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A classification problem
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Elliptic Curves and Torsion

• Let K a number field, and E/K an elliptic curve.

• E (K ) ∼= Zr ⊕ E (K )tor where E (K )tor is a finite abelian group.

• We will be interested in E (K )tor and E (K )tor.

• Mazur (1975) provides a finite irredundant list classifying
E (Q)tor.

• Sufficient to determine Q-points on modular curves X1(N) for
all N, which parametrise elliptic curves with an N-torsion
point.
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Torsion and Galois representations

• The N-torsion E [N](K ) is a GK -module. Get a representation

ρE ,N : GK ! Aut(E [N]) ∼= GL2(Z/NZ).

• Let HN be the image of ρE ,N .

• Suppose P ∈ E [N](K ) of order N. Since Pσ = P for any
σ ∈ GK , we get HN is of the form(

1 ∗
0 ∗

)
.

Think Γ1(N).
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Modular curves

• Let H ≤ GL2(Z/NZ). We say E has H-level structure if there
exists a twist E ′ of E such that ρE ′,N(GK ) ≤ H up to
conjugation.

• Let XH denote the compactified (coarse) moduli space of
elliptic curves E with level structure H. Call it modular curve
of level H.

• X1(N) is a special example of this phenomenon.

• Let X (N) denote moduli space of elliptic curves with full level
structure, that is H = {Id} ≤ GL2(Z/NZ). Parametrises pairs
(E , (P,Q)) along with isomorphism ⟨P,Q⟩ ∼= (Z/NZ)2.

• We note XH = X (N)/H.
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Open Image theorem

• Consider E [N] for all N, that is consider

E (K )tor = lim −
N

E [N](K ).

Get a representation

ρE : GK ! GL2(Ẑ).

• If E does not have CM, Serre (1972) proved

ρE : GK ! GL2(Ẑ) ∼=
∏
ℓ

GL2(Zℓ)

has open image. Equivalently the image is finite index.
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Program B

• Mazur asks the following question:

• This is hard!

• Consider “vertical” analogue, that is classify images in
GL2(Zℓ).
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Classifying ℓ-adic images

• For E/Q, Rouse and Zureick-Brown classify ℓ-adic images for
ℓ = 2 (2015).

• The classification for ℓ = 13, 17 has also been completed
(2023).

• Rouse, Sutherland, Zureick-Brown compute ℓ-adic images for
ℓ ≤ 37 and suggest a classification for all ℓ (2022).

• Conjectured to be surjective for ℓ > 37, strong evidence due
to Furio–Lombardo (2023).

• Classification of these images is equivalent to finding rational
points on modular curves of level ℓe .

8



Non-split Cartan

• Let ℓ be an odd prime and O be the degree 2 unramified
extension of Zℓ.

• Multiplication by a ∈ O× is a Zℓ-linear map, induces injection

O× ↪! GL2(Zℓ).

• Induces map
(O/ℓe)× ↪! GL2(Zℓ/ℓeZℓ).

The image is Ns(ℓe), the non split Cartan group of level ℓe .

• Let ι be natural involution on O. The extended non-split
Cartan group, Ns+(ℓe) is generated by Ns(ℓe), ι.

• The corresponding modular curve is denoted X+
ns(ℓ

e).

Mazur’s proof crucially uses the fact that Jac(X0(N)) has a rank 0
quotient. This is not true for Jac(X+

ns(N)).
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Geometric moduli interpretation of non-split Cartan

• Let h be the image of a generator of F×
ℓ2

under

F×
ℓ2
↪! GL2(Fℓ).

• For 0 ≤ i ≤ ℓ, let Ci denote the subgroups of E [ℓ](K ) of
cardinality ℓ. For any i , h(Ci ) = Cj for some j .

• A h-oriented necklace is an equivalence class of sequences
[C0, . . .Cℓ] with h(Ci ) = Ci+1.

Figure: An h-oriented necklace
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• If h′ is another generator, bijection between sets of h-oriented
necklace and h′-oriented necklace.

• A necklace is the orbit of an oriented necklace under the
involution w([C0,C1, . . . ,Cℓ]) = [Cℓ, . . . ,C1,C0].

Figure: An h-oriented necklace

Theorem (Rebolledo, Wuthrich)

Xns(ℓ) parametrises elliptic curves E with an oriented necklace,
and X+

ns(ℓ) parametrises elliptic curves with a necklace.
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X+
ns(27)

• After RSZB, the classification for ℓ = 3 was almost complete.
Needed to to determine X+

ns(27)(Q).

• The curve X+
ns(27) has g = r = 12. This is “large” for

computational purposes.

• There are 8 known CM points.

• Known methods don’t seem to work to determine X+
ns(27)(Q).
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Main theorem

Theorem (Balakrishnan, Betts, Hast, J., Müller)

#X+
ns(27)(Q) = 8.

Consequently if E/Q is a non-CM elliptic curve, then im ρE ,3∞ is
one of 47 subgroups of GL2(Z3) of level at most 27 and index at
most 72, as in RSZB Table 3.

• RSZB find a genus 3 quotient X/Q(ζ3). Jac(X ) has rank 6
over Q(ζ3). There are 13 known points.

• Sufficient to compute X (Q(ζ3)).

How do we determine X (Q(ζ3))?
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p-adic methods
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Set Up

• Let K be a number field of degree d , and let X/K be a nice
curve of genus g ≥ 2.

• Assume there is a rational prime p that splits totally in K ,
such that for p|p, X has good reduction at p.

• For 1 ≤ i ≤ d , we let ψi : K ↪! Qp
∼= Kpi be embeddings of K

in Qp.

• Let J be the Jacobian of X , and the rank of J(K ) be r .

• Assume there is a rational point b ∈ X (K ), and embed
X ↪! J, x 7! [x − b] via the Abel-Jacobi map .
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Chabauty–Coleman over Q

• Idea : Consider B := X (Qp) ∩ J(Q) ⊆ J(Qp). Note
B ⊃ X (Q). Chabauty shows r < g ⇒ B finite.

• Let {ωi}gi=1 be holomorphic differentials. Using Coleman
integrals, find g -functionals

fi : J(Q)⊗Qp ! Qp, [P − b] 7!

∫ P

b
ωi .

Since r < g , find vanishing functional.

• Pull back vanishing functional to a non-zero locally analytic
ρ : X (Qp)! Qp. The zeros of ρ contain X (Q).
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(Skim) Quadratic Chabauty over Q
• Assume J(Q)⊗Qp

∼= H0(XQp ,Ω
1)∗ = H0(X ,Ω1)∗ ⊗Qp

(implies r = g), and there exists nice correspondence
Z ⊆ X × X .

• Balakrishnan and Dogra show that there is a computable
non-constant locally analytic function obtained from a p-adic
height

ρZ : X (Qp)! Qp

and a fine set set T ⊂ Qp such that ρZ (X (Q)) ⊆ T .

• The preimage ρ−1
Z (T ) is finite and contains X (Q).

Figure: QC over Q
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Modular Curves and quadratic Chabauty

• For a modular curve X whose Jacobian J is Q-simple, r is a
multiple of g . This follows from J(Q) being an
End(J)-module, which has Z-rank equal g .

• Thus in the case r ̸= 0, Chabauty–Coleman does not apply
directly. Quadratic Chabauty often does!

• For modular curves, Hecke correspondences often provide the
nice correspondence required in the method of Balakrishnan
and Dogra.

• Quadratic Chabauty has been used to determine the rational
points of several modular curves with g ≤ 6.
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Chabauty–Coleman over number fields

• Siksek considers Chabauty–Coleman over number fields by
considering functionals

fi ,j : J(K )⊗Qp ! Qp

[x − b] 7!

∫ ψj (x)

ψj (b)
ψ∗
j ωi .

• Get dg functionals, which can be extended to X (K ⊗Qp).

• Since X (K ⊗Qp) is d-dimensional, need at least d functions
ρi for 1 ≤ i ≤ d such that ρi vanish on K -points.

• Can expect this when r ≤ d(g − 1), but not always true!

• Siksek computes points of a generalised Fermat equation
(2,3,10) using this approach .
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Quadratic Chabauty over number fields
• Assume J(K )⊗Qp

∼= H0(X ,Ω1)∗ ⊗Qp =
∏

p|p H
0(XKp ,Ω

1)∗.
Thus r = dg .

• Need d p-adic heights from which we obtain functions
ρi : X (K ⊗Qp)! Qp and finite sets Ti ⊆ Qp such that
ρi (X (K )) ⊆ Ti .

• Consider B :=
⋂
ρ−1
i (Ti ) and X (K ) ⊆ B.

Figure: QC over quadratic K
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Warning!

Two locally analytic p-adic functions in two variables could vanish
simultaneously on infinitely many points.
Consider A2

Qp
= SpecQp[x1, x2], and

f1 = log(1− x1)− log(1− x2), f2 = log(x1)− log(x2).

Both functions vanish on x1 = x2, so vanishing locus has infinitely
many points!
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p-adic heights

• There exists étale Abel–Jacobi map

X (K )! J(K )⊗Qp
∼= H0(X ,Ω1)∗ ⊗Qp.

• Neková̌r defines a family of bilinear height functions

h : (H0(X ,Ω1)∗ ⊗Qp)
⊗2 ! Qp,

which depend on a choice of

1. Idèle class character χ : A×
K /K

× ! Qp

2. Splittings of the Hodge filtration
H0(Xp,Ω

1)⊗Qp ↪! H1
dR(Xp)⊗Qp for all p|p.

• h decomposes into local heights h =
∑

v hv .
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Heights to ρ

• Given Z , for each point x ∈ X (K ), Balakrishnan and Dogra
construct an element

A(x) := Ab,Z (x) ∈ H0(X ,Ω)∗ ⊗ H0(X ,Ω)∗.

• A(x) corresponds to divisor [x − b] and Chow–Heegner cycle
DZ ,b(x).

• Fix an idèle class character and splitting of Hodge filtration,
and let h be the corresponding p-adic height. We let

ρ : X (K )! Qp

x 7! h(A(x))−
∑
p|p

hp(A(x))

Can extend ρ analytically to X (K ⊗Qp).
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Quadratic Chabauty pair

• Balakrishnan and Dogra (based on work of Kim and
Tamagawa) show the set

T =

∑
v ∤p

hv (X (Kv ))


is finite.

• For v ∤ p, hv takes finitely many values on X (Kv ), and if X
has potentially good reduction at v ∤ p, hv is identically 0.

• Get ρ(X (K )) ⊆ T . We call (ρ,T ) a quadratic Chabauty pair.

• If K = Q, ρ−1(T ) is finite and one can identify
X (Q) ⊆ ρ−1(T ).
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• In the case of number fields, for each Z , we obtain
independent heights corresponding to linearly independent
idèle class characters.

• If rNS is rank of Néron–Severi of J/K , we obtain rNS − 1
linearly independent nice correspondences.

• If r2 is the number of complex places, then we expect to have
r2 + 1 linearly independent idèle class characters.

• Thus we can obtain up to (r2 + 1)(rNS − 1) p-adic heights

• Will compute

B :=
⋂
Z ,χ

ρ−1
Z ,χ(TZ ,χ).
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Finiteness results

• Siksek observes if C/L is such that rL > dL(gL − 1), then for
any extension K/L, the Chabauty–Coleman locus for CK will
still be infinite even if the rank is suitably bounded.

• Dogra exhibits a curve C/K where rL ≤ dL(gL − 1) for all
subfields L ⊆ K , but the Chabauty–Coleman locus is infinite.

• Dogra shows if for all i ̸= j

Hom(JK ,ψi
, JK ,ψj

) = 0,

and rank is suitable bounded by the genus, the
Chabauty–Coleman locus and quadratic-Chabauty locus are
finite.

• See also the work of Hast and Triantafillou.
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Computing with QCNF

• Balakrishnan, Besser, Bianchi and Müller compute integral
points of hyperelliptic curves over number fields, and the
rational points of bielliptic curves over number fields.

• Bianchi computes the Z(ζ3)-points of a base-changed elliptic
curve.

• Extended by J. to non-base-changed elliptic curve over
imaginary quadratic fields.

• Gajović and Müller compute the Z[
√
7]-points of a

hyperelliptic curve.
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Classifying 3-adic images
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The genus 3 quotient

• Recall X+
ns(27) has r = g = 12, but too large for quadratic

Chabauty over Q.

• The curve X+
ns(9)

∼= P1, so can’t pull back points. RSZB there
is notice no intermediate subgroup N+

ns(9) ≤ H ≤ N+
ns(27).

But exists H

N+
ns(27) ∩ D ≤ H ≤ N+

ns(9) ∩ D

where D = {g ∈ GL2(27) : det(g) ∼= 1 (mod 3)}
• X = XH has genus 3, and is naturally defined over
K = Q(ζ3). It is a smooth plane quartic. Let J = Jac(X ).

• Have J(K )⊗Qp
∼= H0(X ,Ω1)∗ ⊗Qp.

Hence r = 2g ! Can’t use quadratic Chabauty directly :(
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Quadratic Chabauty for X

• Nice correspondences are in bijection with End+(J)tr=0, the
trace 0 Rosati-fixed endomorphisms of J.

End+(J) ∼= Z(ζ9)+,

therefore exists a nice correspondence Z .

• X has bad reduction at the unique ramified prime q3 of K .

• For K we have two idéle class characters, χ = χcyc, χanti.

• Consider ρχ(x) = hχ(A(x))−
∑

p|p h
χ
p (A(x)), which take

values in the finite sets Tχ = {hχq3(X (K3))}.
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Computing local heights over p

• The prime p = 13 satisfies the conditions required in the set
up.

• There are algorithms to compute hp for curves C/Q, first
developed by Balakrishnan-Dogra-Müller-Tuitman-Vonk.
These generalise to X/K . Requires iterated Coleman
integration and computing action of Frobenius on the curve.

• We require the action of a nice correspondence Z on H1
dR(X )

for the above algorithm. We use the Eichler-Shimura relation
to calculate this action. For our choice of basis, one of the
entries in the matrix had 48 decimal digits!

Need to compute Tχ!
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Some digits

32



Dual graphs of curves

Definition
The dual graph of a curve is a graph whose vertices are the
irreducible components of the curve, and whose edges are singular
points of the curve.

The last example below is due to Ossen.
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Computing local height at q3

We want to determine the set Tχ. It is sufficient to compute
hq3(X (K3)). We use the following theorem.

Theorem (Betts–Dogra)

Let ΓX be the dual graph of the special fibre of a regular
semistable model of X . The local height at v ∤ p

hv : X (Kv )! Qp

factors through the map red : X (Kv )! ΓX . Also, hv (b) = 0.
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Height at q3 strategy

• Our ultimate aim is to show red : X (K3)! ΓX is constant. It
is sufficient to show ΓX has precisely one GK3-invariant vertex.

• Ossen computes the minimal regular model of X . We
determine the GK3-action on the dual graph of this model.

• Ossen computes a stable model of X by finding a field
extension L/K3 and a model Y/OL for P1

L, and considers its
normalisation X ′ in the function field K (XL).

• To compute Y, Ossen computes a degree 9 polynomial
ϕ ∈ K3[x ] and defines an associated valuation vϕ. Uses model
corresponding to this valuation.
Observation: GK3 transitively permutes roots of ϕ.
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Analysing ΓY

Figure: Skeleton due to Ossen

GK3 permutes D1,D2,D3, and fixes D0.
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ΓX ′ ! ΓY

• By construction Ei 7! Di for i = 1, 2, 3 and D 7! D0.

• The map ΓX ′ ! ΓY is GK3-equivariant, and therefore ΓX ′ has
only one GK3-invariant vertex.

Therefore, for this curve Tχ = {0} for any χ.
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Identifying rational points

• Actually get two nice linearly independent correspondences
Z1,Z2. Essential to extend h(A(x)) from X (K ) to X (K ⊗Qp).

• Use a multivariate Hensel lifting to compute

B =
⋂

1≤i≤2

ρ−1
Z1,χi

(Tχi ).

• The set B contains points not in X (K ), but we confirm that
ρZ2,χi

don’t vanish on these spurious points.
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Main Theorem

Theorem (Balakrishnan, Betts, Hast, J., Müller)

The curve X+
ns(27) has exactly 8 Q-points, all of which correspond

to CM elliptic curves.

Proof.

■
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Future Work

• Determine quotients of other modular curves over quadratic
number fields; determine all points.

• Find sufficient criteria for finiteness of⋂
i

ρ−1
i (Ti ).

Dogra’s hypothesis on geometric isogeny factors are violated
by XH .
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Summary

• For quadratic fields K , exists a method to compute locally
analytic functions ρ : X (K ⊗Qp) −! Qp and finite sets
T ⊂ Qp, such that ρ(X (K )) ⊆ T .

• #X+
ns(27)(Q) = 8, which correspond to CM elliptic curves

Thank You!
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Bounds

• For a curve X/K , we expect restriction of scalars Chabauty to
work if

r ≤ d(g − 1).

• Le rNS be the Néron– Severi rank of X , r2 be the number of
complex places od K , and rK be the rank of the unit group of
OK . We expect quadratic Chabauty over number fields to
work if

r ≤ (rNS − 1)(r2 + 1) + d(g − 1).

If we just use one nice correspondence, this reduces to

r + rK ≤ dg .
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