KORK ERKER ADA ADA KORA

Hyperelliptic Curves mapping to Abelian Surfaces and Applications to Beilinson's Conjecture for 0-cycles

Evangelia Gazaki* joint with Jonathan Love**

*University of Virginia, NSF DMS-2302196 **University of Leiden

VaNTAGe Seminar, October 15 2024

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Table of Contents

- 2 [The motivating Conjecture](#page-13-0)
- 3 [Main Results](#page-24-0)

Section 1:

[The motivating Conjecture](#page-13-0)

KORK EXTERNE PROVIDE

Let X be a smooth projective variety over an algebraically closed field $k = \overline{k}$.

Goals of this Talk

• Discuss the structure of the **Chow group of** 0-cycles $CH₀(X)$ when $k = \mathbb{C}, \overline{\mathbb{Q}}, \overline{\mathbb{F}}_p$.

 \bullet Focus on fascinating conjectures over \overline{Q} .

Picard Group of a Curve

Definition

Let C be a smooth projective curve of genus g over k .

$$
\mathsf{Pic}(\mathcal{C}):=\frac{\mathsf{Div}(\mathcal{C})}{\langle \mathsf{div}(f): f \in k(\mathcal{C})^\times \rangle} = \frac{\bigoplus_{P \in \mathcal{C}} \mathbb{Z} \cdot (P)}{\mathsf{rational \;equivalences}}.
$$

Recall: If $f: C \to \mathbb{P}^1_k$ is a rational function, then f induces a divisor

$$
\mathsf{div}(f) := \sum_{P \in \mathsf{C}} \mathsf{ord}_P(f)(P).
$$

Example: Hyperelliptic Curves

A smooth projective curve H is called **hyperelliptic** if affine locally $H: y^2 = f(x)$, where $f(x) \in k[x]$, deg $(f(x)) \ge 5$.

 \bullet Every hyperelliptic curve H has an involution

$$
\iota: H \to H, \ \ P=(x,y) \mapsto \iota(P) = \overline{P}=(x,-y).
$$

A point $W \in H(k)$ is called a **Weierstrass point** if $\overline{W} = W$.

• Fundamental rational equivalence: For every $P \in H$,

$$
[P] + [\overline{P}] - 2[W] = 0 \in Pic(C).
$$

Structure of Pic(C)

Degree zero subgroup

$$
Pic^{0}(C) = \left\{ \sum_{P \in C} m_{P}[P] : \sum_{P \in C} m_{P} = 0 \right\}.
$$

The Abel-Jacobi isomorphism

Let $P_0 \in \mathcal{C}$ be a fixed rational point. \leadsto There exists a closed embedding $\iota_{P_0}:C\hookrightarrow J_\mathcal{C}$, $P_0\mapsto 0$, to the **Jacobian** of $C_+\rightsquigarrow$ It extends to a homomorphism (independent of choice of basepoint)

$$
\alpha_{\mathcal{C}}: \qquad \text{Pic}^0(\mathcal{C}) \to J_{\mathcal{C}}.
$$

Theorem (Abel-Jacobi): The map α_C is an isomorphism.

KORK EXTERNE PROVIDE

0-cycles in higher dimensions

Let X be a smooth projective variety over $k = k$.

Definition

 \bullet A 0-cycle on X is a formal sum

$$
m_1(P_1)+\cdots+m_n(P_n),
$$

where $m_i \in \mathbb{Z}$ and P_i are points in X.

• Given a closed integral curve $C \hookrightarrow X$, and a rational function f on C, we can define a 0-cycle on X:

$$
\mathsf{div}(f) := \sum_{P \in \mathcal{C}} \mathsf{ord}_P(f)(P).
$$

Chow group of 0-cycles

Definition

A 0-cycle is a rational equivalence (or rationally equivalent to 0) if it can be written as a linear combination of divisors of rational functions on curves in X.

i.e. $z = \sum_i \mathsf{div}(f_i)$, for some $f_i \in k(C_i)^\times$, $C_i \hookrightarrow X$ closed curves.

Definition

The Chow group of 0-cycles

$$
CH_0(X) := \bigoplus_{P \in X} \mathbb{Z} \cdot (P) / (\text{rational equivalences}).
$$

Note: When X is a curve, $CH_0(X) = Pic(X)$.

Main Question

Question

Given a 0-cycle z on X , determine whether it is a rational equivalence or not.

Issue

- When dim $(X) \ge 2$ we get contributions from many different curves inside X_1 : $z=0$ if and only if $z=\sum_i \mathsf{div}(f_i)$, for some $f_i \in k(C_i)^{\times}$, $C_i \hookrightarrow X$ closed curves possibly not connected to each other. \rightarrow we can't always reduce this to a single divisor.
- Generally very hard to describe explicit relations in $CH_0(X)$.

What we know about $CH₀$

• There exists a **degree map**

$$
\mathsf{deg} : \mathsf{CH}_0(X) \twoheadrightarrow \mathbb{Z}, \sum_{x \in X} n_x[x] \mapsto \sum_{x \in X} n_x.
$$

Define
$$
F^1(X) = \ker(\deg) = \langle [x] - [y] : x, y \in X \rangle
$$
.

• There exists Abel-Jacobi map

$$
\alpha_X: F^1(X) \to \mathsf{Alb}_X,
$$

where Alb $x =$ higher dimensional analog of the Jacobian $=$ Abelian Variety universal for morphisms from X to abelian varieties.

• Problem: When dim $(X) > 1$, α_X is surjective, but often **NOT injective**. Define $F^2(X) = \ker(\alpha_X)$

$$
CH_0(X) \supset F^1(X) \supset F^2(X) \supset 0.
$$

What about F^2 ?

Rojtman's Theorem ('80)

When X/k and k is algebraically closed then $\mathit{F}^{2}(X)$ is torsion-free.

In higher dimensions $\mathit{F}^{2}(X)$ often non-zero. Its structure depends heavily on the variety X

First Examples

Mumford ('68) constructed surfaces over $\mathbb C$ with enormous $F^2(X)$. In particular: $F^2(X)$ NOT parametrized by the points of an algebraic variety.

Key points:

- positive geometric genus: $p_{\sigma}(X) = \dim_{\mathbb{C}}(\Gamma(X, K_X)) > 0$.
- C is transcendental.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

When $k = \mathbb{C}$

Bloch ('75): For X/\mathbb{C} of arbitrary dimension $d > 1$ $\rho_{\mathcal{g}}(X)>0\Rightarrow\mathit{F}^{2}(X)$ is huge.

When $k = \overline{\mathbb{F}}_p$

Milne: $F^2(X) = 0$ unconditionally on the variety.

Slogan

Large field and
$$
p_g(X) > 0 \Rightarrow
$$
 large $F^2(X)$
Small field \Rightarrow small $F^2(X)$.

Question

What about number fields?

Section 2:

- 2 [The motivating Conjecture](#page-13-0)
- **[Main Results](#page-24-0)**

The field $\overline{0}$

The field \overline{Q} of algebraic numbers is countable, algebraic and of characteristic 0.

Beilinson's Conjecture (mid 80's)

For X smooth projective variety over $\overline{\mathbb{Q}}$, $F^2(X) = 0$ unconditionally on $p_{\sigma}(X)$.

Evidence?

CURVES! Many examples with $p_g(X) = 0$. NO known examples in dim $(X) > 1$ with $p_g(X) > 0!$

Example 1: K3 surfaces

Definition

A K3 surface over $k = \overline{k}$ is a smooth projective surface such that:

- \bullet X has trivial canonical bundle
- X has Albanese variety $Alb_x = 0$.

Example: $X = \{(x : y : z : w) \in \mathbb{P}_{k}^{3} : x^{4} + y^{4} + z^{4} + w^{4} = 0\}$, the Fermat quartic.

Analyzing Beilinson's Conjecture for K3's

 $\mathsf{Alb}_X = 0 \Rightarrow F^1(X) = F^2(X) = \langle [x] - [y] : x, y \in X \rangle.$ Thus: Beilinson's Conjecture for $X/\mathbb{Q} \Leftrightarrow$ any two \mathbb{Q} -points x, y are rationally equivalent. **CAUTION!!!** $p_g(X) > 0 \Rightarrow$ this is very far from true for two general C-points!

Theorem (Beauville-Voisin '04)

Let X be a K3 surface over $k = \overline{k}$. Any two points x, y that lie on some (possibly different) rational curve inside X are rationally equivalent.

i.e.: If there exist non-constant morphisms $f:\mathbb{P}^1\to X$ and

 $g:\mathbb{P}^1\to X$ such that $x\in \mathsf{Im}(f),\ y\in \mathsf{Im}(g),$ then $[x]=[y].$

Wishful Hope

Maybe $X(\overline{\mathbb{Q}})$ can be covered by rational curves. Conjecture: (Bogomolov '81) predicts exactly this! Nowadays: This might be too strong.

Conjecture (Bogomolov/Hassett/Tshinkel 2010)

Every K3 surface X/\overline{k} contains infinitely many rational curves. **Evidence:** Known for many classes of K3's over $\mathbb C$, some over $\overline{\mathbb Q}$.

Example 2: Abelian Surfaces

Abelian Surfaces

Let A be an abelian surface over $k = \overline{k}$ with zero element 0.

- Fact 1: $p_{\epsilon}(A) > 0$.
- Fact 2: $Alb_A = A$ and the Abel-Jacobi map is:

$$
\alpha_A: \qquad F^1(A) \to A
$$

$$
\sum_{x \in A} n_x[x] \mapsto \sum_{x \in A} n_x x
$$

Lemma: The kernel $F^2(A)$ is generated by 0-cycles of the form:

$$
z_{a,b}:=[a+b]-[a]-[b]+[0], \text{ with } a,b\in A.
$$

KORK ERKER ADAM ADA

Analyzing Beilinson's Conjecture for Abelian Surfaces

Beilinson's Conjecture for $A/\overline{\mathbb{Q}} \Leftrightarrow z_{a,b} = 0$, for all $\overline{\mathbb{Q}}$ -points $a, b \in A$. **CAUTION!!!** $p_g(A) > 0 \Rightarrow$ this is very far from true for two general \mathbb{C} -points! \rightsquigarrow extremely hard to construct examples.

Summary

To attack Beilinson's Conjecture for a smooth projective variety $X/\overline{\mathbb{Q}}$ we need:

- To find many "special" curves $C \hookrightarrow X$ defined over \overline{O} that produce many rational equivalences.
- \bullet To use the special properties of $\overline{\mathbb{Q}}$ (algebraicity) that distinguish it from $\mathbb C$ in an essential manner.

Special Curves

- For K3 surfaces: Beauville-Voisin result suggests that maybe rational curves are enough.
- Analog for abelian surfaces???? Remark: Abelian surfaces don't contain any rational curves: Any morphism $\mathbb{P}^1 \to A$ factors through $J_{\mathbb{P}^1} = 0.$ Our Idea: Replace rational curves with hyperelliptic curves.

Example: A product of two Elliptic Curves

Finding generators

Let $A = E_1 \times E_2$ over \overline{Q} with zero element $O = (0, 0)$. Then:

- $\mathcal{F}^1(\mathcal{A})=\langle [\rho,q]-[0,0]:\rho\in\mathcal{E}_1,q\in\mathcal{E}_2\rangle.$
- $F^2(A)$ is generated by the fewer elements $\left[p,q\right]-\left[p,0\right]-\left[0,q\right]+\left[0,0\right]=z_{\left(p,0\right),\left(0,q\right)}.$
- In fact, there is a surjection

$$
\varepsilon: E_1(\overline{\mathbb{Q}}) \otimes E_2(\overline{\mathbb{Q}}) \twoheadrightarrow F^2(A)
$$

$$
\rho \otimes q \mapsto [\rho, q] - [\rho, 0] - [0, q] + [0, 0]
$$

The Bad News

The group $E_1(\overline{\mathbb{Q}}) \otimes E_2(\overline{\mathbb{Q}})$ is very large. Mordell-Weil Theorem: $E_1(L)\otimes E_2(L)\simeq \mathbb{Z}^{r_1(L)}\otimes \mathbb{Z}^{r_2(L)}\oplus (\hbox{torsion}).\; \leadsto$ we need to kill the images of $E_1(L) \otimes E_2(L)$ with $E_i(L)$ of increasingly large rank.

The Good News

The surjection $\varepsilon: E_1(\overline{\mathbb{Q}})\otimes E_2(\overline{\mathbb{Q}}) \twoheadrightarrow F^2(A)$ implies that the 0-cycle $z_{(p,0),(0,q)}$ is **bilinear** on p,q . Take-away: Bilinearity $+$ Mordell-Weil reduce the number of cancellations we need!

KORKARYKERKER POLO

A weaker Question

Suppose E_1, E_2 are defined over $\mathbb Q$ and $rk(E_1(\mathbb Q)) = 1$, $rk(E_2(\mathbb{Q})) = 1$. Let $A = E_1 \times E_2$. What do we need in order to show that $z_{a,b} = 0$ for all $a, b \in A(\mathbb{Q})$?

Lemma

Let $p \in E_1(\mathbb{Q}), q \in E_2(\mathbb{Q})$ be points of infinite order. Then

$$
[p,q]-[p,0]-[0,q]+[0,0]=0 \Rightarrow [a+b]-[a]-[b]+[0]=0,
$$

for all $a, b \in A(\mathbb{Q})$.

Note: The elements of $F^2(E_1 \times E_2)$ that are defined over $\mathbb Q$ are generated by $z_{(a,0),(0,b)} = [a, b] - [a, 0] - [0, b] + [0, 0]$ with $a \in E_1(\mathbb{O}), b \in E_2(\mathbb{O})$. \rightsquigarrow Enough to show these vanish.

Proof of Lemma

Let $a \in E_1(\mathbb{Q}), b \in E_2(\mathbb{Q})$. rk $(E_1(\mathbb{Q})) = 1$ and $p \in E_1(\mathbb{Q})$ has infinite order \Rightarrow the points $a, p \in E_1(\mathbb{Q})$ are \mathbb{Z} -linearly dependent and the same is true for b, q. \rightsquigarrow There exist n, m, l, $r \in \mathbb{Z}$ such that $na + mp = 0 = lb + rq$. Bilinearity gives

$$
z_{(na,0),(0,lb)} = n l z_{(a,0),(0,b)} = m r z_{(p,0),(0,q)} = 0.
$$

Thus: $z_{(a,0),(0,b)}$ is a **torsion** element of $F^2(E_1 \times E_2)$. **Rojtman's Theorem:** F^2 is torsion-free. \Rightarrow $z_{(a,0),(0,b)}=0$.

Conclusions

- When $rk(E_1(\mathbb{Q})) = rk(E_2(\mathbb{Q})) = 1$, we only need ONE relation to be able to show $z_{a,b} = 0$ for all points $a, b \in A(\mathbb{Q})$.
- When E_1, E_2 are isogenous: easy.
- When E_1, E_2 non-isogenous: very **nontrivial!**

Section 3:

[Background](#page-2-0)

[The motivating Conjecture](#page-13-0)

KORKAR KERKER SAGA

Abelian Surfaces

Definition

Let A be an abelian surface over $k = \overline{k}$. A point $x \in A$ is called hyperelliptic if some nonzero multiple of x lies in the image of a morphism $\phi : H \to A$, where H is a hyperelliptic curve over k such that the hyperelliptic involution on H commutes with negation on A, i.e. $\phi(\iota(p)) = -\phi(p)$, for all $p \in H$.

Rational Equivalences from Hyperelliptic Curves

Theorem 1 (G., Love '23)

Let $a, b \in A$. Suppose there exist nonzero integers m, n such that each of the points a, b, and $ma + nb$ is hyperelliptic. Then $z_{a,b} = 0$. In fact,

$$
z_{c,d}:=[c+d]-[c]-[d]+[0]=0, \text{ for all } c,d\in B_{a,b},
$$

where $B_{a,b}$ is the **divisible hull** of the subgroup $\langle a, b \rangle$,

$$
B_{a,b} := \{x \in A : \exists N \neq 0 \text{ such that } N \cdot x \in \langle a, b \rangle\}.
$$

Key points in the Proof

Pushing forward fundamental rational equivalences from hyperelliptics:

Let $\phi : H \to A$ with H hyperelliptic and $\phi(\iota(p)) = -\phi(p)$. Let $a = \phi(p)$.

$$
[p] + [\iota(p)] - 2[w] = 0 \in CH_0(H) \Rightarrow z_{a, -a} = 0 \in CH_0(A).
$$

• Bilinearity: The 0-cycle $z_{a,b}$ is bilinear on a, b .

Remark

The points a, b, $na + mb$ may lie in the images of morphisms from 3 distinct hyperelliptic curves \rightsquigarrow Theorem 1 is an analog for abelian surfaces of the Beauville-Voisin result for K3's.

Products of Elliptic Curves

For $A = E_1 \times E_2$ we have

$$
F^{2}(A) = \langle [p, q] - [p, 0] - [0, q] + [0, 0], p \in E_1, q \in E_2 \rangle.
$$

The points $(p, 0)$ and $(0, q)$ are always hyperelliptic!

Example

Suppose E_1, E_2 are defined over $\mathbb Q$ and $rk(E_1(\mathbb Q)) = 1$, $rk(E_2(\mathbb{Q})) = 1$. To show that $z_{a,b} = 0$ for all $a, b \in A(\mathbb{Q})$ enough to find:

- ϕ ϕ = (ϕ_1, ϕ_2) : $H \rightarrow A$ with H hyperelliptic and ϕ commuting with negation on A,
- a point $p \in H(\mathbb{Q})$ such that $\phi_1(p), \phi_2(p)$ both have infinite order.

More generally: For a number field L/\mathbb{Q} , showing $z_{a,b} = 0$ for all $a, b \in A(L)$ can be reduced to finding finitely many hyperelliptic **points** in $A(L)$. \rightarrow Theorem 1 has the potential of taking advantage of the Mordell-Weil Theorem (algebraicity of $\mathbb Q$).

Conclusions

- **1** Theorem $1 \Rightarrow$ Hyperelliptic curves in abelian surfaces are special curves that produce many rational equivalences.
- **2 Theorem 1** \Rightarrow working with the divisible hull reduces the question of showing that every point in $A(L)$ is hyperelliptic to only finding finitely many hyperelliptic points in $A(L)$.
- **3 Question:** Can we find any such curves?

Why hyperelliptic curves?

Goal

Look for special curves in an abelian surface that produce lots of rational equivalences.

Approach 1

Look for curves with extra symmetries. Hyperelliptic curves have an involution ι such that $H/\iota \simeq \mathbb{P}^1$. \leadsto this gives many easy rational equivalences.

Approach 2: Small genus

- Genus 0: Abelian surfaces don't contain any $g = 0$ curves.
- Genus 1 curves $=$ Elliptic curves. \rightsquigarrow Not many of these. **Example:** $A = E_1 \times E_2$ with E_1, E_2 non-isogenous. Then every $E \stackrel{f}{\rightarrow} E_1 \times E_2$ must be constant in one of the factors.
- Genus 2: All of them are hyperelliptic!

Producing many Hyperelliptic Curves

A K3 Surface associated to an Abelian Surface A

Let $X_0 := \frac{A}{\sqrt{2\pi}}$ $\frac{1}{\langle -1 \rangle}$ be the quotient of A by the negation involution. \rightarrow This is a singular K3 surface with 16 singularities corresponding to the 16 2-torsion points of A. \rightsquigarrow It admits a 2 : 1 map

$$
\pi:A\to X_0.
$$

By **blowing-up the singularities** we get a smooth projective $K3$ surface $X =$ Kum(A) called the Kummer surface associated to A.

Pulling back rational curves from the Kummer surface

Expectation: X being a $K3$ should contain many rational curves \rightarrow these will pull back to hyperelliptic curves in A.

KORK ERKER ADAM ADA

Theorem 2 (G.-Love '23)

Suppose A is **isogenous to a product of two elliptic curves**. Then for **infinitely many values** of $g > 2$, there exist **infinitely many** pairwise non-isomorphic genus g hyperelliptic curves H mapping birationally into A with the hyperelliptic involution on H commuting with the negation on A.

Remarks

- **For A** isogenous to $E_1 \times E_2$ the hyperelliptic points are plentiful!
- **2** The birationality onto their image guarantees that any new curve we produce gives genuinely new rational equivalences.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 2990

Kummer Surface as an Elliptic Fibration

Elliptic Curves in Leibniz form

Let
$$
E_1
$$
, E_2 elliptic curves over \overline{Q} and $A = E_1 \times E_2$.

$$
E_1: y_1^2 = f(x_1) = x_1(x_1 - 1)(x_1 - \lambda)
$$

\n
$$
E_2: y_2^2 = f(x_2) = x_2(x_2 - 1)(x_2 - \mu)
$$

The Kummer surface

$$
X = \text{Kum}(A) \text{ has an affine chart}
$$
\n
$$
U = \{(x_1, x_2, r) \in \overline{\mathbb{Q}}^3 : f(x_1)r^2 = f(x_2)\}
$$
\n
$$
\pi : \qquad E_1 \times E_2 \longrightarrow U
$$
\n
$$
(x_1, y_1, x_2, y_2) \mapsto \left(x_1, x_2, \frac{y_1}{y_2}\right)
$$

Inose's Pencil

- The equation $f(\mathsf{x}_1) r^2 = f(\mathsf{x}_2)$ becomes an elliptic curve $\mathcal E$ over the function field $\overline{\mathbb{Q}}(r)$ by taking $(0, 0)$ as the point at infinity.
- Formally: The map $\mathit{U}\rightarrow \mathbb{A}^{1},\, (x_{1},x_{2},r)\mapsto r$ gives $X =$ Kum(A) the structure of an elliptic fibration known as Inose's pencil.
- The Mordell-Weil group of $\mathcal E$ has rank at least 4.
- \bullet Every $\mathbb Z$ -linear combination of the 4 generators gives a section $\mathbb{P}^1 \to X$, which pulls-back to a hyperelliptic $H \to A$.
- This process produces hyperelliptics of larger and larger genus.

KORK ERKER ADAM ADA

- To see repetition of the genus: we repeat the process for any isogenous pair $E'_1\times E'_2$. \leadsto Over $\overline{\mathbb{Q}}$ we get plenty of such pairs.
- Heuristically: we expect all genera $g \equiv 2 \mod 4$ to appear infinitely often.
- The curves we produce can be made very explicit. We can write down Weierstrass equations for them and compute the maps $H \to E_1 \times E_2$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Examples

Suppose we have Weierstrass equations

$$
E_1: y_1^2 = x_1(x_1 - 1)(x_1 - a), \qquad E_2: y_2^2 = x_2(x_2 - 1)(x_2 - b).
$$

Genus 2 Curve:

$$
y^2 = ((a-1)^3r^2 - (b-1)^3)
$$

$$
((a - b)(b - 1)^2 - (a - 1)^3r^2 + (b - 1)^3)
$$

$$
((a - b)(b - 1)^2 - a(a - 1)^3r^2 + a(b - 1)^3))
$$

Genus 6 Curve: Too long to fit in the slide!

Some computations

Let $A = E_1 \times E_2$ for $E_1, E_2/\mathbb{Q}$. How often can we prove that $z_{c,d} = 0$ for all $c, d \in A(\mathbb{Q})$?

Sample curves taken from LMFDB

Table not complete: only uses $\mathbb Q$ -points on ≤ 6 hyperelliptic curves/ $\mathbb Q$ of genus 2 mapping into A.

Some Future Directions

- More Computational Experimentation using hyperelliptic points in higher degree extensions and recent breakthroughs on density of degree d points on curves.
- Find "special curves" that produce rational equivalences for $E \times C$ and $(E \times C)/i$, for E elliptic curve and C of genus 2.
- Use the hyperelliptic curves in $E_1 \times E_2$ to produce "Ceresa-like" cohomologically trivial 1-cycles on triple products $E_1 \times E_2 \times E_3$.
- Towards Bass-Bloch-Beilinson Conjectures: Construct indecomposable cycles on a product of **non-isogenous** E_1, E_2 over $\mathbb Q$ to show that the kernel $\Sigma:=\operatorname{\sf ker}(\operatorname{\sf CH}^2(\mathcal E_1\times \mathcal E_2)\to \operatorname{\sf CH}^2(E_1\times E_2))$ is torsion, where $\mathcal{E}_1 \times \mathcal{E}_2$ is a smooth model over Spec($\mathbb{Z}[1/N]$).

Kロトメ部トメミトメミト ミニのQC

Thank you!