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Example

Problem (Diophantus, 3rd century AD)
Find three squares which when added give a square, and such that the first one is
the side [the square root] of the second, and the second is the side of the third

In algebra, this translates to finding x, y satisfying y2 = x8 + x4 + x2. If we remove
the solution (0, 0), we are asked to find rational points on the curve

X : y2 = x6 + x2 + 1.

Diophantus gave the solution (1/2, 9/16).

A plot of the curve y2 = x6 + x2 + 1 and its rational solutions

In 1990, Wetherell showed that the complete set of rational points X(Q) is
{(0,±1), (±1/2,±9/16),±∞}).



An example of Elkies and Stoll

y2 = 82342800x6 − 470135160x5 + 52485681x4 + 2396040466x3+

567207969x2 − 985905640x+ 247747600

has at least 642 rational solutions with x-coordinates:
0, −1, 1/3, 4, −4, −3/5, −5/3, 5, 6, 2/7, 7/4, 1/8, −9/5, 7/10, 5/11, 11/5, −5/12, 11/12, 5/12, 13/10, 14/9, −15/2, −3/16, 16/15, 11/18, −19/12, 19/5, −19/11,
−18/19, 20/3, −20/21, 24/7, −7/24, −17/28, 15/32, 5/32, 33/8, −23/33, −35/12, −35/18, 12/35, −37/14, 38/11, 40/17, −17/40, 34/41, 5/41, 41/16, 43/9, −47/4,
−47/54, −9/55, −55/4, 21/55, −11/57, −59/15, 59/9, 61/27, −61/37, 62/21, 63/2, 65/18, −1/67, −60/67, 71/44, 71/3, −73/41, 3/74, −58/81, −41/81, 29/83, 19/83,
36/83, 11/84, 65/84, −86/45, −84/89, 5/89, −91/27, 92/21, 99/37, 100/19, −40/101, −32/101, −104/45, −13/105, 50/111, −113/57, 115/98, −115/44, 116/15,
123/34, 124/63, 125/36, 131/5, −64/133, 135/133, 35/136, −139/88, −145/7, 101/147, 149/12, −149/80, 75/157, −161/102, 97/171, 173/132, −65/173, −189/83,
190/63, 196/103, −195/196, −193/198, 201/28, 210/101, 227/81, 131/240, −259/3, 265/24, 193/267, 19/270, −279/281, 283/33, −229/298, −310/309, 174/335, 31/337,
400/129, −198/401, 384/401, 409/20, −422/199, −424/33, 434/43, −415/446, 106/453, 465/316, −25/489, 490/157, 500/317, −501/317, −404/513, −491/516, 137/581,
597/139, −612/359, 617/335, −620/383, −232/623, 653/129, 663/4, 583/695, 707/353, −772/447, 835/597, −680/843, 853/48, 860/697, 515/869, −733/921, −1049/33,
−263/1059, −1060/439, 1075/21, −1111/30, 329/1123, −193/1231, 1336/1033, 321/1340, 1077/1348, −1355/389, 1400/11, −1432/359, −1505/909, 1541/180,
−1340/1639, −1651/731, −1705/1761, −1757/1788, −1456/1893, −235/1983, −1990/2103, −2125/84, −2343/635, −2355/779, 2631/1393, −2639/2631, 396/2657,
2691/1301, 2707/948, −164/2777, −2831/508, 2988/43, 3124/395, −3137/3145, −3374/303, 3505/1148, 3589/907, 3131/3655, 3679/384, 535/3698, 3725/1583,
3940/939, 1442/3981, 865/4023, 2601/4124, −2778/4135, 1096/4153, 4365/557, −4552/2061, −197/4620, 4857/1871, 1337/5116, 5245/2133, 1007/5534, 1616/5553,
5965/2646, 6085/1563, 6101/1858, −5266/6303, −4565/6429, 6535/1377, −6613/6636, 6354/6697, −6908/2715, −3335/7211, 7363/3644, −4271/7399, −2872/8193,
2483/8301, −8671/3096, −6975/8941, 9107/6924, −9343/1951, −9589/3212, 10400/373, −8829/10420, 10511/2205, 1129/10836, 675/11932, 8045/12057, 12945/4627,
−13680/8543, 14336/243, −100/14949, −15175/8919, 1745/15367, 16610/16683, 17287/16983, 2129/18279, −19138/1865, 19710/4649, −18799/20047, −20148/1141,
−20873/9580, 21949/6896, 21985/6999, 235/25197, 16070/26739, 22991/28031, −33555/19603, −37091/14317, −2470/39207, 40645/6896, 46055/19518, −46925/11181,
−9455/47584, 55904/8007, 39946/56827, −44323/57516, 15920/59083, 62569/39635, 73132/13509, 82315/67051, −82975/34943, 95393/22735, 14355/98437,
15121/102391, 130190/93793, −141665/55186, 39628/153245, 30145/169333, −140047/169734, 61203/171017, 148451/182305, 86648/195399, −199301/54169,
11795/225434, −84639/266663, 283567/143436, −291415/171792, −314333/195860, 289902/322289, 405523/327188, −342731/523857, 24960/630287, −665281/83977,
−688283/82436, 199504/771597, 233305/795263, −799843/183558, −867313/1008993, 1142044/157607, 1399240/322953, −1418023/463891, 1584712/90191,
726821/2137953, 2224780/807321, −2849969/629081, −3198658/3291555, 675911/3302518, −5666740/2779443, 1526015/5872096, 13402625/4101272,
12027943/13799424, −71658936/86391295, 148596731/35675865, 58018579/158830656, 208346440/37486601, −1455780835/761431834, −3898675687/2462651894

...is this list complete?



A conic

Consider the curve X : 2x2 + 3y2 = 5. This has the solution (1, 1).

parametrizing rational points on 2x2 + 3y2 = 5

To obtain all other rational solutions (x, y) we can draw a line

ℓ : y − 1 = m(x− 1)

through (1, 1) with rational slope m ∈ Q.
The second point of intersection X ∩ ℓ is also rational, and for every rational point
on X, the line ℓ will have rational slope.



An example of Bremner and MacLeod

Diophantine equations made a comeback on the internet between 2016 - 2019.1

Letting a = , b = , c =

x =
−28(a+ b+ 2c)

6a+ 6b− c
, y =

364(a− b)

6a+ 6b− c

This equation translates to finding the integer solutions on the elliptic curve

y2 = x3 + 109x2 + 224x

1Source: KnowYourMeme, https://knowyourmeme.com/memes/fruit-math-math-with-fruit

https://knowyourmeme.com/memes/fruit-math-math-with-fruit


An example of Bremner and MacLeod
We have the small point P = (−100, 260) ( ↔ a = 2/7, b = −1/14, c = 11/14) on

y2 = x3 + 109x2 + 224x

Generate more solutions by addition. E(Q) ≃ Z⊕ Z/6Z

9P gives the smallest positive answer

a = 154476802108746166441951315019919837485664325669565431700026634898253202035277999,

b = 36875131794129999827197811565225474825492979968971970996283137471637224634055579,

c = 4373612677928697257861252602371390152816537558161613618621437993378423467772036

While there are infinitely many rational triples (a, b, c) there are only finitely many
integer solutions (a, b, c) (but this slide is too small to list them all).



Set-up

Let X be a nice (smooth projective geometrically integral) curve over Q.
Curves are classified by their genus:

Faltings’s theorem (1983) states that a nice curve X of genus g ≥ 2 has finitely
many rational points; however, it does not give an explicit recipe to compute X(Q).

Corollary: while an elliptic curve (of genus 1) can have infinitely many rational
points, an affine genus 1 curve has finitely many integer points.



Motivating question

Problem (Motivating question)
Let X/Q be a nice curve of genus g ≥ 2. (How) can we provably determine X(Q)?
If X is modular, can we determine X(Q) from the data of the modular forms
associated to X?

Study p-adic methods for p > 2 a good prime, focusing on Chabauty’s method.

Basic idea: Chabauty’s method says that X(Q) is contained in a finite computable
set of p-adic points. We compute this set, and hope we can rule out any
non-rational points.

Test case that leads to the general case: how can we provably determine the integer
points of an affine elliptic curve E of rank 1? Can we do it directly from the
modular form f associated to E?



Curves over Qp

Let X/Qp.
The p-adic points of X decompose into residue disks

X(Qp) = ⊔P∈X(Fp)X(Qp)P

grouped by which Fp-point they reduce to.
The coordinate ring of disk X(Qp)P is a DVR, we can choose a uniformizing
parameter tP .

Theorem (roots of power series)
Let ℓ(t) =

∑∞
n=0 ant

n ∈ Qp[[t]] such that an → 0 as n → ∞ in the p-adic topology.
(So ℓ converges on Zp.) Let v0 = max{|an|p : n ≥ 0} and
N = max{n ≥ 0 : |an|p = v0}. Then

#{r ∈ Zp : ℓ(r) = 0} < N.

A locally analytic function ρ is a function such that on each residue disk X(Qp)P ,
P ∈ X(Fp), the function ρ|X(Qp)P

=
∑

n≥1 ant
n is a convergent power series.

Such a ρ ̸= 0 has only finitely many zeros.



Example: QC for elliptic curves of rank 1

An elliptic curve (of genus 1) E can have infinitely many rational points, an affine
genus 1 curve has finitely many integer points. Quadratic Chabauty computes E(Z)
for rank 1 affine genus 1 curves.

The global p-adic height is a symmetric bilinear pairing

h : E(Q)× E(Q) → Qp.

It decomposes as a sum of local pairings h =
∑

v prime hv .
There is also the p-adic logarithm log : E(Qp) → Qp.

When E is rank 1, E(Q)⊗ Zp is 1-dimensional: it has only a 1-dimensional space of
quadratic forms. This implies there exists γ ∈ Qp such that

h(z) = γ log2(z)

for all z ∈ E(Q).



Integer points on elliptic curves

There exists γ ∈ Qp such that for all z ∈ E(Q),
h(z) = γ log(z)2.

• For primes v ̸= p, if E has bad reduction at v,
hv(z) takes values in a finite set Wv

determined by the Kodaira type of E. Let
W =

∏
v Wv and for w ∈ W , let ∥w∥ be the

sum of its elements.
• For v = p, for z ∈ E(Z), hp(z) is locally

analytic.

Theorem (Balakrishnan–Kedlaya–Kim, Bianchi)
We have

E(Z) ⊆
⋃

w∈W

{z ∈ E(Zp) : hp(z) + ∥w∥ = γ log(z)2}.



Decomposing the height

Question
How do we compute the constant γ, such that ∀z ∈ E(Q), γ log(z)2 = h(z)?

If we know any y ∈ E(Q) of infinite order, this can be done.

E(Q) has a natural generator: the trace of a Heegner point. Heegner points are
points yK are attached to an imaginary quadratic fields K.
We assume

• “Heegner hypothesis”: every prime q dividing the conductor N of E splits in K;
(existence)

• p splits in K and coprime to N and the discriminant D of K is odd and less
than −3 (for construction of a p-adic L-function);

• K has class number 1. (for simplicity)

Goal
Compute log(z)2 and h(z) when z is the trace of the Heegner point for E(Z).



Main theorem: integral points on affine elliptic curves

Theorem (H.)
Let E/Z be an affine elliptic curve of rank 1. Let f/K be the modular form
associated to E. Assume p > 2 is a good ordinary prime.
Then γ is equal the ratio of the two p-adic L-values

γ := Cf

L′
p,PR(f/K, 1)

Lp,BDP(f/K, 1)

that appear in the p-adic Gross–Zagier formulas of Perrin-Riou and Bertolini,
Darmon and Prasanna times an explicit constant Cf depending only on f/K.
Furthermore, we give an algorithm to compute γ.

The analogue of this theorem holds for rational points on higher genus quotients of
modular curves X0(N)/W . The global height can be written as a linear
combination of logarithm functions, where the coefficients are special values of
p-adic L-functions.



Heegner points

Let K is an imaginary quadratic field of class number 1 satisfying the Heegner
hypothesis.

Remark
Heegner points are special points on J0(N)(K) corresponding to CM elliptic curves
whose traces generate the rank one part of the Mordell–Weil group of J0(N)(Q).

• The Heegner hypothesis implies N = nn over K.
• The elliptic curve PK := (C/n−1, 1/N) has CM by OK , and defines a CM

point on X0(N)(K).
• We define yK := [PK −∞] ∈ J0(N)(K) to be the Heegner point.

Gross and Zagier show that, for some choice of K, the image of yK under the
modular parametrization π : X0(N) → E generates E(Q) up to finite index.



Gross–Zagier formula

Consider the vector space V = J0(N)(K)⊗Q. We have a decomposition

V =
⊕
f

V f

into Hecke eigenspaces, summing over eigenforms f of weight 2 and level N . Write
yK,f for component of yK in V f .

Gross and Zagier show that for any newform f of weight 2 and level N

hNT(yK,f )
.
= L′(f/K, 1).

When f has analytic rank 1, Waldspurger’s theorem guarantees the existence of
infinitely many fields K such that the right hand side does not vanish.

Shimura defines an isogengy factor Af of J0(N) attached to f . Gross and Zagier
show that if hNT(yK,f ) ̸= 0 then (the image of) yK,f generates Af (Q) up to finite
index (under the action of Hecke).



p-adic Gross–Zagier

There are p-adic Gross–Zagier formulas that relate h(z) and log(z)2 of a Heegner
point to analytic quantities, i.e. special values of p-adic L-functions. These p-adic
L-functions interpolate classical L-values of Rankin L-functions for different sets of
Hecke characters.

Let f be a modular form of level N , weight 2 and analytic rank 1.

Theorem (Perrin-Riou)
There is a p-adic L-function whose derivative in the cyclotomic direction is

L′
p(f/K, 1)

.
= h(yK,f )

Theorem (Bertolini–Darmon–Prasanna)
There is an anticyclotomic p-adic L-function whose value at 1 is

Lp(f, 1, 1)
.
= (logfdq/q yK)2.



An example

Let E be the elliptic curve X0(43)+ with LMFDB label 43.a1 and p = 11. Choose
the class number 1 field K = Q(

√
−7), where p and N = 43 split. Fix an equation

for E/Q on for we want to compute integer points

E : y2 + y = x3 + x2.

We can compute γ:

γ =
h(π(yK))

log(π(yK))2
=

L′
p(f,1)

(
1
2

) (
1− 1

αp

)−4
deg π

Lp(f, 1, 1)
(

1−ap(f)+p

p

)−2

=
9 · 11 + 5 · 112 + 5 · 113 + 3 · 114 + 7 · 116 + 4 · 117 + 4 · 118 +O(119)

112 + 8 · 113 + 9 · 114 + 6 · 115 + 8 · 116 + 6 · 117 + 4 · 118 + 4 · 119 +O(1110)
.

http://www.lmfdb.org/EllipticCurve/Q/43/a/1


Example, cont.

E : y2 + y = x3 + x2

Recall that h(z) = hp +
∑

v hv(z) = γ log(z)2 and therefore

E(Z) ⊆
⋃

w∈W

{z ∈ E(Zp) : hp(z) + ∥w∥ = γ log(z)2}.

These W come from the local heights at primes of bad reduction. The only prime of
bad reduction is v = 43, this has Kodaira type I1

so there will be no local height contributions at 43.



Example, cont.

We have

E(Z) ⊆ {z ∈ E(Zp) : hp(z) = γ log(z)2}.

Then by plugging

γ = 9 · 11−1 + 10 + 2 · 11 + 4 · 112 + 5 · 114 + 8 · 115 + 10 · 116 +O(117)

into these equations we can solve for the zeros of the p-adic power series in each
residue disk. We obtain

E(Z) ⊆{(−1,−1), (0,−1), (1,−2), (2,−4), (21,−99),

(10 · 11 + 7 · 112 +O(113), 10 + 10 · 11 + 9 · 112 + 5 · 113 +O(113)),

(1 + 6 · 11 + 2 · 112 +O(113), 9 + 3 · 112 +O(113)),

(2 + 9 · 11 + 7 · 112 +O(113), 3 + 8 · 11 + 112 +O(113))}

and their conjugates under the hyperelliptic involution.



The anticyclotomic p-adic L-function

Let f =
∑

n≥0 anz
n be a weight 2 newform for Γ0(N) and K an imaginary

quadratic field of class number 1 satisfying the Heegner hypothesis for N . Let p be
split in K and coprime to N .

Theorem (Bertolini–Darmon–Prasanna)
There is an anticyclotomic p-adic L-function whose value at 1 is

Lp(f, 1, 1)
.
= (logfdq/q yK)2.

How do we compute Lp(f, 1, 1)? What even is this p-adic L-function?
The Shimura–Maass derivative is a derivative operator

δk =
1

2πi

(
∂

∂z
+

k

2iy

)
sending a nearly holomorphic modular form of weight k to one of weight k + 2. We
write δj for the composition δk+2j−2 ◦ · · · ◦ δk.
After normalizing by a period, the values of δjf at a CM point are algebraic and
belong to the compositum of the CM field and the coefficient field of f .



Computing the anticyclotomic p-adic L-function

For example, let f be the modular form of the elliptic curve 89.a1, N = 89, p = 3.
Let τN = −73+

√
−11

178
, so PK = (C/(Z+ ZτN ), 1/N) is the Heegner point for

K = Q(
√
−11) on X0(89).

Then the values of (1− appr−1p̄−1−r + p2r−1p̄−2r−1)2(δr−1f(τN ))2/Ω4r
K are

algebraic numbers in K whose value in Qp ≃ Kp are

r = 31 : 1 + 3 + 2 · 32 + 2 · 34 + 35 + 2 · 36 + 2 · 37 + 2 · 38 +O(310)

r = 32 : 1 + 3 + 2 · 32 + 33 + 34 + 37 + 39 +O(310)

r = 33 : 1 + 3 + 2 · 32 + 33 + 2 · 34 + 2 · 36 + 2 · 39 +O(310)

r = 34 : 1 + 3 + 2 · 32 + 33 + 2 · 34 + 35 + 2 · 36 + 2 · 38 + 2 · 39 +O(310).

The anticyclotomic p-adic L-function Lp(f) interpolates the square of the values of
the Shimura–Maass derivative δr−1 of f evaluated at τN , for r ≥ 1:

Lp(f,K, 1+ r, 1− r)/Ω4r
p = (1− app

r−1p̄−1−r + p2r−1p̄−2r−1)2(δr−1f(τN ))2/Ω4r
K

The special value Lp(f, 1, 1) occurs at r = 0. This is not a value in the range of
interpolation!

We can still recover this value, using the continuity of Lp(f, 1, 1) with inspiration
from a paper of Rubin.

http://www.lmfdb.org/EllipticCurve/Q/89/a/1


Computing in the range of interpolation

To compute Lp(f, 1 + r, 1− r) in the range of interpolation we need to compute
δr−1(f(τN )).

Zagier shows the values {δjf(τ)}j≥0 satisfy a recurrence relation when τ is a CM
point due to the large amount of structure on M∗(Γ0(N)).

There is an iterative relation that allows us to obtain δr+1f(τN ) from δrf(τN ) and
δr−1f(τN ) for r ≥ 1.



Computing outside the range of interpolation

Let r ≥ 1.

ℓ(r) := Lp(f, 1 + r, 1− r) · Ω−4r
p =

(1− app
r−1p̄−1−r + p2r−1p̄−2r−1)2(δr−1f(τN ))2/Ω4r

K

We want to compute ℓ(0) = Lp(f, 1, 1) =
(

1−ap(f)+p

p

)2
logfdq/q(yK)2.

Instead, we compute auxiliary values ℓ((p− 1)), ℓ(2(p− 1)), . . . , ℓ(B(p− 1)) in the
range of interpolation and recover ℓ(0) modulo pB from the following.

Proposition (H.)

ℓ(0)(p−1)/2 ≡
B∑

j=1

 B∑
i=j

(−1)j−1
(i− 1

j − 1

) ℓ(j(p− 1))(p−1)/2 mod pB .

Furthermore, ℓ(0) ≡ ℓ((p− 1)2/2) mod p.



Example of the logarithm
When E is the elliptic curve y2 + y = x3 − x with label 37.a1, K = Q(

√
−11), and

p = 5, we have the values

r ℓ(r) mod p10

4 −2341944
8 830906
12 −3933069
16 −35494
20 1760756
24 1706556
28 1972781
32 −3662194
36 3734381
40 4015256

So the proposition implies that

ℓ(0)2 = Lp(f, 1, 1)
2 ≡ 2502536 mod p10

Lp(f, 1, 1) ≡ ℓ(8) ≡ 830906 mod p

Lp(f, 1, 1) ≡ 4635631 mod p10.



The height

Recall π : X0(N) → E the modular parametrization.
Perrin-Riou’s p-adic Gross–Zagier theorem says

L′
p(f/K,1) =

(
1−

1

αp

)4 2h(π(yK))

deg π
.

We can relate this to the p-adic L-function of an elliptic curve of Amice–Velú
Lp,MTT using the following formula

L′
p(f,1) = L′

p,MTT(E, 1)

(
1−

1

αp

)2 L(ED, 1)

Ω+
ED

Ω+
ED

( √
|D|

8π2∥f∥

)

where ED is the quadratic twist of E by the discriminant of K.



Higher genus

Question
Let X be curve of genus g ≥ 2 with Jacobian JX . Can we extend this method to
compute X(Q)?

Given a nontrivial Z ∈ ker(NS(JX) → NS(X)), one can define a height h on X(Q)
using Nekovář’s theory of p-adic heights on Galois representations, as well as local
heights hv on X(Qv). This decomposes

h = hp +
∑
v

hv

where hp is locally analytic and hv for v ̸= p have finite image.

The analogue of h(z) = γ log2(z) is to write h(z) in terms of a basis of symmetric
bilinear pairings on JX . Let ω1, . . . , ωg be a basis for H0(XQp ,Ω

1). A basis is
given by

gij(D1, D2) :=
1

2
(logωi

(D1) logωj
(D2) + logωi

(D2) logωj
(D1)),

i = 1, . . . , g.

If rkJX(Q) = g and we knew a basis y1, . . . , yg for JX(Q), we could determine γij
such that h(z) =

∑
γijgij .



Modular curves

Definition
Let ϕ : X0(N) → X dominant and X genus g. Suppose JX is simple. Then we have
an associated f modular form of level M unique up to Galois conjugacy satisfying∏

σ∈Gal(Ef/Q)

L(fσ , s) = L(JX , s).

We say X is a simple new Γ0(N)-modular curve if X satisfies these assumptions
and furthermore f is newform of level N .

For our approach to quadratic Chabauty to succeed, we needed rkJX(Q) = g and
rkNS(JX) > 1.
When f is analytic rank 1, these simple new simple new Γ0(N)-modular curves
satisfy rkJX(Q) = g = rkNS(JX) > 1.



Theorem (H.)
Let ϕ : X0(N) → X be a simple new Γ0(N)-modular curve with associated newform
f of analytic rank 1. Let Ef be the coefficient field of f . Let K be an imaginary
quadratic field of class number 1 with odd discriminant D < −3. Let p be a good
ordinary prime and assume p is split in the imaginary quadratic field K.
Then

γσ :=
Cf deg(ϕ)L′

p,PR(fσ , 1)

Lp,BDP(fσ , 1, 1)

for σ ∈ Gal(Ef/Q) where Cf is a constant depending only on f .
The γσ are computable and for z ∈ X(Q) we have∑

σ∈Gal(Ef/Q)

γσ(logfσdq/q(z))
2 = h(z).

This allows us to compute a finite set of p-adic points containing X(Q).



q-expansion of the height

Let α denote the endomorphism associated to Z. Since X is modular, we assume
that α is the sum of Hecke operators and the identity. Then α(fσ) = λσfσ for some
scalar λfσ .
We can decompose the q-expansion of (the Nekovář height) as

h(q) =
∑

σ∈Gal(Ef/Q)

γσ

∫ q

0
fσ dq

q

(
cfσ,Z + λσ

∫ q

0
fσ dq

q

)
The term cfσ,Z appears in the literature as

logfσdq/q(ΠZ(∆GKS,b))

where ΠZ(∆GKS,b) is the Chow–Heegner point with respect to b.



Genus 2 example: quadratic Chabauty

Consider X0(67)+, let f be the Hecke eigenform of weight 2 level 67. The coefficient
field of f is Q(ν) where ν is a root of z2 − z − 1. Let p = 11. Fix the embedding
Q(ν) → Qp sending ν 7→ 4 + 3 · 11 +O(113). Let K := Q(

√
−7).

The q-expansion of the global height in disc is

O(117)− (571863 +O(116))q − (8833444 · 11−1 +O(116))q2 + . . .

with basepoint ∞ and Z the correspondence −4T11.

γf :=
1
2
h(ϕ∗(yK,f ), ϕ∗(yK,f ))

(logfdq/q ϕ∗(yK))2
= 8 · 11−1 + 7 + 6 · 11 + 9 · 112 + 10 · 113 +O(114)

γfσ :=
1
2
h(ϕ∗(yK,fσ ), ϕ∗(yK,fσ ))

(logfσdq/q ϕ∗(yK))2
= 5 · 11−1 + 5 · 11 + 4 · 112 + 4 · 113 +O(114).

Note that we can also compute

cf,Z = 193046 · 11 +O(117), cZ,fσ = 255850 · 11 +O(117).

We can solve for a finite set of p-adic points containing the rational points.
Other examples: X0(73)+, X0(107)+, X0(85)∗.



Summary

1 Quadratic Chabauty methods rely on explicit equations to determine rational
points. A dream would be to determine rational points on modular curves
directly from modular forms and their data, for example in Mazur’s method for
determining rational points on the family X0(p).

2 Theorems of Gross and Zagier, and their p-adic analogues, offer analytic
techniques that allow us to compute arithmetic invariants from the modular
form f .

3 This is the first step in the direction towards a more moduli-friendly quadratic
Chabauty – there is a lot more work to be done!


