Galois action on pro-p fundamental groups of punctured CM elliptic curves

VaNTAGe

Shun Ishii (Keio university) May 20, 2025 Introduction

Setting

Notation

- K: number field.
- \bar{K} : algebraic closure of K. We fix an embedding $\bar{K}\hookrightarrow \mathbb{C}$.
- \bullet X : (smooth) curve over K. We mostly consider the case where X : hyperbolic,
 - i.e. the Riemann surface $X(\mathbb{C})$ is uniformized by the upper half plane \mathbb{H} .
 - \Leftrightarrow the top. fundamental group $\pi_1^{\mathrm{top}}(X(\mathbb{C}))$ is \mathbf{not} abelian.

Example

X	$\mathbb{P}^1 - \{0, 1, \infty\}$	E-O	proj. curve of genus $g \geq 2$
$\pi_1^{\mathrm{top}}(X(\mathbb{C}))$	F_2 : free group of rank 2	F_2	S_g : surface group

- $X_{\bar{K}} := X \times_K \bar{K}$.
- \bullet $\pi_1(X)$: étale fundamental group of X, and
 - $\pi_1(X_{\bar{K}})$: geometric étale fundamental group of X.

Outer Galois representation

Fact.

1. Descent+GAGA:

$$\pi_1(X_{\bar{K}}) \cong \pi_1(X_{\mathbb{C}}) \cong \widehat{\pi_1^{\mathrm{top}}(X(\mathbb{C}))} \quad (\text{prof. completion of } \pi_1^{\mathrm{top}}).$$

2. Etale homotopy exact sequence: $X_{\bar{K}} \to X \to \operatorname{Spec}(K)$ induces

$$1 \to \pi_1(X_{\bar{K}}) \to \pi_1(X) \to G_K := \operatorname{Gal}(\bar{K}/K) \to 1.$$

Let $\pi_1(X_{\bar{K}})^{(p)}$ be the maximal pro-p quotient of $\pi_1(X_{\bar{K}})$.

Definition (outer Galois representation).

By the homotopy exact sequence, we obtain

$$\rho_X \colon G_K \to \operatorname{Out}(\pi_1(X_{\bar{K}})) \coloneqq \operatorname{Aut}(\pi_1(X_{\bar{K}})) / \operatorname{Inn}(\pi_1(X_{\bar{K}}))$$

called the outer Galois representation associated to X, and

$$\rho_{X,p} \colon G_K \to \operatorname{Out}(\pi_1(X_{\bar{K}})^{(p)})$$

the pro-p outer Galois representation associated to X.

Outer Galois representation

■ When X is **not** hyperbolic, then ρ_X is as follows:

X	\mathbb{P}^1 or \mathbb{A}^1	\mathbb{G}_m	E: elliptic curve
$\pi_1(X_{\bar{K}})$	trivial	$\widehat{\mathbb{Z}}$	$\prod_p T_p(E)$
ρ_X	trivial	cyclotomic character	Gal. rep. associated to $\prod_p T_p(E)$

lacktriangle When X is hyperbolic, ho_X is extensively studied in the context of anabelian geometry.

For example, we have:

Theorem (Belyi-Voevodsky-Matsumoto-Hoshi-Mochizuki)

If X is hyperbolic, then ρ_X is **injective**.

This theorem is proved when $X = \mathbb{P}^1 - \{0, 1, \infty\}$ by Belyi, X = E - O by Voevodsky,

X: affine by Matsumoto and finally X: general by Hoshi-Mochizuki.

Pro-*p* outer Galois representation

On the other hand, we have some arithmetic constraints on $\rho_{X,p}$:

Lemma.

- 1. $\operatorname{Out}(\pi_1(X_{\bar{K}})^{(p)})$ has an open pro-p subgroup. Hence so is $\operatorname{im}(\rho_{X,p})$ (and $\operatorname{ker}(\rho_{X,p})$ is huge!).
- 2. If v is a place of K above $\ell \neq p$ at which X has good reduction, then $\rho_{X,p}$ is unramified at v, i.e. the image of an inertia subgroup at v is trivial.

Sketch.

(1)

$$\ker \left[\operatorname{Out}(\pi_1(X_{\bar{K}})^{(p)}) \to \operatorname{Aut}(\pi_1(X_{\bar{K}})^{\operatorname{ab}} \otimes \mathbb{F}_p) \right]$$

is a pro-p open subgroup. (2) follows from the specialization isomorphism for $\pi_1.$

Are there more constraints? or, can we determine the field $\bar{K}^{\ker(\rho_{X,p})}$ completely?

Previous result

Sharifi solves this question for $X=\mathbb{P}^1_{\mathbb{Q}}-\{0,1,\infty\}$ under certain assumptions. Recall

$$\rho_{\mathbb{P}^1 - \{0,1,\infty\},p} \colon G_{\mathbb{Q}} \to \text{Out}(\pi_1(\mathbb{P}^1_{\bar{\mathbb{Q}}} - \{0,1,\infty\})^{(p)}).$$

In this case, let us write

- ullet $\coprod := ar{\mathbb{Q}}^{\ker(
 ho_{\mathbb{P}^1} \{_0,1,\infty\},p)}$, and
- $\mathfrak{T}\coloneqq$ the maximal pro-p extension of $\mathbb{Q}(\mu_p)$ unramified outside p.

We have $\coprod \subset \Xi$ (cf. previous lemma).

Theorem (Sharifi, Hain-Matsumoto and Brown).

- 1. (Sharifi) Assume:
 - ullet p>2 is regular, and
 - ullet Deligne's conjecture (the Deligne-Ihara conjecture) holds for p.

Then we have $\coprod =$ 天.

2. (Hain-Matsumoto and Brown) Deligne's conjecture holds for every p.

Main result: Setting

Main result.

Analogues of Sharifi's result for once-punctured CM elliptic curves.

More precisely, let

- p > 5: prime.
- K: imaginary quadratic field of class number one,
- E/K: elliptic curve with $O_K = \operatorname{End}_K(E)$,
- X := E O: associated once-punctured elliptic curve,
- $\rho_{X,p} \colon G_K \to \operatorname{Out}(\pi_1(X_{\bar{K}})^{(p)})$: pro-p outer Galois representation,
- $\rho_{E,p} \colon G_K \to \operatorname{Out}(\pi_1(E_{\bar{K}})^{(p)}) = \operatorname{GL}(T_p(E)) \colon p\text{-adic Galois representation of } E.$

The main result is based on the following consequence of CM-theory:

We have

$$\bar{K}^{\ker(\rho_{E,p})} = K(E[p]) \cdot K(p^{\infty}),$$

where $K(p^{\infty})$ denotes the ray class field of K of conductor p^{∞} .

Main result: Statement

Theorem (I.).

We follow the notation from the previous slide. Assume:

- 1. The prime p > 3 splits in K as $(p) = \mathfrak{p}\bar{\mathfrak{p}}$,
- 2. the class number of the ray class field K(p) of conductor p does not divide p,
- 3. there is a unique prime of $K(\mathfrak{p}^2)$ above $\bar{\mathfrak{p}}$, and
- 4. an analogue of Deligne's conjecture holds.

Then we have

 $\bar{K}^{\ker(\rho_{X,p})} = K(E[p]) \cdot \text{(the maximal pro-}p \text{ extension of } K(p) \text{ unramified outside } p\text{)}.$

This gives a non-abelian variant of the classical equality $\bar{K}^{\ker(\rho_E,p)} = K(E[p]) \cdot K(p^{\infty})$. note: \subset always holds.

- 1. p > 3 splits in K as $(p) = p\bar{p}$,
- 2. the class number K(p) does not divide p,
- 3. there is a unique prime of $K(\mathfrak{p}^2)$ above $\bar{\mathfrak{p}}$, and
- 4. an analogue of Deligne's conjecture holds.

$$\Rightarrow \bar{K}^{\ker(\rho_{X,p})} = K(E[p]) \cdot \text{(the max. pro-}p \text{ extension of } K(p) \text{ unramified outside } p \text{) (†)}$$

Remark.

a. Examples of (K, p) satisfying (1)-(3):

K	$\mathbb{Q}(\sqrt{-1})$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-19})$
p	5, 13, 17	7	7

b. We expect that (\dagger) still holds when p does not split in K.

Example: (†) holds when $(K,p)=(\mathbb{Q}(\sqrt{-3}),3)$ without assuming (1)-(4).

c. Condition (3) \Leftrightarrow If we write $\bar{\mathfrak{p}}=(\bar{\pi})$, then $\bar{\pi}$ generates $(O_K/\mathfrak{p}^2)^\times/O_K^\times$.

Example: When $K = \mathbb{Q}(\sqrt{-1})$, then

$$\frac{|\{p<10^6\mid p \text{ satisfies (1) and (3)}\}|}{|\{p<10^6\mid p \text{ satisfies (1)}\}|} = \frac{13705}{39175} = 0.3498...$$

variant

Deligne-Ihara's conjecture and its

Weight filtration on Galois groups

Write $\Pi:=\pi_1(\mathbb{P}^1_{\bar{\mathbb{Q}}}-\{0,1,\infty\})^{(p)}$ and let $\{\Pi(m)\}_{m>0}$ be its descending central series:

$$\Pi(1) := \Pi \supset \Pi(2) := [\Pi(1), \Pi(1)] \supset \cdots \supset \Pi(m+1) := [\Pi, \Pi(m)] \supset \cdots$$

Definition-Lemma.

1. We define the weight filtration $\{F^mG_{\mathbb{Q}}\}_{m>0}$ on $G_{\mathbb{Q}}$ by

$$F^mG_{\mathbb{Q}}:=\ker\bigl[G_{\mathbb{Q}}\xrightarrow{\rho_{\mathbb{P}^1-\{0,1,\infty\},p}}\operatorname{Out}(\Pi)\to\operatorname{Out}(\Pi/\Pi(m+1))\bigr].$$

This is descending, central and $\bigcap_{m>0} F^m G_{\mathbb{Q}} = \ker(\rho_{\mathbb{P}^1 - \{0,1,\infty\},p}).$

2. Let

$$gr^mG_{\mathbb{Q}} \coloneqq F^mG_{\mathbb{Q}}/F^{m+1}G_{\mathbb{Q}} \quad \text{and} \quad \mathfrak{g}_{0,3} \coloneqq \bigoplus_{m>0} gr^mG_{\mathbb{Q}}.$$

Then $gr^mG_{\mathbb{Q}}$ is a finite direct sum of $\mathbb{Z}_p(m)$ for each m>0, and $\mathfrak{g}_{0,3}$ is naturally a graded Lie algebra over \mathbb{Z}_p .

Hence we obtain a graded Lie algebra $\mathfrak{g}_{0,3}$, which is a direct sum of Tate twists.

Deligne-Ihara's conjecture

Deligne-Ihara's conjecture (proved by Hain-Matsumoto and Brown)

The Lie algebra $\mathfrak{g}_{0,3}\otimes\mathbb{Q}_p$ is freely generated by certain elements $\sigma_3,\sigma_5,\sigma_7,\ldots$ in each odd degree >1.

Remark

More precisely, Hain and Matsumoto proved the generation portion of the conjecture. Then Brown proved a certain motivic version of Belyi's injectivity theorem (formulated in terms of the category of mixed Tate motives over \mathbb{Z}), which implies the freeness portion.

Soulé characters

Each element σ_m is defined by the property that the image of σ_m under

the m-th Soulé character

$$\kappa_m: gr^m G_{\mathbb{Q}} \to \mathbb{Z}_p(m)$$

generates $\kappa_m(gr^mG_{\mathbb{Q}}) \neq 0$.

We do not explain Soulé characters here, but some important features are as follows:

Properties.

- They arise from the Galois action on the pro-p metabelian quotient of π_1 .
- κ_m is nontrivial for every odd $m \geq 3$ (which is a highly nontrivial result).
- κ_m (from $F^1G_{\mathbb{Q}}$) is surjective for every odd $m \geq 3 \Leftrightarrow$ Vandiver's conjecture holds.

Sharifi's result

Theorem (Sharifi, Hain-Matsumoto and Brown).

Let $X = \mathbb{P}^1_{\mathbb{O}} \setminus \{0, 1, \infty\}$ and p an odd regular prime. Then we have

Strategy of proof.

(Technical part, we use the regularity here) Construct nice lifts $\sigma_3 \in F^3G_{\mathbb{Q}}, \sigma_5 \in F^5G_{\mathbb{Q}}, \ldots$ such that their images freely generate the Galois group $\operatorname{Gal}(\Xi/\mathbb{Q}(\mu_{p^\infty}))$.

We compare the following two filtrations on the Galois group $Gal(\Xi/\mathbb{Q}(\mu_{p^{\infty}}))$:

- 1. Weight filtration F^m : Its intersection is Gal(天/山).
- 2. Universal filtration \tilde{F}^m : it is the fastest descending central filtration on $\operatorname{Gal}(\Xi/\mathbb{Q}(\mu_p^\infty))$ satisfying $\sigma_m \in \tilde{F}^m\operatorname{Gal}(\Xi/\mathbb{Q}(\mu_p))$ for every $m=3,5,\ldots$
 - · Its intersection is trivial, and
 - ullet The associated graded Lie algebra $/\mathbb{Z}_p$ is freely generated by σ_3,σ_5,\ldots

Then use Deligne-Ihara's conjecture to show that two filtrations coincide.

Our proof also follows this strategy: assuming that the graded Lie algebra associated to X=E-O is nice, show that two filtrations on the concerned Galois group coincide.

However, this approach comes with a few difficulties:

- 1. What are analogues of Soulé characters and Deligne-Ihara's conjecture?
 - \rightarrow We answer this question in the following.
- 2. (omitted in this talk) In our situation, the structure of $gr^mG_K\otimes \mathbb{Q}_p$ (as a Galois module) becomes complicated and some parts of the previous strategy do not work.
 - \rightarrow To overcome this point, we introduce a two-variable refinement of the weight filtration

$$F^{(m_1,m_2)}G_K \subset F^{m_1+m_2}G_K$$

and establish fundamental properties.

- 3. (omitted in this talk) We use arithmetic assumptions on p to control the structure of the Galois group of the maximal pro-p extension of K(p) unramified outside p.
 - \rightarrow The group is generated by [K(p):K]+2 generators satisfying a single relation which can be described explicitly to some extent.

Weight filtration on Galois group from E-O, (1)

- K: imaginary quadratic field of class number one,
- $p \ge 5$: prime which splits in K as $(p) = p\bar{p}$,
- E/K: elliptic curve with $O_K = \operatorname{End}_K(E)$,
- $\bullet \ \ \, X \coloneqq E O : \text{ associated once-punctured elliptic curve,}$
- $\rho_{X,p} \colon G_K \to \operatorname{Out}(\Pi)$: pro-p outer Galois representation, where $\Pi := \pi_1(X_{\bar{K}})^{(p)}$.

The weight filtration is defined in the same way as $\mathbb{P}^1 - \{0, 1, \infty\}$:

$$\begin{split} F^mG_K &:= \ker \big[G_K \xrightarrow{\rho_{X,p}} \operatorname{Out}(\Pi) \to \operatorname{Out}(\Pi/\Pi(m+1)) \big], \\ gr^mG_K &:= F^mG_K/F^{m+1}G_K \quad \text{and} \\ \mathfrak{g}_X &:= \bigoplus_{m>0} gr^mG_K. \end{split}$$

Weight filtration on Galois group from E-O, (2)

Since p splits, we have two characters

- $\chi_1: G_K \to \operatorname{Aut}(T_{\mathfrak{p}}(E)) = \mathbb{Z}_p^{\times}$ and
- $\chi_2: G_K \to \operatorname{Aut}(T_{\bar{\mathfrak{p}}}(E)) = \mathbb{Z}_p^{\times}$

corresponding the p-adic (resp. \bar{p} -adic) Tate module.

Lemma

- 1. (Nakamura) We have $gr^mG_K=0$ whenever m is odd and $gr^2G_K=0$.
- 2. As a $\operatorname{Gal}(K(E[p^{\infty}]/K))$ -module, we have

$$gr^m G_K \otimes \mathbb{Q}_p \cong \bigoplus_{\substack{(m_1, m_2) \in \mathbb{Z}_{>0}^2, \\ m_1 + m_2 = m}} \mathbb{Q}_p(m_1, m_2)^{r_{m_1, m_2}}$$

for some $r_{m_1,m_2} \geq 0$. Here, $\mathbb{Q}_p(m_1,m_2) := \mathbb{Q}_p(\chi_1^{m_1}\chi_2^{m_2})$.

Analogues of Soulé characters

For each even $m \geq 2$, Nakamura constructed a certain homomorphism

$$\kappa_{m+2,X} : gr^{m+2}G_K \to \operatorname{Sym}^m T_p(E) \otimes \mathbb{Z}_p(1),$$

from the Galois action on the metabelian π_1 . It has nice properties and applications to anabelian geometry, but its nontriviality is **not** known except for very special m.

In our situation, RHS can be decomposed as

$$\operatorname{Sym}^{m} T_{p}(E) \otimes \mathbb{Z}_{p}(1) \cong \bigoplus_{\substack{(m_{1}, m_{2}) \in \mathbb{Z}_{\geq 0}^{2} \\ m_{1} + m_{2} = m}} \mathbb{Z}_{p}(m_{1} + 1, m_{2} + 1),$$

hence we obtain characters

$$\{\kappa_{(m_1+1,m_2+1)}: gr^{m+2}G_K \to \mathbb{Z}_p(m_1+1,m_2+1)\}_{\substack{(m_1,m_2) \in \mathbb{Z}^2_{\geq 0}, \\ m_1+m_2=m}}$$

from $\kappa_{m,X}$.

ldea.

Use $\kappa_{(m_1+1,m_2+1)}$ as an analogue of Soulé characters.

Properties of characters

Recall:

Properties of Soulé characters.

- κ_m are nontrivial for every odd $m \geq 3$.
- κ_m (from $F^1G_{\mathbb{Q}}$) is surjective for every odd $m \geq 3 \Leftrightarrow$ Vandiver's conjecture holds.

Similarly, we have:

Theorem (I.).

- $\kappa_{(m_1+1,m_2+1)} = 0$ if $m_1 \not\equiv m_2 \mod |O_K^{\times}|$.
- If $m_1 \equiv m_2 \mod |O_K^{\times}|$, then $\kappa_{(m_1+1,m_2+1)} \neq 0$ under a certain assumption.
- · Moreover, if
 - 1. the class number K(p) does not divide p, and
 - 2. there is a unique prime of $K(\mathfrak{p})$ above $\bar{\mathfrak{p}}$,

then $\kappa_{(m_1+1,m_2+1)}$ (from F^1G_K) is surjective except the case where $m_1m_2>0$ and $(m_1,m_2)\equiv (0,0) \bmod p-1$. The converse also holds.

Remark.

- ullet Nakamura's homomorphism $\kappa_{m,X}$ can be defined for every once-punctured elliptic curves over number fields.
- However, our proof uses elliptic units and its relation to $\kappa_{(m_1+1,m_2+1)}$, which can be not generalized to non-CM cases.
- A certain assumption = The finiteness of the second cohomology group

$$H_{\text{\'et}}^2(O_K[1/p], \mathbb{Z}_p(m_1+1, m_2+1)).$$

This is known to hold if $m_1=m_2$ (Soulé) or $(m_1+1,m_2+1)=(0,0) \bmod p-1$. The finiteness also known to hold for every $(m_1,m_2)\in I$ when p is "regular" in the sense of Wingberg.

This finiteness is a special case of a conjecture of Jannsen.

Analogue of Deligne-Ihara's conjecture for E-O

Now, we define

$$I := \{ (m_1, m_2) \in \mathbb{Z}_{\geq 0}^2 \setminus \{ (0, 0) \} \mid m_1 \equiv m_2 \bmod |O_K^{\times}| \},$$

which is an analogue of $2\mathbb{Z}_{>1}$ in the case of $\mathbb{P}^1 - \{0, 1, \infty\}$.

Assume that $\kappa_{(m_1,m_2)}$ is nontrivial for every $(m_1,m_2)\in I$, and choose

$$\sigma_{(m_1+1,m_2+1)}\in\chi_1^{m_1}\chi_2^{m_2}$$
 -isotypic component of $gr^{m_1+m_2+2}G_K\otimes\mathbb{Q}_p$

such that its image under $\kappa_{(m_1+1,m_2+1)}$ is non-zero.

An analogue of Deligne-Ihara's conjecture for \boldsymbol{X}

The graded Lie algebra $\mathfrak{g}_X \otimes \mathbb{Q}_p$ is freely generated by $\{\sigma_{(m_1+1,m_2+1)}\}_{(m_1,m_2)\in I}$.

¹This is satisfied under assumptions of the main result.

Remark

1. If the conjecture holds, we have

$$\dim(gr^{m+2}G_K\otimes\mathbb{Q}_p)=A_{\frac{m}{2}+1},$$

for K such that $|O_K^{\times}|=2$, where $(A_n)_{n\geq 1}$ is A072337 in OEIS.

m+2	4	6	8	10	12	
$A_{\frac{m}{2}+1}$	3	5	10	24	50	

It is expected that $\kappa_{4,X}$ and $\kappa_{6,X}$ induce isomorphisms

$$gr^4G_K \otimes \mathbb{Q}_p \cong \operatorname{Sym}^2V_p(E)(1)$$
 and $gr^6G_K \otimes \mathbb{Q}_p \cong \operatorname{Sym}^4V_p(E)(1)$.

These holds if $\kappa_{(m_1+1,m_2+1)} \neq 0$ for every $(m_1,m_2) \in I$ with $m_1+m_2=2$ or 4.

2. We proved the generation portion of the conjecture assuming the finiteness of H^2 , using Hain-Matsumoto's approach (in preparation). In particular, we have

$$\dim gr^{m+2}G_K \otimes \mathbb{Q}_p \leq A_{\frac{m}{2}+1}.$$

Summary

- ullet The Galois Lie algebra $\mathfrak{g}_X\otimes\mathbb{Q}_p$ has rich structure analogous to the genus 0 case.
- ullet Assuming Deligne-Ihara-style conjectures, we can describe $ar{K}^{\ker(
 ho_{X,p})}$ explicitly.
- ullet This deepens the parallel between $\mathbb{P}^1\setminus\{0,1,\infty\}$ and E-O.

Field			
Q	K: imaginary quadratic		
Hyperbolic Curve			
$\mathbb{P} - \{0, 1, \infty\} = \mathbb{G}_m - 1$	X = E - O		
Lie algebra			
$\mathfrak{g}\otimes\mathbb{Q}_p=\mathrm{FreeLie}(\sigma_3,\sigma_5,\dots)$ (Hain-Matsumoto, Brown)	$\mathfrak{g}_X\otimes\mathbb{Q}_p\stackrel{?}{=}\mathrm{FreeLie}(\sigma_{1,3},\sigma_{2,2},\dots)$ (positive result on generation, no result on freeness)		
Fixed Field			
the maximal pro- p ext. of $\mathbb{Q}(\mu_p)$	the maximal pro- p ext. of $K(p)$		
unramified outside p ,	unramified outside p and $K(E[p])$,		
if p is regular (Sharifi)	if p and the Lie algebra are nice (I.)		

Thank you very much!