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Plan

I Cayley graphs, expanders and walks

I Isogenies and isogeny graphs

I Class group action and volcanoes

I Classical and quantum algorithms for isogeny problems

I Isogeny key exchange and computational problems

I Structures in the supersingular isogeny graph

I CSIDH

I (if time) SeaSign signatures

Please interrupt to ask questions any time.
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Cayley graphs

I Let G be a finite group and S ⊆ G .

I The Cayley graph Γ(G ,S) has vertex set G and edge set
{(g , gs) : g ∈ G , s ∈ S}.

I Typically S is closed under inversion, so the graph is
undirected.

I Example: Let G = Z∗p with p > 7 and S = {2, 2−1 (mod p)}.
The edges include (1, 2), (2, 1), (2, 4), (4, 2), (3, 6), (6, 3), . . .
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p = 13, S = {2, 2−1} ; S = {3, 3−1}
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Schreier graphs

I Let G be a finite group acting on a finite set X via a map
G × X → X written as (g , x) 7→ g(x), such that for g , h ∈ G
we have g(h(x)) = (gh)(x).

I In this talk all groups will be Abelian.

I Let S ⊆ G .

I The Schreier graph Γ(G ,S) has vertex set X and edge set
{(x , s(x)) : x ∈ X , s ∈ S}.

I A Cayley graph is the Schreier graph of G acting on itself.
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Expander graphs and walks

I Kristin’s talk will have discussed expander graph families.

I We are interested in graphs that can be represented in space
logarithmic in the number of vertices.

I Let G be an expander graph. End points of random walks of
length polynomial in #G are (close to) uniformly distributed.

I Cayley graphs Γ(G ,S) of Abelian groups with fixed degree
#S are not expander families.

I But if #S grows with log(#G ) then one can still plausibly get
close to uniform distribution from random walks of polynomial
length.
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Computational Problem

I In a large expander graph, given an initial vertex v0 and a long
enough “random walk” that ends with a random vertex v it
may be hard to determine a path from v0 to v .

I Let p be a large prime and `1, . . . , `k the first k primes.

I Let B ∈ N be such that (2B + 1)k ≈ p and
(k log(k))kB/2 � p.

I Given u ≡
∏k

i=1 `
ei
i (mod p) where ei ∈ Z with |ei | ≤ B for

all i , it is hard in general to determine (e1, . . . , ek).

I Special case k = 1 and B = (p − 1)/2: Discrete logarithm
problem.
This is not very interesting since the walk has exponential
length.

I If discrete logs are easy and k is large enough then this
problem may still be hard, as we explain on the next slide.
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Lattices
I Let p be a large prime and `1, . . . , `k the first k primes.

I Define the lattice

L = {(x1, . . . , xk) ∈ Zk :
k∏

i=1

`xii ≡ 1 (mod p)}.

I Let u =
∏k

i=1 `
ei
i (mod p) where ei ∈ Z with |ei | ≤ B for all i .

I Choose random y2, . . . , yk ∈ Z ∩ [−B,B] and solve discrete
logarithm problem (repeat if there is no solution)

`y11 ≡ u
k∏

i=2

`−yii (mod p)

I Then x = (y1 − e1, . . . , yk − ek) ∈ L, and if e = (e1, . . . , ek) is
short then x ≈ y = (y1, . . . , yk).

I Hence if we can compute a lattice point x that is close to y
then y− x is a candidate solution e.
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Lattices

I Note that the close vector problem is believed to be hard in
general.

I For more applications of lattices of this type see:
Léo Ducas and Cécile Pierrot, “Polynomial time bounded
distance decoding near Minkowski’s bound in discrete
logarithm lattices”, Designs, Codes Cryptography, 2019.
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Isogenies

I An isogeny φ : E1 → E2 of elliptic curves is a (non-constant)
morphism and a group homomorphism.

I An isogeny has finite kernel.

I Given a finite subgroup G ⊆ E1(Fq) there is a (unique
separable) isogeny φG : E1 → E2 with kernel G .
Can compute φG using Vélu’s formulae.

I We will sometimes write E2 = E1/G .

I We focus on separable isogenies, in which case
deg(φ) = # ker(φ).

I For every φ : E1 → E2 there is a dual isogeny φ̂ : E2 → E1.

I End(E ) = {isogenies φ : E → E over Fq} ∪ {0}.
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Isogeny Graph

I Fix q a prime power, E0 over Fq, and a set of primes S = {`i}.
I Let V = {j(E ) : elliptic curves E/Fq such that there is an

isogeny E0 → E over Fq}.
I This vertex set is the set of F̄q-isomorphism classes of elliptic

curves over Fq isogenous to E0.

I Let E = {(j(E ), j(E ′)) : there is an isogeny φ : E → E ′ with
deg(φ) ∈ S}.

I (V ,E ) is a directed graph.
I sometimes denote it X (E0,Fq,S). Or X (Fq,S) if E0 is clear.

I Because of the dual isogeny we can essentially assume the
graph is undirected.
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Isogeny Graphs

Credit: Dustin Moody
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Ordinary Supersingular

I #E (Fq) = q + 1− t,
gcd(q, t) = 1

I End(E ) is an order in
Q(

√
t2 − 4q)

I Isogeny graph is
essentially
Cayley/Schreier graph of
ideal class group, so
“regular”

I #E (Fq) = q + 1− t,
gcd(q, t) 6= 1

I j(E ) ∈ Fp2

I End(E ) is a maximal
order in a quaternion
algebra over Q

I Isogeny graph an
expander, so not a
principal homog space for
any abelian group action
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Class Group Action on Elliptic Curves

I Let E be an ordinary elliptic curve over Fq with End(E ) ∼= O
an order in an imaginary quadratic field.

I Let a be an invertible O-ideal.

I Define the subgroup

E [a] = {P ∈ E (Fq) : φ(P) = 0 ∀φ ∈ a}.

(Waterhouse 1969)

I There is an isogeny E → E ′ with kernel E [a].
Define a ∗ E to be E ′ = E/E [a].

I a ∗ E depends only on the ideal class of a.

I This gives an action of the ideal class group Cl(O) on the set
of E with End(E ) ∼= O.
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Class Group Action on Elliptic Curves

I Fix an order O in an imaginary quadratic field.

I Let X be the set of isomorphism classes of ordinary elliptic
curves over Fq with End(E ) ∼= O.

I Let G be the group of classes of invertible O-ideals.

I We have an action of G on X , as

([a],E ) 7→ a ∗ E .

I Let S be a set of invertible O-ideals.

I Then we have a corresponding Schreier graph Γ(G , S).
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Class group action: Volcanoes (Kohel, Fouquet-Morain)

I Let E be an ordinary elliptic curve over Fq.

I The Frobenius map is π(x , y) = (xq, yq).

I We have Z[π] ⊆ End(E ) ⊆ OK where K = Q(
√
t2 − 4q) and

#E (Fq) = q + 1− t.

I Each subring Z[π] ⊆ O ⊆ OK arises as End(E ) for some
elliptic curve(s).

I If End(E1) = O1 and End(E2) = O2 with O1 ⊆ O2 then any
isogeny φ : E1 → E2 has degree divisible by [O2 : O1].

I Isogenies that change the endomorphism ring do not
correspond to invertible ideals.
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Ordinary Isogeny Graph (` = 3)

Credit: Dustin Moody
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Generalised Diffie-Hellman using Group Action
(Brassard-Yung, Couveignes, Rostovtsev-Stolbunov)

E

a ∗ E

b ∗ E

ab ∗ E
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Computational problems and algorithms

I Given E and E ′ = a ∗ E to determine the ideal (class) a.

I Equivalently: Find any efficiently computable isogeny
φ : E → E ′.

I Classical algorithms due to Galbraith and
Galbraith-Hess-Smart in time Õ(

√
#G ) (bug fixed by

Stolbunov).

I Hidden shift problem: G an abelian group and f , g : G → S
such that, for some s ∈ G , g(x) = f (xs) for all x ∈ G .
Problem: find s.

I Idea (Childs-Jao-Soukharev): Given (E ,E ′ = a ∗ E ) define
f (b) = b ∗ E and g(b) = b ∗ E ′ = f (ba).
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Quantum algorithms for hidden shift

I Kuperberg (2004, 2011) gave subexponential-time quantum
algorithms for hidden shift.
Assume cost O(1) for the functions f and g .
(i.e., the unit of time is cost to compute a ∗ E )

Complexity is 2O(
√

log(#G))

I For certain groups Kuperberg states the time complexity is

Õ(21.8
√

log(#G)).

I Requires massive quantum storage, which may be unrealistic.

I Regev (2004) gave low quantum storage variant.

I In the isogeny setting, further refinements due to Peikert,
Bonnetain-Schrottenloher, etc.
Plus work on the quantum circuit for a ∗ E by
Bernstein-Lange-Martindale-Panny etc.
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Challenges

I Class group action on ordinary curves does not seem to give
an efficient and practical key exchange system.

I Supersingular isogeny graphs have practical applications.

I Natural to try to use supersingular curves for the class group
action.
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Supersingular Isogeny Graph

From: C. Delfs and S. D. Galbraith, “Computing isogenies between

supersingular elliptic curves over Fp”, Des., Codes and Crypto., 2016.
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Supersingular Curves over Fp

I There are p/12 + ε supersingular elliptic curves in
characteristic p.

I There are N = O(
√
p log(p)) supersingular elliptic curves E

with j(E ) ∈ Fp.

I Let E/Fp be supersingular. Then #E (Fp) = p + 1 and the
Frobenius map π(x , y) = (xp, yp) satisfies π2 = [−p].

I Hence End(E ) is an order in a quaternion algebra, and√
−p ∈ End(E ).

I Let K = Q(
√
−p).

I One can show that O = EndFp(E ) = End(E ) ∩ K is an order
in K such that

√
−p ∈ O.

I So O is either Z[
√
−p] or Z[(1 +

√
−p)/2].

I For each case, the number of such elliptic curves is given by
the ideal class number of the order.
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Structures in the supersingular isogeny graph

C. Delfs and S. Galbraith, “Computing isogenies between supersingular

elliptic curves over Fp”, Des., Codes and Crypto., 2016.

I Consider the set of Fp-isomorphism classes of supersingular
elliptic curves with j(E ) ∈ Fp, and the graph X (Fp,S) for a
suitable set of primes S .

I The size of the graph is N = O(
√
p log(p)).

I The ideal class group of Q(
√
−p) acts on this graph.

I The basic idea is that, since EndFp(E ) is an order in Q(
√
−p),

we rediscover the ordinary case within the supersingular graph.
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Supersingular Isogeny Graphs
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Supersingular Isogeny Graphs
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Supersingular Isogeny Graphs
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Several special situations in `-isogeny graph

I p ≡ 1 (mod 4) so Z[
√
−p] is maximal.

I (`) splits in Q(
√
−p) as (`) = l1l2:

Isogeny graph is a collection of cycles (of size the order of l1 in
the ideal class group).

I (`) is inert: isolated vertices.
This case does not arise when ` = 2.

I Note: ` 6= p so (`) is never ramified in Q(
√
−p).

I p ≡ 3 (mod 4) so Z[(1 +
√
−p)/2] is maximal.

I (`) = (2) splits in Q(
√
−p) as (`) = l1l2:

Coffee table(s) with legs.
I (`) = (2) is inert in Q(

√
−p): “stars”.
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CSIDH (Castryck, Lange, Martindale, Panny, Renes 2018)

I Let p = 4`1 · · · `k − 1.

I Let X be the set of isomorphism classes of supersingular
elliptic curves E with j-invariant in Fp.

I All E ∈ X have EndFp(E ) an order in Q(
√
−p).

Here EndFp(E ) = {φ : E → E defined over Fp}.
I CSIDH is an instantiation of group action crypto using

supersingular curves, which gives massive performance
improvements over ordinary case.

I Features:
I No public key validation needed, so unlike SIDH can do

non-interactive key exchange.
I Better bandwidth than SIDH.
I Only sub-exponentially quantum secure.
I Not broken by recent attacks on SIDH.
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Other cool stuff
I Wouter Castryck, Jana Sotáková and Frederik Vercauteren,

“Breaking the Decisional Diffie-Hellman Problem for Class
Group Actions Using Genus Theory”, CRYPTO 2020.

I Wouter Castryck, Marc Houben, Frederik Vercauteren and
Benjamin Wesolowski, “On the decisional Diffie-Hellman
problem for class group actions on oriented elliptic curves”,
2022.

I Steven Galbraith, Lorenz Panny, Benjamin Smith and Frederik
Vercauteren, “Quantum Equivalence of the DLP and CDHP
for Group Actions”, Mathematical Cryptology (2021).
Given a perfect algorithm A(a ∗ E , b ∗ E ) = (ab) ∗ E and a
CSIDH instance (E , a ∗ E ) we show how to use Shor’s
algorithm to compute [a].

I Hart Montgomery and Mark Zhandry, “Full Quantum
Equivalence of Group Action DLog and CDH, and More”,
Asiacrypt 2022.
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Open problems

I How close to uniform is the distribution

a ≡
∏
i

leii

over uniform ei ∈ [−B,B], for fixed small prime ideals li?
(Let’s assume {li} generates the class group.)

I Can small prime factors of #Cl(O) be determined?
Can subgroups of ideal class group be exploited?

I (Boneh): Find other homogeneous spaces/torsors for group
actions that are efficient and secure for crypto.
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Public Key Signatures
I L. De Feo and S. Galbraith “SeaSign: Compact isogeny

signatures from class group actions”, EUROCRYPT 2019.

I Public key: E and EA = a ∗ E where

a ≡
∏
i

leii

and li ideals of small prime norm, |ei | ≤ B.

I Signer generates random ideals bk =
∏n

i=1 l
fk,i
i for 1 ≤ k ≤ t

and computes Ek = bk ∗ E .

I Compute H(j(E1), . . . , j(Et),message) where H is a
cryptographic hash function with t-bit output b1, . . . , bt .

I If bk = 0 signature includes fk = (fk,1, . . . , fk,n) and if bk = 1
it includes

fk − e = (fk,1 − e1, . . . , fk,n − en).

I Use relation lattice or “Fiat-Shamir with aborts”.
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Thank You
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