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Let X be a smooth projective variety over an algebraically
closed field k = k .

Goals of this Talk

Discuss the structure of the Chow group of 0-cycles CH0(X )
when k = C,Q,Fp.

Focus on fascinating conjectures over Q.
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Picard Group of a Curve

Definition

Let C be a smooth projective curve of genus g over k .

Pic(C ) :=
Div(C )

⟨div(f ) : f ∈ k(C )×⟩
=

⊕
P∈C Z · (P)

rational equivalences
.

Recall: If f : C → P1
k is a rational function, then f induces a

divisor
div(f ) :=

∑
P∈C

ordP(f )(P).
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Example: Hyperelliptic Curves

A smooth projective curve H is called hyperelliptic if affine locally
H : y2 = f (x), where f (x) ∈ k[x ], deg(f (x)) ≥ 5.

Every hyperelliptic curve H has an involution

ι : H → H, P = (x , y) 7→ ι(P) = P = (x ,−y).

A point W ∈ H(k) is called a Weierstrass point if W = W .

Fundamental rational equivalence: For every P ∈ H,

[P] + [P]− 2[W ] = 0 ∈ Pic(C ).
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Structure of Pic(C )

Degree zero subgroup

Pic0(C ) =

{∑
P∈C

mP [P] :
∑
P∈C

mP = 0

}
.

The Abel-Jacobi isomorphism

Let P0 ∈ C be a fixed rational point. ⇝ There exists a closed
embedding ιP0 : C ↪→ JC , P0 7→ 0, to the Jacobian of C . ⇝ It
extends to a homomorphism (independent of choice of basepoint)

αC : Pic0(C ) → JC .

Theorem (Abel-Jacobi): The map αC is an isomorphism.



Background The motivating Conjecture Main Results

0-cycles in higher dimensions

Let X be a smooth projective variety over k = k .

Definition

A 0-cycle on X is a formal sum

m1(P1) + · · ·+mn(Pn),

where mi ∈ Z and Pi are points in X .

Given a closed integral curve C ↪→ X , and a rational function
f on C , we can define a 0-cycle on X :

div(f ) :=
∑
P∈C

ordP(f )(P).
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Chow group of 0-cycles

Definition

A 0-cycle is a rational equivalence (or rationally equivalent to 0) if
it can be written as a linear combination of divisors of rational
functions on curves in X .
i.e. z =

∑
i div(fi ), for some fi ∈ k(Ci )

×, Ci ↪→ X closed curves.

Definition

The Chow group of 0-cycles

CH0(X ) :=
⊕
P∈X

Z · (P)/(rational equivalences).

Note: When X is a curve, CH0(X ) = Pic(X ).
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Main Question

Question

Given a 0-cycle z on X , determine whether it is a rational
equivalence or not.

Issue

When dim(X ) ≥ 2 we get contributions from many different
curves inside X : z = 0 if and only if z =

∑
i div(fi ), for some

fi ∈ k(Ci )
×, Ci ↪→ X closed curves possibly not connected to

each other. ⇝ we can’t always reduce this to a single divisor.

Generally very hard to describe explicit relations in CH0(X ).



Background The motivating Conjecture Main Results

What we know about CH0

There exists a degree map

deg : CH0(X )↠ Z,
∑
x∈X

nx [x ] 7→
∑
x∈X

nx .

Define F 1(X ) = ker(deg) = ⟨[x ]− [y ] : x , y ∈ X ⟩.
There exists Abel-Jacobi map

αX : F 1(X ) → AlbX ,

where AlbX = higher dimensional analog of the Jacobian =
Abelian Variety universal for morphisms from X to abelian
varieties.

Problem: When dim(X ) > 1, αX is surjective, but often
NOT injective. Define F 2(X ) = ker(αX )

CH0(X ) ⊃ F 1(X ) ⊃ F 2(X ) ⊃ 0.



Background The motivating Conjecture Main Results

What about F 2?

Rojtman’s Theorem (’80)

When X/k and k is algebraically closed then F 2(X ) is torsion-free.

In higher dimensions F 2(X ) often non-zero. Its structure depends
heavily on the variety X

First Examples

Mumford (’68) constructed surfaces over C with enormous F 2(X ).
In particular: F 2(X ) NOT parametrized by the points of an
algebraic variety.
Key points:

positive geometric genus: pg (X ) = dimC(Γ(X ,KX )) > 0.

C is transcendental.
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When k = C
Bloch (’75): For X/C of arbitrary dimension d > 1
pg (X ) > 0 ⇒ F 2(X ) is huge.

When k = Fp

Milne: F 2(X ) = 0 unconditionally on the variety.

Slogan

Large field and pg (X ) > 0 ⇒ large F 2(X )
Small field ⇒ small F 2(X ).

Question

What about number fields?
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The field Q
The field Q of algebraic numbers is countable, algebraic and of
characteristic 0.

Beilinson’s Conjecture (mid 80’s)

For X smooth projective variety over Q, F 2(X ) = 0
unconditionally on pg (X ).

Evidence?

CURVES!
Many examples with pg (X ) = 0.
NO known examples in dim(X ) > 1 with pg (X ) > 0!
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Example 1: K3 surfaces

Definition

A K3 surface over k = k is a smooth projective surface such that:

X has trivial canonical bundle

X has Albanese variety AlbX = 0.

Example: X = {(x : y : z : w) ∈ P3
k : x4 + y4 + z4 +w4 = 0}, the

Fermat quartic.

Analyzing Beilinson’s Conjecture for K3’s

AlbX = 0 ⇒ F 1(X ) = F 2(X ) = ⟨[x ]− [y ] : x , y ∈ X ⟩.
Thus: Beilinson’s Conjecture for X/Q ⇔ any two Q-points x , y
are rationally equivalent.
CAUTION!!! pg (X ) > 0 ⇒ this is very far from true for two
general C-points!
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Theorem (Beauville-Voisin ’04)

Let X be a K3 surface over k = k . Any two points x , y that lie on
some (possibly different) rational curve inside X are rationally
equivalent.
i.e.: If there exist non-constant morphisms f : P1 → X and
g : P1 → X such that x ∈ Im(f ), y ∈ Im(g), then [x ] = [y ].

Wishful Hope

Maybe X (Q) can be covered by rational curves.
Conjecture: (Bogomolov ’81) predicts exactly this!
Nowadays: This might be too strong.

Conjecture (Bogomolov/Hassett/Tshinkel 2010)

Every K3 surface X/k contains infinitely many rational curves.
Evidence: Known for many classes of K3’s over C, some over Q.



Background The motivating Conjecture Main Results

Example 2: Abelian Surfaces

Abelian Surfaces

Let A be an abelian surface over k = k with zero element 0.

Fact 1: pg (A) > 0.

Fact 2: AlbA = A and the Abel-Jacobi map is:

αA : F 1(A) → A∑
x∈A

nx [x ] 7→
∑

nxx

Lemma: The kernel F 2(A) is generated by 0-cycles of the form:

za,b := [a+ b]− [a]− [b] + [0], with a, b ∈ A.
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Analyzing Beilinson’s Conjecture for Abelian Surfaces

Beilinson’s Conjecture for A/Q ⇔ za,b = 0, for all Q-points
a, b ∈ A.
CAUTION!!! pg (A) > 0 ⇒ this is very far from true for two
general C-points! ⇝ extremely hard to construct examples.
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Summary

To attack Beilinson’s Conjecture for a smooth projective variety
X/Q we need:

To find many “special” curves C ↪→ X defined over Q that
produce many rational equivalences.

To use the special properties of Q (algebraicity) that
distinguish it from C in an essential manner.

Special Curves

For K3 surfaces: Beauville-Voisin result suggests that maybe
rational curves are enough.

Analog for abelian surfaces????
Remark: Abelian surfaces don’t contain any rational curves:
Any morphism P1 → A factors through JP1 = 0.
Our Idea: Replace rational curves with hyperelliptic curves.
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Example: A product of two Elliptic Curves

Finding generators

Let A = E1 × E2 over Q with zero element O = (0, 0). Then:

F 1(A) = ⟨[p, q]− [0, 0] : p ∈ E1, q ∈ E2⟩.
F 2(A) is generated by the fewer elements
[p, q]− [p, 0]− [0, q] + [0, 0] = z(p,0),(0,q).

In fact, there is a surjection

ε : E1(Q)⊗ E2(Q)↠ F 2(A)

p ⊗ q 7→ [p, q]− [p, 0]− [0, q] + [0, 0]
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The Bad News

The group E1(Q)⊗ E2(Q) is very large.
Mordell-Weil Theorem:
E1(L)⊗ E2(L) ≃ Zr1(L) ⊗ Zr2(L) ⊕ (torsion). ⇝ we need to kill the
images of E1(L)⊗ E2(L) with Ei (L) of increasingly large rank.

The Good News

The surjection ε : E1(Q)⊗ E2(Q)↠ F 2(A) implies that the 0-cycle
z(p,0),(0,q) is bilinear on p, q.
Take-away: Bilinearity + Mordell-Weil reduce the number of
cancellations we need!
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A weaker Question

Suppose E1,E2 are defined over Q and rk(E1(Q)) = 1,
rk(E2(Q)) = 1. Let A = E1 × E2. What do we need in order to
show that za,b = 0 for all a, b ∈ A(Q)?

Lemma

Let p ∈ E1(Q), q ∈ E2(Q) be points of infinite order. Then

[p, q]− [p, 0]− [0, q] + [0, 0] = 0 ⇒ [a+ b]− [a]− [b] + [0] = 0,

for all a, b ∈ A(Q).

Note: The elements of F 2(E1 × E2) that are defined over Q are
generated by z(a,0),(0,b) = [a, b]− [a, 0]− [0, b] + [0, 0] with
a ∈ E1(Q), b ∈ E2(Q). ⇝ Enough to show these vanish.
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Proof of Lemma

Let a ∈ E1(Q), b ∈ E2(Q). rk(E1(Q)) = 1 and p ∈ E1(Q) has
infinite order ⇒ the points a, p ∈ E1(Q) are Z-linearly dependent
and the same is true for b, q. ⇝ There exist n,m, l , r ∈ Z such
that na+mp = 0 = lb + rq.
Bilinearity gives

z(na,0),(0,lb) = nlz(a,0),(0,b) = mrz(p,0),(0,q) = 0.

Thus: z(a,0),(0,b) is a torsion element of F 2(E1 × E2).
Rojtman’s Theorem: F 2 is torsion-free. ⇒ z(a,0),(0,b) = 0.

Conclusions

When rk(E1(Q)) = rk(E2(Q)) = 1, we only need ONE
relation to be able to show za,b = 0 for all points a, b ∈ A(Q).

When E1,E2 are isogenous: easy.

When E1,E2 non-isogenous: very nontrivial!
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Abelian Surfaces

Definition

Let A be an abelian surface over k = k. A point x ∈ A is called
hyperelliptic if some nonzero multiple of x lies in the image of a
morphism ϕ : H → A, where H is a hyperelliptic curve over k such
that the hyperelliptic involution on H commutes with
negation on A, i.e. ϕ(ι(p)) = −ϕ(p), for all p ∈ H.
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Rational Equivalences from Hyperelliptic Curves

Theorem 1 (G., Love ’23)

Let a, b ∈ A. Suppose there exist nonzero integers m, n such that
each of the points a, b, and ma+ nb is hyperelliptic. Then
za,b = 0. In fact,

zc,d := [c + d ]− [c]− [d ] + [0] = 0, for all c, d ∈ Ba,b,

where Ba,b is the divisible hull of the subgroup ⟨a, b⟩,

Ba,b := {x ∈ A : ∃N ̸= 0 such that N · x ∈ ⟨a, b⟩}.
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Key points in the Proof

Pushing forward fundamental rational equivalences from
hyperelliptics:
Let ϕ : H → A with H hyperelliptic and ϕ(ι(p)) = −ϕ(p). Let
a = ϕ(p).

[p] + [ι(p)]− 2[w ] = 0 ∈ CH0(H) ⇒ za,−a = 0 ∈ CH0(A).

Bilinearity: The 0-cycle za,b is bilinear on a, b.

Remark

The points a, b, na+mb may lie in the images of morphisms from
3 distinct hyperelliptic curves ⇝ Theorem 1 is an analog for
abelian surfaces of the Beauville-Voisin result for K3’s.
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Products of Elliptic Curves

For A = E1 × E2 we have

F 2(A) = ⟨[p, q]− [p, 0]− [0, q] + [0, 0], p ∈ E1, q ∈ E2⟩.

The points (p, 0) and (0, q) are always hyperelliptic!

Example

Suppose E1,E2 are defined over Q and rk(E1(Q)) = 1,
rk(E2(Q)) = 1. To show that za,b = 0 for all a, b ∈ A(Q) enough
to find:

ϕ = (ϕ1, ϕ2) : H → A with H hyperelliptic and ϕ commuting
with negation on A,

a point p ∈ H(Q) such that ϕ1(p), ϕ2(p) both have infinite
order.
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More generally: For a number field L/Q, showing za,b = 0 for all
a, b ∈ A(L) can be reduced to finding finitely many hyperelliptic
points in A(L). ⇝ Theorem 1 has the potential of taking
advantage of the Mordell-Weil Theorem (algebraicity of Q).

Conclusions

1 Theorem 1 ⇒ Hyperelliptic curves in abelian surfaces are
special curves that produce many rational equivalences.

2 Theorem 1 ⇒ working with the divisible hull reduces the
question of showing that every point in A(L) is hyperelliptic to
only finding finitely many hyperelliptic points in A(L).

3 Question: Can we find any such curves?



Background The motivating Conjecture Main Results

Why hyperelliptic curves?

Goal

Look for special curves in an abelian surface that produce lots of
rational equivalences.

Approach 1

Look for curves with extra symmetries.
Hyperelliptic curves have an involution ι such that H/ι ≃ P1. ⇝
this gives many easy rational equivalences.

Approach 2: Small genus

Genus 0: Abelian surfaces don’t contain any g = 0 curves.

Genus 1 curves = Elliptic curves. ⇝ Not many of these.
Example: A = E1 × E2 with E1,E2 non-isogenous. Then

every E
f−→ E1 × E2 must be constant in one of the factors.

Genus 2: All of them are hyperelliptic!
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Producing many Hyperelliptic Curves

A K3 Surface associated to an Abelian Surface A

Let X0 :=
A

⟨−1⟩
be the quotient of A by the negation involution.

⇝ This is a singular K3 surface with 16 singularities corresponding
to the 16 2-torsion points of A. ⇝ It admits a 2 : 1 map

π : A → X0.

By blowing-up the singularities we get a smooth projective K3
surface X = Kum(A) called the Kummer surface associated to A.

Pulling back rational curves from the Kummer surface

Expectation: X being a K3 should contain many rational curves
⇝ these will pull back to hyperelliptic curves in A.
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Theorem 2 (G.-Love ’23)

Suppose A is isogenous to a product of two elliptic curves.
Then for infinitely many values of g ≥ 2, there exist infinitely
many pairwise non-isomorphic genus g hyperelliptic curves H
mapping birationally into A with the hyperelliptic involution on H
commuting with the negation on A.

Remarks

1 For A isogenous to E1 × E2 the hyperelliptic points are
plentiful!

2 The birationality onto their image guarantees that any new
curve we produce gives genuinely new rational equivalences.
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Kummer Surface as an Elliptic Fibration

Elliptic Curves in Leibniz form

Let E1,E2 elliptic curves over Q and A = E1 × E2. ⇝

E1 : y
2
1 = f (x1) = x1(x1 − 1)(x1 − λ)

E2 : y
2
2 = f (x2) = x2(x2 − 1)(x2 − µ)

The Kummer surface

X = Kum(A) has an affine chart

U = {(x1, x2, r) ∈ Q3
: f (x1)r

2 = f (x2)}

π : E1 × E2 99K U

(x1, y1, x2, y2) 7→
(
x1, x2,

y1
y2

)
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Inose’s Pencil

The equation f (x1)r
2 = f (x2) becomes an elliptic curve E over

the function field Q(r) by taking (0, 0) as the point at infinity.

Formally: The map U → A1, (x1, x2, r) 7→ r gives
X = Kum(A) the structure of an elliptic fibration known as
Inose’s pencil.

The Mordell-Weil group of E has rank at least 4.

Every Z-linear combination of the 4 generators gives a section
P1 → X , which pulls-back to a hyperelliptic H → A.

This process produces hyperelliptics of larger and larger genus.
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To see repetition of the genus: we repeat the process for any
isogenous pair E ′

1×E ′
2. ⇝ Over Q we get plenty of such pairs.

Heuristically: we expect all genera g ≡ 2 mod 4 to appear
infinitely often.

The curves we produce can be made very explicit. We can
write down Weierstrass equations for them and compute the
maps H → E1 × E2.
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Examples

Suppose we have Weierstrass equations

E1 : y
2
1 = x1(x1 − 1)(x1 − a), E2 : y

2
2 = x2(x2 − 1)(x2 − b).

Genus 2 Curve:

y2 =
(
(a− 1)3r2 − (b − 1)3

)(
(a− b)(b − 1)2 − (a− 1)3r2 + (b − 1)3

)(
(a− b)(b − 1)2 − a(a− 1)3r2 + a(b − 1)3)

)
Genus 6 Curve: Too long to fit in the slide!
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Some computations

Let A = E1 × E2 for E1,E2/Q. How often can we prove that
zc,d = 0 for all c, d ∈ A(Q)?

Sample curves taken from LMFDB

rkE1(Q) rkE2(Q) # pairs checked
# s.t. zc,d=0

for all c,d∈A(Q)

1 1 4950 2602
1 2 10000 3311
1 3 10000 955
2 2 4950 995
2 3 10000 615
3 3 190 17

Table not complete: only uses Q-points on ≤ 6 hyperelliptic
curves/Q of genus 2 mapping into A.
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Some Future Directions

More Computational Experimentation using hyperelliptic
points in higher degree extensions and recent breakthroughs
on density of degree d points on curves.

Find “special curves” that produce rational equivalences for
E × C and (E × C )/ι, for E elliptic curve and C of genus 2.

Use the hyperelliptic curves in E1 × E2 to produce
“Ceresa-like” cohomologically trivial 1-cycles on triple
products E1 × E2 × E3.

Towards Bass-Bloch-Beilinson Conjectures:
Construct indecomposable cycles on a product of
non-isogenous E1,E2 over Q to show that the kernel
Σ := ker(CH2(E1 × E2) → CH2(E1 × E2)) is torsion, where
E1 × E2 is a smooth model over Spec(Z[1/N]).
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Thank you!
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