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Land acknowledgement

As we work on our mathematics, it is important to remember:
We are human beings, connected to one another.
What we do, and how we do it, affects society.

For many of us, even our location connects us to ongoing injustice.
I am giving this talk on land that is unceded territory of the Kumeyaay people.
For more than 10,000 years this land has been — and continues to be — their
home.
I recognize the violent history of colonization in California, and honor the
legacy of the continuing presence of the Kumeyaay Nation.

Visit https://native-land.ca to learn about the land where you live and work.
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Where to find out more

This talk is based on my paper
“Deducing information about curves over finite fields from their Weil polynomials.”

This is available at arXiv:2110.04221.

Eventually (?) part of the proceedings volume of the 2021 conference Curves over
finite fields: Past, present, and future, which celebrated the publication of the
notes for Serre’s 1985 Harvard course on curves with many points.

In particular: further details, and all references, can be found there.
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Motivation

Sometimes you want to know:
Is there a genus-g curve over a finite field Fq with certain properties?

For example: many points, or no points, or large gonality, or. . .

If there does exist such a curve, can you find an example?

Sometimes, the properties you are interested in tell you something about the
number of points on the curve. . .

. . . possibly over several extensions of the base field.
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Weil polynomials of abelian varieties

A — a g-dimensional abelian variety over a finite field Fq

f — the characteristic polynomial of the Frobenius endomorphism on A

Properties of f
Monic element of Z[x ] of degree 2g
All roots of f in C have magnitude

√
q, all real roots have even multiplicity

Can be written f = xgh(x + q/x) for a polynomial h:
h is monic element of Z[x ] of degree g
All roots of h are real, and lie in [−2

√
q,2
√

q]

We call f the Weil polynomial of A, and h the real Weil polynomial of A.

Define the Weil polynomial of a curve to be the Weil polynomial of its Jacobian.
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Weil polynomials and numbers of points

Let f be the Weil polynomial of a genus-g curve C/Fq, with roots π1, . . . , π2g in C.

We have #C(Fqn ) = qn + 1−
∑
πn

i .

We also have #C(Fqn ) =
∑

d |n d · (number of places of degree d).

Möbius inversion gives:
an(C) := (number of places of degree n on C) = (1/n)

∑
d |n µ(n/d) ·#C(Fqd )

Basic facts
The Weil polynomial determines the number of degree-n places on C.

The Weil polynomial is determined by (a1(C), . . . ,ag(C)).
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Weil polynomials, isogeny classes, and Jacobians

Theorem (Tate 1966)
Two abelian varieties over a finite field are isogenous if and only if they have the
same Weil polynomial.

Motivating problems, rephrased
1 Given the Weil polynomial of an isogeny class of abelian varieties over Fq,

determine whether there’s a curve whose Jacobian lies in the isogeny class.
2 Determine properties of the hypothetical curve that can help you construct it.

First part of the talk: Conditions that show there is no Jacobian in an isogeny class.

Second part of the talk: Properties that can help you construct a curve.

Everett W. Howe Deducing information about a curve from its Weil polynomial 7 of 38



Part I: Showing an isogeny class contains no Jacobian
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Principal polarizations of abelian varieties and Jacobians

Definition Vague description:

A principal polarization of an abelian variety A is an isomorphism λ : A→ Â from A
to its dual variety Â satisfying symmetry and positivity conditions:

λ is equal to its own dual under the canonical isomorphism A ∼= ̂̂A, and
λ “comes from” an ample invertible sheaf.

Fact
The Jacobian variety of a curve has a canonical principal polarization.

Consequence
An isogeny class with no principally polarized varieties also has no Jacobians.
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Most isogeny classes contain principally polarized varieties

Let f be a Weil polynomial of an isogeny class C of simple varieties over Fq.
Then f = ge for some irreducible g. Let K be the number field defined by g.
K is either real or CM. Let π ∈ K be a root of g, and let π be its complex conjugate.

Theorem (H. 1995, H. 1996)
1 If K is totally real then C contains a PPAV.
2 Suppose K is CM, with real subfield K+. If K/K+ is ramified at a finite prime,

or if π − π is divisible by a prime of K inert in K/K+, then C contains a PPAV.
3 Suppose the middle coefficient c of f is coprime to q, and that C does not

satisfy the conditions in (2). Then there is an integer s > 0 with
NK/Q(π − π) = s2, and C contains a PPAV if and only if c ≡ s mod m, where m
is the prime divisor of q if q is odd, and m = 4 if q is even.
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Most isogeny classes contain a PPAV, but not all

Corollary (H. 1996)
Every simple odd-dimensional isogeny class over a finite field contains a PPAV.

(Class field theory: if K is CM of degree 2·odd, K/K+ is ramified at a finite prime.)

Example

Let f = x8 + 13x7 + 90x6 + 414x5 + 1369x4 + 3312x3 + 5760x2 + 6656x + 4096.

Then f corresponds to an isogeny class C of abelian fourfolds over F8.

The Weil polynomial predicts nonnegative place counts, so maybe a Jacobian?

But we check: K is unramified over K+, and NK/Q(π − π) = 1992.

Since 199 6≡ 1369 mod 4, C does not contain a PPAV. . . or a Jacobian.

Everett W. Howe Deducing information about a curve from its Weil polynomial 11 of 38



Decomposable and indecomposable polarizations

Definition
Suppose A is an abelian variety over a field k with a principal polarization λ.

1 (A, λ) is decomposable if there are nontrivial (A1, λ1) and (A2, λ2) and an
isomorphism A→ A1 × A2 that identifies λ with λ1 × λ2.

2 (A, λ) is geometrically decomposable if it is decomposable over k .

Fact
The canonical polarization of a Jacobian variety is geometrically indecomposable.

Consequence
An isogeny class with no geometrically indecomposable principally polarized
varieties also has no Jacobians.
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Analyzing how varieties split

Question
How can we tell whether every principally polarized variety in an isogeny class is
decomposable?

Let h be the real Weil polynomial of an abelian variety A.

Suppose h = h1h2 with h1,h2 ∈ Z[x ] coprime to one another.

Then A is isogenous to A1 × A2, where Ai has real Weil polynomial hi .

Question
How big is the smallest isogeny from A to a product of this form?
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Reduced resultants help us analyze splittings

Reduced resultants let us bound the degree of the smallest splitting A→ A1 × A2.

Definition
Let f be a monic polynomial in Z[x ].

The radical of f is the product of its irreducible factors, each taken once.

Definition
Let h1 and h2 be coprime monic polynomials in Z[x ], with radicals H1 and H2.

Let I be the ideal of Z[x ] generated by H1 and H2.

The reduced resultant of h1 and h2 is the positive generator of I ∩ Z.

Note: the reduced resultant of h1 and h2 is a Z[x ]-linear combination of H1 and H2.
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Minimal splittings

Let A have real Weil polynomial h = h1h2, with h1 and h2 coprime.

Theorem
There are unique abelian varieties A1 and A2 with real Weil polynomials h1 and h2,
and a unique finite group scheme ∆, such that there is an exact sequence

0 −→ ∆ −→ A1 × A2 −→ A −→ 0

where the induced maps A1 → A and A2 → A injective.

In addition, the induced maps ∆→ A1 and ∆→ A2 are embeddings, and ∆ is
annihilated by the reduced resultant r of h1 and h2.
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The idea of the proof

(Goal: ∃! A1,A2,∆ with 0→ ∆→ A1 × A2 → A→ 0 and Ai ↪→ A, and we have r∆ = 0.)

Take any isogeny B1 × B2 → A. Find the largest product ∆1 ×∆2 in its kernel.
Let Ai = Bi/∆i , and write 0→ ∆→ A1 × A2 → A→ 0.
Then ∆ ↪→ Ai and Ai ↪→ A for both i .
Let F and V be the Frobenius and Verschiebung endomorphisms on A.
We have H(F + V ) = 0, and Hi(F + V ) = 0 on Ai .
Since ∆ embeds in both A1 and A2, we have Hi(F + V ) = 0 on ∆.
The reduced resultant is a Z[x ]-linear combination of the Hi , so r = 0 on ∆.
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Application: The “resultant 1” method

If the reduced resultant r is equal to 1, then ∆ = 0 and A ∼= A1 × A2.

The only maps between A1 and A2 are 0, so every polarization on A is a product.

Fact: the reduced resultant of h1 and h2 is 1 if and only if the usual resultant is ±1.

Theorem (Serre 1985)
If the real Weil polynomial h of an isogeny class can be written h = h1h2, where
the resultant of h1 and h2 is ±1, then the isogeny class contains no Jacobians.
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A genus-8 curve over F4 with 24 points?

Over F4, the real Weil polynomial

h = x8 + 19x7 + 152x6 + 664x5 + 1713x4 + 2618x3 + 2212x2 + 824x + 32

gives one of 26 isogeny classes that might contain the Jacobian of a genus-8
curve with 24 points.

Example

We have h = h1h2 with h1 = (x + 2)3(x + 4) and h2 = (x4 + 9x3 + 26x2 + 24x + 1).

We compute that Res(h1,h2) = 1.

Therefore, there is no Jacobian in this isogeny class.
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Hermitian modules

Suppose E is an elliptic curve over Fq with trace t , where ∆ := t2 − 4q is a
fundamental discriminant of a quadratic order O.

Principal polarizations on En correspond to n × n positive definite unimodular
Hermitian matrices over O.

If O has class number 1, then for all n, the only variety isogenous to En is En itself!
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Indecomposable Hermitian forms

Theorem
Assume ∆ 6= 0.

There’s an indecomposable PPAV isog. to E2 if and only if ∆ 6∈ {−3,−4,−7}.

There’s an indecomposable PPAV isog. to E3 if and only if ∆ 6∈ {−3,−4,−8,−11}.

Serre proves this in his 1985 Harvard course notes. Follows from Hoffmann 1991.

Theorem
Assume ∆ 6= 0. If n = 8, n = 12, or n > 13, then there is a variety isogenous to En

with an indecomposable principal polarization.

O’Meara 1975 shows there are indecomposable unimodular Z-lattices of rank n.
Smith 1978 shows: tensored with O, they give indecomposable Hermitian forms.

Everett W. Howe Deducing information about a curve from its Weil polynomial 20 of 38



Counting arguments

Let f be the Weil polynomial of a simple ordinary isogeny class C.

Let K be the number field defined by f , with π ∈ K a root of f .

Definition
An order O ⊂ K is convenient if

1 π ∈ O and O is stable under complex conjugation;
2 the maximal real suborder O+ is Gorenstein;
3 the trace dual of O is generated as an O-module by its totally imaginary

elements.

If O ⊂ K is convenient, there is a formula for the number of principally polarized
varieties in C with endomorphism ring O:
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PPAVs with convenient endomorphism rings

Theorem
If O is convenient and the norm map PicO → Pic+O+ is surjective, the number of
PPAVs in C with endomorphism ring O is equal to

1
[N(U) : (U+)2]

# PicO
# PicO+

,

where U is the unit group of O and U+ is the unit group of O+.

For maximal orders, this is due to Shimura and Taniyama (1961).
In this generality, Howe 2020.
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Application to abelian surfaces

Theorem (H. 2004)
Let q be an odd prime power. There are no geometrically irreducible principally
polarized varieties with Weil polynomial x4 + (2− 2q)x2 + q2.

Let C be the isogeny class with this Weil polynomial. To prove the statement:
1 Show that every PPAV in C has convenient endomorphism ring.
2 Count the number of PPAVs.
3 Count the number of E/Fq2 with Weil polynomial x2 + (2− 2q)x + q2.
4 Weil restriction: Each such E gives a geometrically decomposable PPAV in C.
5 Show that these Weil restrictions account for all of the PPAVs in C.
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Supersingular factors

Suppose q is a square, and let s = ±√q.

Let C be an isogeny class over Fq with real Weil polynomial h = h0 · (x − 2s)n,
where h0 is ordinary.

Theorem (H.–Lauter 2012)
If h0(2s) is squarefree, every principally polarized variety in C is decomposable.

Idea of proof: For every A in C there is an ordinary A0 and supersingular E with

0 −→ ∆ −→ A0 × En −→ A −→ 0

as earlier, with ∆ embedding into En and into A0.

Frobenius and Verschiebung both act as the integer s on En and hence on ∆.

Frobenius and Verschiebung don’t act as an integer on A0, and this is visible in the
group scheme ∆ if it is nontrivial. This depends on additional properties of ∆ and
on h0(2s) being squarefree.

Everett W. Howe Deducing information about a curve from its Weil polynomial 24 of 38



Another genus-8 curve over F4 with 24 points?

Over F4, the real Weil polynomial

h = x8 + 19x7 + 152x6 + 664x5 + 1716x4 + 2652x3 + 2351x2 + 1065x + 180

gives one of 26 isogeny classes that might contain the Jacobian of a genus-8
curve with 24 points.

Example

We have h = h0 · (x + 4) with h0 = (x + 1)(x + 3)2(x2 + 3x + 1)(x2 + 5x + 5).

We compute that h0(−4) = (−3) · (−1)2 · 5 · 1 = 15.

This is squarefree, so there is no Jacobian in this isogeny class.
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No Jacobians: Summary

We have seen the following techniques for showing that an isogeny class contains
no Jacobians:

1 Using H. 1995 to show there are no PPAVs in an isogeny class
2 The resultant 1 method
3 Special Hermitian modules
4 Counting arguments to show every PPAV is geometrically decomposable
5 Supersingular factors

Let’s move on to the next section.
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Part II: Deducing information about curves
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Nontrivial automorphisms

Theorem (Torelli’s theorem)
Let C be a curve with polarized Jacobian (J, λ).

There’s a homomorphism Aut C → Aut(J, λ) given by ε 7→ (ε−1)∗.

If C is hyperelliptic, this is an isomorphism. Otherwise, we have

Aut(J, λ) ∼= {±1} × Aut C.
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Nontrivial automorphisms when h = h1h2

If (A, λ) is a PPAV with real Weil polynomial h with h = h1h2 for coprime hi , then

0 −→ ∆ −→ A1 × A2 −→ A −→ 0

for some A1, A2, and ∆ as before. Furthermore, if
A2 has an automorphism α. . .
. . . with αα† = 1 for every positive involution † on End A2. . .
. . . and if α− 1 kills the image of ∆ in A2,

then the automorphism (1, α) of A1 × A2 descends to an automorphism of (A, λ).
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Main example: α = −1. The “resultant 2” method

Theorem
If C is a curve with real Weil polynomial h1h2 with h1 and h2 having reduced
resultant 2, then C has an involution ε that defines a double cover C → D, where
D has real Weil polynomial h1 or h2.

Example

Let h1 = (x + 2)3 and h2 = (x + 4)2(x3 + 5x2 + 6x + 1). The real Weil polynomial
h1h2 could belong to a genus-8 curve C/F4 with 24 points.

The reduced resultant of the factors is 2, so we would have a double cover C → D,
where D has real Weil polynomial h1 or h2.

Can’t be h2, because a genus-8 curve can’t cover a genus-5 curve.
Can’t be h1, because then D would have only 11 points while C has 24.

Therefore, no such C exists.
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Nontrivial automorphisms when h = he
0 with h0 irreducible

If h = he
0 then the corresponding Weil polynomial f satisfies f = f e

0 .

Let K be the number field defined by f0, and let π be a root of h0 in K .

Suppose Z[π, π] contains a root of unity ζ. If C is a curve with real Weil polynomial
h = he

0, then C has an automorphism ε with ε∗ = ±ζ.
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Application to genus-2 curves

Theorem (Maisner–Nart–H. 2002)

There is no curve over Fq with Weil polynomial f = x4 + (1− 2q)x2 + q2.

Idea of proof (for odd q):
We check that f is irreducible, and that π − π is a primitive fourth root of 1.
If C had Weil polynomial f , it would have an automorphism ε of order 4.
Analysis of the action of ε on the Weierstrass points shows that all six of them
are rational over Fq4 .
Non-Weierstrass points come in ε-orbits of size 4, so #C(Fq4) ≡ 2 mod 4.

But Weil polynomial predicts q4 − 4q2 + 8q − 1 points over Fq4 .

Contradiction, because q4 − 4q2 + 8q − 1 ≡ 0 mod 4.

Everett W. Howe Deducing information about a curve from its Weil polynomial 32 of 38



Nontrivial automorphisms when h = (x − t)e

Suppose h = (x − t)n, where ∆ = t2− 4q is the discriminant of a maximal order O.

Alexander Schiemann has computed all unimodular Hermitian forms on rank-n
lattices over maximal orders O for various smallish n and O.

https://www.math.uni-sb.de/ag/schulze/Hermitian-lattices/

He computes the automorphism groups of all of the lattices.
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Example: Genus-5 curves over F17 meeting the Weil–Serre bound

Example
No genus-5 curve C/F17 attains the Weil–Serre bound of 53 points.

1 A curve meeting the bound would have real Weil polynomial (x + 7)5, so
∆ = −19. Let O be the quadratic order of discriminant ∆.

2 Schiemann: Every rank-5 unimodular Hermitian O-lattice has an
automorphism of order 4.

3 Therefore every genus-5 curve C/F17 with 53 points has an involution.
4 Only possibility: Double cover of a curve with real Weil polynomial (x + 7)2.
5 Only one such genus-2 curve: y2 = x6 + 3x4 + 2x2 + 15.
6 Enumerate its genus-5 double covers. None has 53 points.
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Maps to elliptic curves

Suppose C is a curve whose real Weil polynomial is divisible by the real Weil
polynomial of an elliptic curve of trace t ; that is, h is divisible by x − t .

Then there is a nonzero map E → Jac C. The principal polarization on Jac C pulls
back to a polarization on E of degree d2, for some d .

Embedding C into Jac C, and then applying the dual map Jac C → E , gives a
degree-d map from C to E .
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Bounding the degrees of maps to elliptic curves

Various methods for bounding d , based on reduced resultants and theorems
about short vectors in lattices. Example:

Theorem (H.–Lauter 2012)
Suppose C/Fq has real Weil polynomial h = h0 · (x − t), where t is the trace of an
elliptic curve over Fq.

Let r be the reduced resultant of h0 and x − t .

Then there is a map from C to some elliptic curve of trace t, with degree dividing r .

Other results deal with cases when h is divisible by a power of x − t .
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Genus-12 curves over F2 with 15 points

After applying all the elimination techniques we can think of, we are left with three
possible real Weil polynomials for a genus-12 curve over F2 with 15 points.

One of them is (x + 1)2(x + 2)2(x2− 2)(x2 + 2x − 2)3. We can show that there is a
map of degree at most 4 from C to the elliptic curve E/F2 of trace −1.

Since #E(F2) = 4 and #C(F2) = 15, the map C → E must have degree 4.

Open problem
How do we enumerate degree-4 covers of E by curves of genus 12?
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Deducing information about curves: Summary

We have seen the following techniques for finding useful properties of curves from
their real Weil polynomials:

1 The resultant 2 method of producing double covers
2 Other methods of deducing the existence of automorphisms
3 Finding maps of bounded degree to an elliptic curve

This list feels very sparse! Are there other techniques that we are missing?
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