

Tr(Frq|H)) = ±Tr(Frq|CL) = ±Tr(Frq|Fun(L′,C)),

where L′ ⊂ J[N] is a complementary subspace.

Easy to see that

Tr(Frq|Fun(L′,C)) = |(L′)Frq |.

Via duality given by the Weil pairing

|(L′)Frq | = |LFrq |,

so that

|(L′)Frq | =
√
|(L× L′)Frq | =

√
|J[N]Frq | =

√
|Cl(X )[N]|.



IV. An Arithmetic Path Integral



Arithmetic Path Integral

Once again,
X

Spec(Fq)
?

is a smooth projective curve and

J

Spec(Fq)
?

is its Jacobian.



Arithmetic Path Integral

Once again,
X

Spec(Fq)
?

is a smooth projective curve and

J[N]

Spec(Fq)
?

is a finite group scheme over Fq.



Arithmetic Path Integral

A rational point γ ∈ J[N](Fq) is a section of the ’fibre bundle over
S1’

J[N]

Spec(Fq)
?

γ

6

Will define an ’arithmetic action’

A : J[N](Fq) - 1
N
Z/Z

Recall that µN ⊂ Fq. Choose an isomorphism µN ' 1
NZ/Z.



Arithmetic Path Integral

There is the reciprocity map

rec : J(Fq) = CH0(X )0 - πab1 (X )0,

where the target corresponds to

0 - πab1 (X )0 - πab1 (X ) - Gal(F̄q/Fq) - 0.

Hence, also

rec : J(Fq)[N] = CH0(X )0[N] - πab1 (X )0[N].



Arithmetic Path Integral

However, γ ∈ J(Fq)[N] also defines a class in

cγ ∈ H1(X ,
1
N
Z/Z)/H1(Spec(Fq),

1
N
Z/Z).

This is because γ determines a line bundle Lγ on X such that

LNγ 'f OX .

generating a 1
NZ/Z-torsor

cγ = {y ∈ Lγ | f (yN) = 1.}.

H1(X ,
1
N
Z/Z) = Hom(π1(X )ab,

1
N
Z/Z)



Arithmetic Path Integral

Thus, we can define the quadratic function

A(γ) := cγ(rec(γ))

and ’path integral’ ∑
γ∈J[N](Fq)

e2πiA(γ)

Theorem (with H. Chung, D. Kim G. Pappas, J. Park, H. Yoo
supplemented by Y. Cheng)

∑
γ∈J[N](Fq)

e2πiA(γ) =
√
|J(Fq)[N]|

(
det(A)

N

)
[i (N−1)2/4]dim(J(Fq)[N]).



Arithmetic Path Integral: Comments

Note that
Tr(F |H) = ±

∑
γ∈J[N](Fq)

e iA(γ)

Proof of formula is a simple consequence of result of Neretin on
Gaussian integrals over finite fields.

Compare to ∫
e−x

TAxdnx =
πn/2√
det(A)

.

Finite field case reduces to

p−1∑
k=1

(
k

p

)
e2πi/k =

√(
−1
p

)
p.


