Mass formulae for supersingular abelian varieties

Valentijn Karemaker
Utrecht University

VaNTAGe seminar
January 18, 2022

Introduction: why abelian varieties over finite fields?

Elliptic curves

Abelian varieties

Jacobians

Over finite fields:

- Explicit description of ISOGENY CLASSES.
- Amenable to computations.
- Useful stratifications of \mathcal{A}_{g}.

Finite fields

Definition

Let \mathbb{F}_{q} be the finite field of cardinality $q=p^{r}$, where p is a prime.

Facts about finite fields:

- For every prime p and integer $r \geq 1$, there is a unique finite field $\mathbb{F}_{p^{r}}$. Also, the cardinality of any finite field is p^{r} for some prime p and integer $r \geq 1$.
- We have field extensions $\mathbb{F}_{q} \subseteq \mathbb{F}_{q^{m}}$ for any $m \geq 1$.
- All elements $x \in \mathbb{F}_{q}$ satisfy $x^{q}=x$.

Elliptic curves: definition

Definition (elliptic curve)

An elliptic curve is a genus 1 projective curve

$$
E: y^{2} z+a x y z+b y z^{2}=x^{3}+c x^{2} z+d x z^{2}+e z^{3}
$$

(where in our case, $a, b, c, d, e \in \mathbb{F}_{q}$), with a marked point \mathcal{O} ("at infinity"), whose points form a group.

Figure: Adding points on an elliptic curve over \mathbb{R}.

Elliptic curves: points over finite fields

Definition $\left(E\left(\mathbb{F}_{q}\right)\right)$

Let $E\left(\mathbb{F}_{q^{m}}\right)=\left\{\right.$ points $(x: y: z)$ on E / \mathbb{F}_{q} defined over $\left.\mathbb{F}_{q^{m}}\right\}$.

Use the Frobenius morphism ϕ of $E / \mathbb{F}_{q^{m}}$:

$$
\phi((x: y: z))=\left(x^{q^{m}}: y^{q^{m}}: z^{q^{m}}\right) .
$$

Then

$$
E\left(\mathbb{F}_{q^{m}}\right)=\left\{\text { fixed points of } \phi / \mathbb{F}_{q^{m}}\right\} .
$$

Elliptic curves: zeta function

Definition (Weil polynomial)

The Weil polynomial $P_{\phi}\left(E / \mathbb{F}_{q}, T\right) \in \mathbb{Z}[T]=(T-\alpha)(T-\bar{\alpha})$ is the characteristic polynomial of ϕ / \mathbb{F}_{q}.
(1) (Riemann hypothesis) $|\alpha|=\sqrt{q}$.
(2) (Weil conjectures) $\left|E\left(\mathbb{F}_{q^{m}}\right)\right|=\left(1-\alpha^{m}\right)\left(1-\bar{\alpha}^{m}\right)$ for all $m \geq 1$
(3) Honda-Tate theory) α determines E up to isogeny.

Definition (Zeta function)

The zeta function of an elliptic curve E / \mathbb{F}_{q} is

$$
Z\left(E / \mathbb{F}_{q}, T\right)=\exp \left(\sum_{m \geq 1}\left|E\left(\mathbb{F}_{q^{m}}\right)\right| \frac{T^{m}}{m}\right)=\frac{(1-\alpha T)(1-\bar{\alpha} T)}{(1-T)(1-q T)}
$$

Elliptic curves: p-torsion

Definition (p-torsion, ordinary, supersingular)
We have

$$
E[p]\left(\overline{\mathbb{F}}_{q}\right) \simeq \begin{cases}\mathbb{Z} / p \mathbb{Z} & \text { if } E \text { is ordinary } \\ 0 & \text { if } E \text { is supersingular }\end{cases}
$$

Abelian varieties: definition and zeta function

Definition (abelian variety)

An abelian variety is a non-singular projective group variety.
The zeta function of an abelian variety X / \mathbb{F}_{q} of dimension g

$$
Z\left(X / \mathbb{F}_{q}, T\right)=\exp \left(\sum_{m \geq 1}\left|X\left(\mathbb{F}_{q^{m}}\right)\right| \frac{T^{m}}{m}\right)=\frac{P_{1}(T) \ldots P_{2 g-1}(T)}{P_{2}(T) \ldots P_{2 g}(T)}
$$

is determined by the Weil polynomial

$$
P_{\phi}\left(X / \mathbb{F}_{q}, T\right)=T^{2 g} P_{1}\left(T^{-1}\right)=\prod_{i=1}^{2 g}\left(T-\alpha_{i}\right)
$$

(1) (Riemann hypothesis) $\left|\alpha_{i}\right|=\sqrt{q}$.
(2) (Weil conjectures) $\left|X\left(\mathbb{F}_{q^{m}}\right)\right|=\prod_{i=1}^{2 g}\left(1-\alpha_{i}^{m}\right)$ for all $m \geq 1$.
(3) (Honda-Tate theory) The α_{i} determine X up to isogeny

Abelian varieties: p-torsion

Definition (abelian variety)

An abelian variety is a non-singular projective group variety.
The zeta function of an abelian variety X / \mathbb{F}_{q} of dimension g

$$
Z\left(X / \mathbb{F}_{q}, T\right)=\exp \left(\sum_{m \geq 1}\left|X\left(\mathbb{F}_{q^{m}}\right)\right| \frac{T^{m}}{m}\right)=\frac{P_{1}(T) \ldots P_{2 g-1}(T)}{P_{2}(T) \ldots P_{2 g}(T)}
$$

is determined by the Weil polynomial

$$
P_{\phi}\left(X / \mathbb{F}_{q}, T\right)=T^{2 g} P_{1}\left(T^{-1}\right)=\prod_{i=1}^{2 g}\left(T-\alpha_{i}\right)
$$

Definition (ordinary, supersingular)
We say X is $\left\{\begin{array}{l}\text { ordinary } \\ \text { supersingular }\end{array}\right.$ if $\left\{\begin{array}{l}\left|X[p]\left(\overline{\mathbb{F}}_{q}\right)\right|=p^{g} \\ X \sim E^{g} \text { with } E \text { supersingular }\end{array}\right.$

Special case: Jacobian varieties

Let C be a smooth projective connected curve over \mathbb{F}_{q} of genus g. We can construct a g-dimensional abelian variety $\operatorname{Jac}(C)$, called the Jacobian of C. The zeta function of C

$$
Z\left(C / \mathbb{F}_{q}, T\right)=\exp \left(\sum_{m \geq 1}\left|C\left(\mathbb{F}_{q^{m}}\right)\right| \frac{T^{m}}{m}\right)=\frac{P(T)}{(1-T)(1-q T)}
$$

is determined by the Weil polynomial of $\operatorname{Jac}(C)$ through

$$
P_{\phi}\left(\operatorname{Jac}(C) / \mathbb{F}_{q}, T\right)=T^{2 g} P\left(T^{-1}\right)=\prod_{i=1}^{2 g}\left(T-\alpha_{i}\right)
$$

$\operatorname{Jac}(\mathrm{C})$

Moduli space \mathcal{A}_{g}

Let k be an algebraically closed field of characteristic p.

Definition

Let \mathcal{A}_{g} be the moduli space over k of principally polarised g-dimensional abelian varieties.
\mathcal{A}_{g} is irreducible of dimension $\frac{g(g+1)}{2}$. Often write $X=(X, \lambda)$.
For $X \in \mathcal{A}_{g}(k)$, consider its p-divisble group $X\left[p^{\infty}\right]$.
The isogeny class of $X\left[p^{\infty}\right]$ uniquely determines a Newton polygon.
\Rightarrow Newton stratification of \mathcal{A}_{g}.
The isogeny class of $X\left[p^{\infty}\right]$ also determines the p-RANK f of X :
$|X[p](k)|=p^{f}$, so $0 \leq f \leq g$.
$\Rightarrow p$-rank stratification of \mathcal{A}_{g}.

Moduli space \mathcal{S}_{g}

Recall: $X \in \mathcal{A}_{g}(k)$ is supersingular if $X \sim E^{g}$ with $E[p](k)=0$.

Definition

Let \mathcal{S}_{g} be the moduli space over k of principally polarised g-dimensional supersingular abelian varieties.

- All supersingular abelian varieties have the same Newton polygon, i.e., \mathcal{S}_{g} is a Newton stratum of \mathcal{A}_{g}.
- A supersingular abelian variety has p-rank zero.
- Every component of \mathcal{S}_{g} has dimension $\left\lfloor\frac{g^{2}}{4}\right\rfloor$.

The a-number stratification

Definition

Let $X \in \mathcal{A}_{g}(k)$. Its a-number is $a(X):=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, X\right)$. It depends on the isomorphism class of $X[p]$.

For $X \in \mathcal{A}_{g}(k)$ with p-rank f, we have $0 \leq a(X) \leq g-f$.
For $X \in \mathcal{S}_{g}(k)$, we have $1 \leq a(X) \leq g$.
\Rightarrow a-number stratification of $\mathcal{S}_{g}=\coprod_{a=1}^{g} \mathcal{S}_{g}(a)$.

- Every component of $\mathcal{S}_{g}(a)$ has dimension $\left\lfloor\frac{g^{2}-a^{2}+1}{4}\right\rfloor$.
- $a(X)=g \Leftrightarrow X$ is Superspecial, i.e., $X \simeq E^{g}$.

The superspecial stratum $\mathcal{S}_{g}(g)$ is zero-dimensional.

The Ekedahl-Oort stratification

For $X \in \mathcal{A}_{g}(k)$, consider its p-torsion $X[p]$.
Its isomorphism class is classified by an element of the Weyl group W_{g} of $\mathrm{Sp}_{2 g}$, or equivalently by an ELEMENTARY SEQUENCE φ.
\Rightarrow Ekedahl-Oort stratification of $\mathcal{A}_{g}=\coprod_{\varphi} \mathcal{S}_{\varphi}$.

- Ekedahl-Oort stratification refines the p-rank stratification.
- Also consider Ekedahl-Oort stratification $\coprod_{\varphi}\left(\mathcal{S}_{\varphi} \cap \mathcal{S}_{g}\right)$ of \mathcal{S}_{g}. Combinatorial criterion determines when $\mathcal{S}_{\varphi} \subseteq \mathcal{S}_{g}$. These strata are reducible; all other strata are irreducible.
- The a-number is constant on Ekedahl-Oort strata.

$$
\Rightarrow \mathcal{S}_{g}(a)=\coprod_{\varphi}\left(\mathcal{S}_{\varphi} \cap \mathcal{S}_{g}\right)
$$

A foliation of \mathcal{S}_{g}

Want to consider p-divisible groups up to isomorphism

Definition

For $x=\left(X_{0}, \lambda_{0}\right) \in \mathcal{S}_{g}(k)$, define the central leaf

$$
\Lambda_{x}=\left\{(X, \lambda) \in \mathcal{S}_{g}(k):(X, \lambda)\left[p^{\infty}\right] \simeq\left(X_{0}, \lambda_{0}\right)\left[p^{\infty}\right]\right\}
$$

- Each Λ_{x} is finite, but determining its size is very hard.
- Let G_{x} / \mathbb{Z} be the automorphism group scheme, such that

$$
G_{x}(R)=\left\{h \in\left(\operatorname{End}\left(X_{0}\right) \otimes_{\mathbb{Z}} R\right)^{\times}: h^{\prime} h=1\right\}
$$

for any commutative ring R. Then there is a bijection

$$
\Lambda_{x} \simeq G_{x}(\mathbb{Q}) \backslash G_{x}\left(\mathbb{A}_{f}\right) / G_{x}(\widehat{\mathbb{Z}})
$$

A finer stratification?

$$
\Lambda_{x}=\left\{(X, \lambda) \in \mathcal{S}_{g}(k):(X, \lambda)\left[p^{\infty}\right] \simeq\left(X_{0}, \lambda_{0}\right)\left[p^{\infty}\right]\right\} .
$$

Goal

For any $x \in \mathcal{S}_{g}$, compute the mass

$$
\operatorname{Mass}\left(\Lambda_{x}\right)=\sum_{x^{\prime} \in \Lambda_{x}}\left|\operatorname{Aut}\left(x^{\prime}\right)\right|^{-1}
$$

N.B. $\operatorname{Mass}\left(\Lambda_{x}\right)=\operatorname{vol}\left(G_{x}(\mathbb{Q}) \backslash G_{x}\left(\mathbb{A}_{f}\right)\right)=\operatorname{Mass}\left(G_{x}, G_{x}(\widehat{\mathbb{Z}})\right)$.
\Rightarrow "Mass stratification" of \mathcal{S}_{g}.
Expected to refine the a-number and Ekedahl-Oort stratifications.

How do we describe \mathcal{S}_{3} ?

We now focus on the case where $g=3$.
Let $E / \mathbb{F}_{p^{2}}$ be a supersingular elliptic curve with $\pi_{E}=-p$.
Let μ be any principal polarisation of E^{3}.

Definition

A polarised flag type quotient (PFTQ) with respect to μ is a chain

$$
\left(E^{3}, p \mu\right)=:\left(Y_{2}, \lambda_{2}\right) \xrightarrow{\rho_{2}}\left(Y_{1}, \lambda_{1}\right) \xrightarrow{\rho_{1}}\left(Y_{0}, \lambda_{0}\right)
$$

such that $\operatorname{ker}\left(\rho_{1}\right) \simeq \alpha_{p}, \operatorname{ker}\left(\rho_{2}\right) \simeq \alpha_{p}^{2}$, and $\operatorname{ker}\left(\lambda_{i}\right) \subseteq \operatorname{ker}\left(V^{j} \circ F^{i-j}\right)$ for $0 \leq i \leq 2$ and $0 \leq j \leq\lfloor i / 2\rfloor$.

Let \mathcal{P}_{μ} be the moduli space of PFTQ's.
It is a two-dimensional geometrically irreducible scheme over $\mathbb{F}_{p^{2}}$.

How do we describe \mathcal{S}_{3} ?

An PFTQ w.r.t. μ is $\left(E^{3}, p \mu\right)=:\left(Y_{2}, \lambda_{2}\right) \xrightarrow{\rho_{2}}\left(Y_{1}, \lambda_{1}\right) \xrightarrow{\rho_{1}}\left(Y_{0}, \lambda_{0}\right)$.
It follows that $\left(Y_{0}, \lambda_{0}\right) \in \mathcal{S}_{3}$, so there is a projection map

$$
\begin{aligned}
\operatorname{pr}_{0}: \mathcal{P}_{\mu} & \rightarrow \mathcal{S}_{3} \\
\left(Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}\right) & \mapsto\left(Y_{0}, \lambda_{0}\right)
\end{aligned}
$$

such that $\prod_{\mu} \mathcal{P}_{\mu} \rightarrow \mathcal{S}_{3}$ is surjective and generically finite. Let $C: t_{1}^{p+1}+t_{2}^{p+1}+t_{3}^{p+1}=0$ be a Fermat curve in \mathbb{P}^{2}. It has genus $p(p-1) / 2$ and admits a left action by $U_{3}\left(\mathbb{F}_{p}\right)$.
Then $\pi: \mathcal{P}_{\mu} \simeq \mathbb{P}_{C}(\mathcal{O}(-1) \oplus \mathcal{O}(1)) \rightarrow C$ is a \mathbb{P}^{1}-bundle.
There is a section $s: C \rightarrow T \subseteq \mathcal{P}_{\mu}$.

Upshot

For each (X, λ) there exist a μ and a $y \in \mathcal{P}_{\mu}$ such that $\operatorname{pr}_{0}(y)=[(X, \lambda)]$.
This y is uniquely characterised by a pair (t, u) with $t=\left(t_{1}: t_{2}: t_{3}\right) \in C(k)$ and $u=\left(u_{1}: u_{2}\right) \in \pi^{-1}(t) \simeq \mathbb{P}_{t}^{1}(k)$.

The structure of \mathcal{P}_{μ}

$$
\pi: \mathcal{P}_{\mu} \simeq \mathbb{P}_{C}(\mathcal{O}(-1) \oplus \mathcal{O}(1)) \rightarrow C \text { has section } s: C \rightarrow T \subseteq \mathcal{P}_{\mu}
$$

Definition

Recall that X / k has a-number $a(X)=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, X\right)$.
For a PFTQ $y=\left(Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}\right)$, we say $a(y)=a\left(Y_{0}\right)$.

- For a supersingular threefold X we have $a(X) \in\{1,2,3\}$, and $a(X)=3 \Leftrightarrow X$ is superspecial.
- If $y \in T$, then $a(y)=3$.
- For $t \in C(k)$, we have $t \in C\left(\mathbb{F}_{p^{2}}\right) \Leftrightarrow a(y) \geq 2$ for any $y \in \pi^{-1}(t)$.
- For $y \in \mathcal{P}_{\mu}$, we have $a(y)=1 \Leftrightarrow y \notin T$ and $\pi(y) \notin C\left(\mathbb{F}_{p^{2}}\right)$.

The structure of \mathcal{P}_{μ} : a picture

$C\left(F_{p^{2}}\right)$

Using PFTQ's to construct minimal isogenies

Any supersingular abelian variety X admits a minimal isogeny

$$
\varphi: Y \rightarrow X
$$

from a superspecial abelian variety $Y \simeq E^{g}$.

Idea

Construct the minimal isogeny for X from its corresponding PFTQ

$$
Y_{2} \xrightarrow{\rho_{2}} Y_{1} \xrightarrow{\rho_{1}} Y_{0}=X .
$$

(If $Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}$ is a PFTQ, then Y_{2} is superspecial!)

- If $a(X)=3$ then X is superspecial and $\varphi=\mathrm{id}$.
- If $a(X)=2$, then $a\left(Y_{1}\right)=3$ and $\varphi=\rho_{1}$ of degree p.
- If $a(X)=1$, then $\varphi=\rho_{1} \circ \rho_{2}$ of degree p^{3}.

From minimal isogenies to masses

Let $x=(X, \lambda)$ be supersingular and $\varphi: Y \rightarrow X$ a minimal isogeny. Write $\tilde{x}=\left(Y, \varphi^{*} \lambda\right)$. Recall automorphism group scheme G_{x}.

Through φ, we may view both $G_{\tilde{x}}(\widehat{\mathbb{Z}})$ and $\varphi^{*} G_{x}(\widehat{\mathbb{Z}})$ as open compact subgroups of $G_{\tilde{x}}\left(\mathbb{A}_{f}\right)$, which differ only at p. Hence:

Lemma

$$
\begin{aligned}
\operatorname{Mass}\left(\Lambda_{x}\right) & =\frac{\left[G_{\tilde{x}}(\widehat{\mathbb{Z}}): G_{\tilde{x}}(\widehat{\mathbb{Z}}) \cap \varphi^{*} G_{x}(\widehat{\mathbb{Z}})\right]}{\left[\varphi^{*} G_{x}(\widehat{\mathbb{Z}}): G_{\tilde{x}}(\widehat{\mathbb{Z}}) \cap \varphi^{*} G_{x}(\widehat{\mathbb{Z}})\right]} \cdot \operatorname{Mass}\left(\Lambda_{\tilde{x}}\right) \\
& =\left[\operatorname{Aut}\left(\left(Y, \phi^{*} \lambda\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right] \cdot \operatorname{Mass}\left(\Lambda_{\tilde{x}}\right)
\end{aligned}
$$

So we can compare any supersingular mass to a superspecial mass.

From minimal isogenies to masses

Moreover, the superspecial masses are known in any dimension!
Lemma [Ekedahl, Harashita, Hashimoto, Ibukiyama, Yu]
Let $\tilde{x}=(Y, \lambda)$ be a superspecial abelian threefold.

- If λ is a principal polarisation, then

$$
\operatorname{Mass}\left(\Lambda_{\tilde{\chi}}\right)=\frac{(p-1)\left(p^{2}+1\right)\left(p^{3}-1\right)}{2^{10} \cdot 3^{4} \cdot 5 \cdot 7}
$$

- If $\operatorname{ker}(\lambda) \simeq \alpha_{p} \times \alpha_{p}$, then

$$
\operatorname{Mass}\left(\Lambda_{\tilde{\chi}}\right)=\frac{(p-1)\left(p^{3}+1\right)\left(p^{3}-1\right)}{2^{10 \cdot 3^{4} \cdot 5 \cdot 7}} .
$$

It remains to compute $\left[\operatorname{Aut}\left(\left(Y, \phi^{*} \lambda\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]$.

The case $a(X)=2$

Let $x=(X, \lambda) \in \mathcal{S}_{3}$ such that $a(X)=2$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair $t \in C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right)$.
We need to compute $\left[\operatorname{Aut}\left(\left(Y_{1}, \lambda_{1}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]$.
There are reduction maps

$$
\begin{aligned}
\operatorname{Aut}\left(\left(Y_{1}, \lambda_{1}\right)\left[p^{\infty}\right]\right) & \rightarrow \mathrm{SL}_{2}\left(\mathbb{F}_{p^{2}}\right) \\
\operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right) & \rightarrow \mathrm{SL}_{2}\left(\mathbb{F}_{p^{2}}\right) \cap \operatorname{End}(u)^{\times}
\end{aligned}
$$

where
$\operatorname{End}(u)=\left\{g \in M_{2}\left(\mathbb{F}_{p^{2}}\right): g \cdot u \subseteq k \cdot u\right\} \simeq\left\{\begin{array}{l}\mathbb{F}_{p^{4}} \text { if } u \in \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right) ; \\ \mathbb{F}_{p^{2}} \text { if } u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) .\end{array}\right.$

The case $a(X)=2$

```
Let }x=(X,\lambda)\in\mp@subsup{\mathcal{S}}{3}{}\mathrm{ such that }a(X)=2
```



```
t\inC(\mathbb{F}
```

So $\left[\operatorname{Aut}\left(\left(Y_{1}, \lambda_{1}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]=$

$$
\begin{aligned}
& {\left[\operatorname{SL}_{2}\left(\mathbb{F}_{p^{2}}\right): \operatorname{SL}_{2}\left(\mathbb{F}_{p^{2}}\right) \cap \operatorname{End}(u)^{\times}\right]=} \\
& \begin{cases}p^{2}\left(p^{2}-1\right) & \text { if } u \in \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right) ; \\
\left|\operatorname{PSL}_{2}\left(\mathbb{F}_{p^{2}}\right)\right| & \text { if } u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) .\end{cases}
\end{aligned}
$$

Theorem (K.-Yobuko-Yu)

There are two mass strata in $\mathcal{S}_{3}(2)$:

$$
\begin{aligned}
\operatorname{Mass}\left(\Lambda_{x}\right) & =\frac{1}{2^{10} \cdot 3^{4} \cdot 5 \cdot 7} . \\
& \begin{cases}(p-1)\left(p^{3}+1\right)\left(p^{3}-1\right)\left(p^{4}-p^{2}\right) & : u \in \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right) ; \\
2^{-e(p)}(p-1)\left(p^{3}+1\right)\left(p^{3}-1\right) p^{2}\left(p^{4}-1\right) & : u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) .\end{cases}
\end{aligned}
$$

The case $a(X)=1$

Let $x=(X, \lambda) \in \mathcal{S}_{3}$ such that $a(X)=1$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair $t \in C^{0}(k):=C(k) \backslash C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k)$.
We need to compute $\left[\operatorname{Aut}\left(\left(Y_{2}, \lambda_{2}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]$.

Theorem (K.-Yobuko-Yu)

There are three mass strata in $\mathcal{S}_{3}(1)$, determined by the fibres D_{t} of a divisor $D \subseteq C^{0} \times \mathbb{P}^{1}$:

$$
\begin{aligned}
& \operatorname{Mass}\left(\Lambda_{x}\right)=\frac{p^{3}}{2^{10} \cdot 3^{4} \cdot 5 \cdot 7} \\
& \begin{cases}2^{-e(p)} p^{2 d(t)}\left(p^{2}-1\right)\left(p^{4}-1\right)\left(p^{6}-1\right) & : u \notin D_{t} ; \\
p^{2 d(t)}(p-1)\left(p^{4}-1\right)\left(p^{6}-1\right) & : u \in D_{t}, t \notin C\left(\mathbb{F}_{p^{6}}\right) ; \\
p^{6}\left(p^{2}-1\right)\left(p^{3}-1\right)\left(p^{4}-1\right) & : u \in D_{t}, t \in C\left(\mathbb{F}_{p^{6}}\right) .\end{cases}
\end{aligned}
$$

What else can we use all these computations for?

Application: Oort's conjecture

Oort's conjecture

Every generic g-dimensional principally polarised supersingular abelian variety (X, λ) over k of characteristic p has automorphism group $C_{2} \simeq\{ \pm 1\}$.

This fails in general: counterexamples for $(g, p)=(2,2)$ and $(3,2)$.

Theorem (K.-Yobuko-Yu)

When $g=3$, Oort's conjecture holds precisely when $p \neq 2$.

- A generic threefold X has $a(X)=1$. Its PFTQ is characterised by $t \in C^{0}(k)$ and $u \notin D_{t}$.
- Our computations show for such (X, λ) that

$$
\operatorname{Aut}((X, \lambda)) \simeq \begin{cases}C_{2}^{3} & \text { for } p=2 \\ C_{2} & \text { for } p \neq 2\end{cases}
$$

Gauss problem

Recall the central leaf for $x=\left(X_{0}, \lambda_{0}\right) \in \mathcal{S}_{g}(k)$ is defined as

$$
\Lambda_{x}=\left\{(X, \lambda) \in \mathcal{S}_{g}(k):(X, \lambda)\left[p^{\infty}\right] \simeq\left(X_{0}, \lambda_{0}\right)\left[p^{\infty}\right]\right\}
$$

Gauss problem

Determine precisely for which $x \in \mathcal{S}_{g}(k)$ we have that

$$
\left|\Lambda_{x}\right|=1
$$

We can define Λ_{x} for any $x \in \mathcal{A}_{g}(k)$.
Chai proved $\left|\Lambda_{x}\right|$ is finite if and only if $x \in \mathcal{S}_{g}(k)$ is supersingular.

Main result

Theorem (in progress, Ibukiyama-K.-Yu)
Let $x \in \mathcal{S}_{g}$. Then $\left|\Lambda_{x}\right|=1$ if and only if one of the following three cases holds:
(i) $g=1$ and $p \in\{2,3,5,7,13\}$.
(ii) $g=2$ and $p=2,3$.
(iii) $g=3, p=2$ and $a(x) \geq 2$.

The result for $g=1$ was known before and follows from work of Vignéras on class numbers of quaternion algebras. In this case, Λ_{x} is the whole supersingular locus.

The result for $g=2$ was recently proven by Ibukiyama by studying quaternion hermitian groups.

The proof for $g \geq 5$

Let $\Lambda_{g, p^{c}}$ denote the set of isomorphism classes of g-dimensional polarised superspecial abelian varieties (X, λ) whose polarisation λ satisfies $\operatorname{ker}(\lambda) \simeq \alpha_{p}^{2 c}$.
(1) If $x \in \Lambda_{g, p^{c}}$, then $\Lambda_{x}=\Lambda_{g, p^{c}}$.
(2) For every $x \in \mathcal{S}_{g}(k)$ there exists a surjection $\pi: \Lambda_{x} \rightarrow \Lambda_{g, p^{c}}$ for some $0 \leq c \leq\lfloor g / 2\rfloor$.
(3) We know $\operatorname{Mass}\left(\wedge_{g, p^{c}}\right)$ for all $g \geq 1$ and $0 \leq c \leq\left\lfloor\frac{g}{2}\right\rfloor$.

For $g \geq 5$, this yields enough information: using (3), we prove that $\left|\Lambda_{g, p^{c}}\right|>1$ for all p and all $0 \leq c \leq\left\lfloor\frac{g}{2}\right\rfloor$, which by (2) implies that $\left|\Lambda_{x}\right|>1$ always.

Ideas for the proof for $g=3,4$

When $g=3$, we use our mass formula! Together with computations of automorphism groups, this gives the result, since

$$
\operatorname{Mass}\left(\Lambda_{x}\right):=\sum_{x^{\prime} \in \Lambda_{x}}\left|\operatorname{Aut}\left(x^{\prime}\right)\right|^{-1}
$$

When $g=4$, and $x \in \mathcal{S}_{4}(k)$, the surjection $\pi: \Lambda_{x} \rightarrow \Lambda_{g, p^{c}}$ is induced from the minimal isogeny of x.
This allows us to compare $\operatorname{Mass}\left(\Lambda_{x}\right)$ with the appropriate superspecial mass $\operatorname{Mass}\left(\Lambda_{4, p^{c}}\right)$, and $\left|\Lambda_{x}\right|$ with $\left|\Lambda_{4, p^{c}}\right|$.
We prove the theorem for one Ekedahl-Oort stratum at a time.

Thank you for your attention!

