Hyperelliptic Curves mapping to Abelian Surfaces and Applications to Beilinson's Conjecture for 0-cycles

Evangelia Gazaki* joint with Jonathan Love**

*University of Virginia, NSF DMS-2302196 **University of Leiden

VaNTAGe Seminar, October 15 2024

Table of Contents

2 The motivating Conjecture

Section 1:

2 The motivating Conjecture

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let X be a smooth projective variety over an algebraically closed field $k = \overline{k}$.

Goals of this Talk

- Discuss the structure of the **Chow group of** 0-cycles $CH_0(X)$ when $k = \mathbb{C}, \overline{\mathbb{Q}}, \overline{\mathbb{F}}_p$.
- Focus on fascinating conjectures over $\overline{\mathbb{Q}}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Picard Group of a Curve

Definition

Let C be a smooth projective curve of genus g over k.

$$\mathsf{Pic}(C) := \frac{\mathsf{Div}(C)}{\langle \mathsf{div}(f) : f \in k(C)^{\times} \rangle} = \frac{\bigoplus_{P \in C} \mathbb{Z} \cdot (P)}{\mathsf{rational equivalences}}$$

Recall: If $f : C \to \mathbb{P}^1_k$ is a rational function, then f induces a divisor

$$\operatorname{div}(f) := \sum_{P \in C} \operatorname{ord}_P(f)(P).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example: Hyperelliptic Curves

A smooth projective curve *H* is called **hyperelliptic** if affine locally $H: y^2 = f(x)$, where $f(x) \in k[x], \deg(f(x)) \ge 5$.

• Every hyperelliptic curve H has an involution

$$\iota: H \to H, \ P = (x, y) \mapsto \iota(P) = \overline{P} = (x, -y).$$

A point $W \in H(k)$ is called a Weierstrass point if $\overline{W} = W$.

• Fundamental rational equivalence: For every $P \in H$,

$$[P] + [\overline{P}] - 2[W] = 0 \in \operatorname{Pic}(C).$$

Structure of Pic(*C*)

Degree zero subgroup

$$\operatorname{Pic}^{0}(C) = \left\{ \sum_{P \in C} m_{P}[P] : \sum_{P \in C} m_{P} = 0 \right\}.$$

The Abel-Jacobi isomorphism

Let $P_0 \in C$ be a fixed rational point. \rightsquigarrow There exists a closed embedding $\iota_{P_0} : C \hookrightarrow J_C$, $P_0 \mapsto 0$, to the **Jacobian** of C. \rightsquigarrow It extends to a homomorphism (independent of choice of basepoint)

$$\alpha_{\mathcal{C}}: \quad \operatorname{Pic}^{0}(\mathcal{C}) \to J_{\mathcal{C}}.$$

Theorem (Abel-Jacobi): The map α_C is an isomorphism.

0-cycles in higher dimensions

Let X be a smooth projective variety over $k = \overline{k}$.

Definition

• A 0-cycle on X is a formal sum

$$m_1(P_1) + \cdots + m_n(P_n),$$

where $m_i \in \mathbb{Z}$ and P_i are points in X.

 Given a closed integral curve C → X, and a rational function f on C, we can define a 0-cycle on X:

$$\operatorname{div}(f) := \sum_{P \in C} \operatorname{ord}_P(f)(P).$$

・ロト・日本・日本・日本・日本・日本

Chow group of 0-cycles

Definition

A 0-cycle is a rational equivalence (or rationally equivalent to 0) if it can be written as a linear combination of divisors of rational functions on curves in X.

i.e. $z = \sum_i \operatorname{div}(f_i)$, for some $f_i \in k(C_i)^{\times}$, $C_i \hookrightarrow X$ closed curves.

Definition

The Chow group of 0-cycles

$$CH_0(X) := \bigoplus_{P \in X} \mathbb{Z} \cdot (P) / (rational equivalences).$$

Note: When X is a curve, $CH_0(X) = Pic(X)$.

Main Question

Question

Given a 0-cycle z on X, determine whether it is a rational equivalence or not.

Issue

- When dim(X) ≥ 2 we get contributions from many different curves inside X: z = 0 if and only if z = ∑_i div(f_i), for some f_i ∈ k(C_i)[×], C_i ⇔ X closed curves possibly not connected to each other. → we can't always reduce this to a single divisor.
- Generally very hard to describe explicit relations in $CH_0(X)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What we know about CH_0

• There exists a degree map

$$\mathsf{deg}: \mathsf{CH}_0(X) \twoheadrightarrow \mathbb{Z}, \sum_{x \in X} n_x[x] \mapsto \sum_{x \in X} n_x.$$

Define
$$F^1(X) = \ker(\deg) = \langle [x] - [y] : x, y \in X \rangle$$
.

• There exists Abel-Jacobi map

$$\alpha_X: F^1(X) \to \operatorname{Alb}_X,$$

where $Alb_X =$ higher dimensional analog of the Jacobian = Abelian Variety universal for morphisms from X to abelian varieties.

Problem: When dim(X) > 1, α_X is surjective, but often NOT injective. Define F²(X) = ker(α_X)

$$CH_0(X) \supset F^1(X) \supset F^2(X) \supset 0.$$

What about F^2 ?

Rojtman's Theorem ('80)

When X/k and k is algebraically closed then $F^2(X)$ is torsion-free.

In higher dimensions $F^2(X)$ often non-zero. Its structure depends heavily on the variety X

First Examples

Mumford ('68) constructed surfaces over \mathbb{C} with enormous $F^2(X)$. In particular: $F^2(X)$ NOT parametrized by the points of an algebraic variety.

Key points:

- positive geometric genus: $p_g(X) = \dim_{\mathbb{C}}(\Gamma(X, K_X)) > 0.$
- \mathbb{C} is transcendental.

When $k = \mathbb{C}$

Bloch ('75): For X/\mathbb{C} of arbitrary dimension d > 1 $p_g(X) > 0 \Rightarrow F^2(X)$ is huge.

When $k = \overline{\mathbb{F}}_p$

Milne: $F^2(X) = 0$ unconditionally on the variety.

Slogan

Large field and
$$p_g(X) > 0 \Rightarrow \text{large } F^2(X)$$

Small field \Rightarrow small $F^2(X)$.

Question

What about number fields?

Section 2:

- 2 The motivating Conjecture
 - 3 Main Results

The field $\overline{\mathbb{Q}}$

The field $\overline{\mathbb{Q}}$ of **algebraic** numbers is countable, algebraic and of characteristic 0.

Beilinson's Conjecture (mid 80's)

For X smooth projective variety over $\overline{\mathbb{Q}}$, $F^2(X) = 0$ unconditionally on $\rho_g(X)$.

Evidence?

CURVES! Many examples with $p_g(X) = 0$. NO known examples in dim(X) > 1 with $p_g(X) > 0$!

Example 1: *K*3 surfaces

Definition

A K3 surface over $k = \overline{k}$ is a smooth projective surface such that:

- X has trivial canonical bundle
- X has Albanese variety $Alb_X = 0$.

Example: $X = \{(x : y : z : w) \in \mathbb{P}^3_k : x^4 + y^4 + z^4 + w^4 = 0\}$, the Fermat quartic.

Analyzing Beilinson's Conjecture for K3's

 $\begin{aligned} \mathsf{Alb}_X &= 0 \Rightarrow F^1(X) = F^2(X) = \langle [x] - [y] : x, y \in X \rangle. \\ \mathsf{Thus: Beilinson's Conjecture for $X/\overline{\mathbb{Q}}$ \Leftrightarrow any two $\overline{\mathbb{Q}}$-points x, y are rationally equivalent. \\ \\ \mathbf{CAUTION!!!} $p_g(X) > 0 \Rightarrow this is very far from true for two general \mathbb{C}-points! \end{aligned}$

Theorem (Beauville-Voisin '04)

Let X be a K3 surface over $k = \overline{k}$. Any two points x, y that lie on some (possibly different) rational curve inside X are rationally equivalent.

i.e.: If there exist non-constant morphisms $f: \mathbb{P}^1 o X$ and

 $g: \mathbb{P}^1 \to X$ such that $x \in \text{Im}(f)$, $y \in \text{Im}(g)$, then [x] = [y].

Wishful Hope

Maybe $X(\mathbb{Q})$ can be covered by rational curves. **Conjecture:** (Bogomolov '81) predicts exactly this! Nowadays: This might be too strong.

Conjecture (Bogomolov/Hassett/Tshinkel 2010)

Every K3 surface X/\overline{k} contains infinitely many rational curves. **Evidence:** Known for many classes of K3's over \mathbb{C} , some over $\overline{\mathbb{Q}}$.

Example 2: Abelian Surfaces

Abelian Surfaces

Let A be an abelian surface over $k = \overline{k}$ with zero element 0.

- Fact 1: $p_g(A) > 0$.
- Fact 2: $Alb_A = A$ and the Abel-Jacobi map is:

$$\alpha_A : \qquad F^1(A) \to A$$

$$\sum_{x \in A} n_x[x] \mapsto \sum n_x x$$

Lemma: The kernel $F^2(A)$ is generated by 0-cycles of the form:

$$z_{a,b} := [a+b] - [a] - [b] + [0], \text{ with } a, b \in A.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Analyzing Beilinson's Conjecture for Abelian Surfaces

Beilinson's Conjecture for $A/\overline{\mathbb{Q}} \Leftrightarrow z_{a,b} = 0$, for all $\overline{\mathbb{Q}}$ -points $a, b \in A$. **CAUTION!!!** $p_g(A) > 0 \Rightarrow$ this is very far from true for two general \mathbb{C} -points! \rightsquigarrow extremely hard to construct examples.

Summary

To attack Beilinson's Conjecture for a smooth projective variety $X/\overline{\mathbb{Q}}$ we need:

- To find many "special" curves $C \hookrightarrow X$ defined over $\overline{\mathbb{Q}}$ that produce many rational equivalences.
- To use the special properties of *Q* (algebraicity) that distinguish it from *C* in an essential manner.

Special Curves

- For K3 surfaces: Beauville-Voisin result suggests that maybe rational curves are enough.
- Analog for abelian surfaces????
 Remark: Abelian surfaces don't contain any rational curves: Any morphism P¹ → A factors through J_{P1} = 0.
 Our Idea: Replace rational curves with hyperelliptic curves.

Example: A product of two Elliptic Curves

Finding generators

Let $A = E_1 \times E_2$ over $\overline{\mathbb{Q}}$ with zero element O = (0,0). Then:

- $F^1(A) = \langle [p,q] [0,0] : p \in E_1, q \in E_2 \rangle.$
- F²(A) is generated by the fewer elements
 [p,q] [p,0] [0,q] + [0,0] = z_{(p,0),(0,q)}.
- In fact, there is a surjection

$$\varepsilon: E_1(\overline{\mathbb{Q}}) \otimes E_2(\overline{\mathbb{Q}}) \twoheadrightarrow F^2(A)$$
$$p \otimes q \mapsto [p, q] - [p, 0] - [0, q] + [0, 0]$$

The Bad News

The group $E_1(\overline{\mathbb{Q}}) \otimes E_2(\overline{\mathbb{Q}})$ is very large. **Mordell-Weil Theorem:** $E_1(L) \otimes E_2(L) \simeq \mathbb{Z}^{r_1(L)} \otimes \mathbb{Z}^{r_2(L)} \oplus (\text{torsion}). \rightsquigarrow \text{ we need to kill the images of } E_1(L) \otimes E_2(L) \text{ with } E_i(L) \text{ of increasingly large rank.}$

The Good News

The surjection $\varepsilon : E_1(\overline{\mathbb{Q}}) \otimes E_2(\overline{\mathbb{Q}}) \twoheadrightarrow F^2(A)$ implies that the 0-cycle $z_{(p,0),(0,q)}$ is **bilinear** on p, q. **Take-away:** Bilinearity + Mordell-Weil reduce the number of cancellations we need!

A weaker Question

Suppose E_1, E_2 are defined over \mathbb{Q} and $rk(E_1(\mathbb{Q})) = 1$, $rk(E_2(\mathbb{Q})) = 1$. Let $A = E_1 \times E_2$. What do we need in order to show that $z_{a,b} = 0$ for all $a, b \in A(\mathbb{Q})$?

Lemma

Let $p \in E_1(\mathbb{Q}), q \in E_2(\mathbb{Q})$ be points of infinite order. Then

$$[p,q] - [p,0] - [0,q] + [0,0] = 0 \Rightarrow [a+b] - [a] - [b] + [0] = 0,$$

for all $a, b \in A(\mathbb{Q})$.

Note: The elements of $F^2(E_1 \times E_2)$ that are defined over \mathbb{Q} are generated by $z_{(a,0),(0,b)} = [a,b] - [a,0] - [0,b] + [0,0]$ with $a \in E_1(\mathbb{Q}), b \in E_2(\mathbb{Q})$. \rightsquigarrow Enough to show these vanish.

Proof of Lemma

Let $a \in E_1(\mathbb{Q}), b \in E_2(\mathbb{Q})$. $\mathsf{rk}(E_1(\mathbb{Q})) = 1$ and $p \in E_1(\mathbb{Q})$ has infinite order \Rightarrow the points $a, p \in E_1(\mathbb{Q})$ are \mathbb{Z} -linearly dependent and the same is true for b, q. \rightsquigarrow There exist $n, m, l, r \in \mathbb{Z}$ such that na + mp = 0 = lb + rq. Bilinearity gives

$$z_{(na,0),(0,lb)} = nlz_{(a,0),(0,b)} = mrz_{(p,0),(0,q)} = 0.$$

Thus: $z_{(a,0),(0,b)}$ is a **torsion** element of $F^2(E_1 \times E_2)$. **Rojtman's Theorem:** F^2 is torsion-free. $\Rightarrow z_{(a,0),(0,b)} = 0$.

Conclusions

- When rk(E₁(ℚ)) = rk(E₂(ℚ)) = 1, we only need **ONE** relation to be able to show z_{a,b} = 0 for all points a, b ∈ A(ℚ).
- When E_1, E_2 are isogenous: easy.
- When E_1, E_2 non-isogenous: very **nontrivial**!

Section 3:

Background

2 The motivating Conjecture

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

Abelian Surfaces

Definition

Let A be an abelian surface over $k = \overline{k}$. A point $x \in A$ is called hyperelliptic if some nonzero multiple of x lies in the image of a morphism $\phi : H \to A$, where H is a hyperelliptic curve over k such that the hyperelliptic involution on H commutes with negation on A, i.e. $\phi(\iota(p)) = -\phi(p)$, for all $p \in H$.

Rational Equivalences from Hyperelliptic Curves

Theorem 1 (G., Love '23)

Let $a, b \in A$. Suppose there exist nonzero integers m, n such that each of the points a, b, and ma + nb is hyperelliptic. Then $z_{a,b} = 0$. In fact,

$$z_{c,d} := [c+d] - [c] - [d] + [0] = 0$$
, for all $c, d \in B_{a,b}$,

where $B_{a,b}$ is the **divisible hull** of the subgroup $\langle a, b \rangle$,

$$B_{a,b} := \{ x \in A : \exists N \neq 0 \text{ such that } N \cdot x \in \langle a, b \rangle \}.$$

Key points in the Proof

• Pushing forward fundamental rational equivalences from hyperelliptics:

Let $\phi : H \to A$ with H hyperelliptic and $\phi(\iota(p)) = -\phi(p)$. Let $a = \phi(p)$.

 $[p] + [\iota(p)] - 2[w] = 0 \in \mathsf{CH}_0(H) \Rightarrow z_{a,-a} = 0 \in \mathsf{CH}_0(A).$

• **Bilinearity:** The 0-cycle $z_{a,b}$ is bilinear on a, b.

Remark

The points a, b, na + mb may lie in the images of morphisms from 3 distinct hyperelliptic curves \rightsquigarrow Theorem 1 is an analog for abelian surfaces of the Beauville-Voisin result for K3's.

Products of Elliptic Curves

For $A = E_1 \times E_2$ we have

$$F^2(A) = \langle [p,q] - [p,0] - [0,q] + [0,0], \ p \in E_1, q \in E_2 \rangle.$$

The points (p, 0) and (0, q) are always hyperelliptic!

Example

Suppose E_1, E_2 are defined over \mathbb{Q} and $\operatorname{rk}(E_1(\mathbb{Q})) = 1$, $\operatorname{rk}(E_2(\mathbb{Q})) = 1$. To show that $z_{a,b} = 0$ for all $a, b \in A(\mathbb{Q})$ enough to find:

- $\phi = (\phi_1, \phi_2) : H \to A$ with H hyperelliptic and ϕ commuting with negation on A,
- a point p ∈ H(Q) such that φ₁(p), φ₂(p) both have infinite order.

More generally: For a number field L/\mathbb{Q} , showing $z_{a,b} = 0$ for all $a, b \in A(L)$ can be reduced to finding **finitely many hyperelliptic points** in A(L). \rightsquigarrow Theorem 1 has the potential of taking advantage of the Mordell-Weil Theorem (algebraicity of $\overline{\mathbb{Q}}$).

Conclusions

- Theorem 1 ⇒ Hyperelliptic curves in abelian surfaces are special curves that produce many rational equivalences.
- **2** Theorem $1 \Rightarrow$ working with the divisible hull reduces the question of showing that every point in A(L) is hyperelliptic to only finding finitely many hyperelliptic points in A(L).
- Question: Can we find any such curves?

Why hyperelliptic curves?

Goal

Look for special curves in an abelian surface that produce lots of rational equivalences.

Approach 1

Look for curves with extra symmetries. Hyperelliptic curves have an involution ι such that $H/\iota \simeq \mathbb{P}^1$. \rightsquigarrow this gives many easy rational equivalences.

Approach 2: Small genus

- Genus 0: Abelian surfaces don't contain any g = 0 curves.
- Genus 1 curves = Elliptic curves. → Not many of these.
 Example: A = E₁ × E₂ with E₁, E₂ non-isogenous. Then every E → E₁ × E₂ must be constant in one of the factors.
- Genus 2: All of them are hyperelliptic!

Producing many Hyperelliptic Curves

A K3 Surface associated to an Abelian Surface A

Let $X_0 := \frac{A}{\langle -1 \rangle}$ be the quotient of A by the negation involution. \rightarrow This is a singular K3 surface with 16 singularities corresponding to the 16 2-torsion points of A. \rightarrow It admits a 2 : 1 map

$$\pi: A \to X_0.$$

By **blowing-up the singularities** we get a smooth projective K3 surface X = Kum(A) called **the Kummer surface** associated to A.

Pulling back rational curves from the Kummer surface

Expectation: X being a K3 should contain many rational curves \rightsquigarrow these will pull back to hyperelliptic curves in A.

Theorem 2 (G.-Love '23)

Suppose A is **isogenous to a product of two elliptic curves**. Then for **infinitely many values** of $g \ge 2$, there exist **infinitely many** pairwise non-isomorphic genus g hyperelliptic curves H mapping birationally into A with the hyperelliptic involution on H commuting with the negation on A.

Remarks

- For A isogenous to $E_1 \times E_2$ the hyperelliptic points are plentiful!
- The birationality onto their image guarantees that any new curve we produce gives genuinely new rational equivalences.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э.

Kummer Surface as an Elliptic Fibration

Elliptic Curves in Leibniz form

Let E_1, E_2 elliptic curves over $\overline{\mathbb{Q}}$ and $A = E_1 \times E_2$. \rightsquigarrow

$$E_1: y_1^2 = f(x_1) = x_1(x_1 - 1)(x_1 - \lambda)$$

$$E_2: y_2^2 = f(x_2) = x_2(x_2 - 1)(x_2 - \mu)$$

The Kummer surface

$$X = \operatorname{Kum}(A) \text{ has an affine chart}$$
$$U = \{(x_1, x_2, r) \in \overline{\mathbb{Q}}^3 : f(x_1)r^2 = f(x_2)\}$$
$$\pi : \quad E_1 \times E_2 \dashrightarrow U$$
$$(x_1, y_1, x_2, y_2) \mapsto \left(x_1, x_2, \frac{y_1}{y_2}\right)$$

Inose's Pencil

- The equation f(x₁)r² = f(x₂) becomes an elliptic curve *E* over the function field Q(r) by taking (0,0) as the point at infinity.
- Formally: The map U → A¹, (x₁, x₂, r) → r gives
 X = Kum(A) the structure of an elliptic fibration known as Inose's pencil.
- The Mordell-Weil group of ${\mathcal E}$ has rank at least 4.
- Every \mathbb{Z} -linear combination of the 4 generators gives a section $\mathbb{P}^1 \to X$, which pulls-back to a hyperelliptic $H \to A$.
- This process produces hyperelliptics of larger and larger genus.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- To see repetition of the genus: we repeat the process for any isogenous pair E'₁ × E'₂. → Over Q we get plenty of such pairs.
- Heuristically: we expect all genera g ≡ 2 mod 4 to appear infinitely often.
- The curves we produce can be made very explicit. We can write down Weierstrass equations for them and compute the maps H → E₁ × E₂.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Examples

Suppose we have Weierstrass equations

$$E_1: y_1^2 = x_1(x_1-1)(x_1-a), \qquad E_2: y_2^2 = x_2(x_2-1)(x_2-b).$$

• Genus 2 Curve:

$$y^{2} = ((a-1)^{3}r^{2} - (b-1)^{3})$$
$$((a-b)(b-1)^{2} - (a-1)^{3}r^{2} + (b-1)^{3})$$
$$((a-b)(b-1)^{2} - a(a-1)^{3}r^{2} + a(b-1)^{3}))$$

• Genus 6 Curve: Too long to fit in the slide!

Some computations

Let $A = E_1 \times E_2$ for $E_1, E_2/\mathbb{Q}$. How often can we prove that $z_{c,d} = 0$ for all $c, d \in A(\mathbb{Q})$?

Sample curves taken from LMFDB

$rk E_1(\mathbb{Q})$	$rk E_2(\mathbb{Q})$	# pairs checked	# s.t. $z_{c,d}=0$ for all $c,d\in A(\mathbb{Q})$
1	1	4950	2602
1	2	10000	3311
1	3	10000	955
2	2	4950	995
2	3	10000	615
3	3	190	17

Table not complete: only uses \mathbb{Q} -points on ≤ 6 hyperelliptic curves/ \mathbb{Q} of genus 2 mapping into A.

Some Future Directions

- More Computational Experimentation using hyperelliptic points in higher degree extensions and recent breakthroughs on density of degree *d* points on curves.
- Find "special curves" that produce rational equivalences for $E \times C$ and $(E \times C)/\iota$, for E elliptic curve and C of genus 2.
- Use the hyperelliptic curves in E₁ × E₂ to produce
 "Ceresa-like" cohomologically trivial 1-cycles on triple products E₁ × E₂ × E₃.
- Towards Bass-Bloch-Beilinson Conjectures: Construct indecomposable cycles on a product of non-isogenous E₁, E₂ over Q to show that the kernel Σ := ker(CH²(E₁ × E₂) → CH²(E₁ × E₂)) is torsion, where E₁ × E₂ is a smooth model over Spec(Z[1/N]).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thank you!