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Motivation: Modular Curves over F,,
Seek to understand
Vo(Fp) = {elliptic curves E over Fp}/ =

J-invariant (Dedekind or Klein, 1800’s)

There is a bijection:

yP(FP) g Fp 5
; 1728(4A
E-y2—x3+Ax+B > J(E)= 16(4A3(+27)BZ)

1 36 1
Ej:y?=x°-3x* - 50X ~ T J



GU(a, b) Shimura Variety
Fix a quad. im. field K and p # 2 inert in K
The GU(a, b) Shimura variety M(a, b)
parametrizes (A, ¢, \,n):

e Aan A.V. of dim a+b * ,anactionof O c K
Meeting the signature (a, b) condition:

det(T - u(k);Lie(A)) = (T = @1 (k)*(T - w2(k))".

Example: Let E: y2 = x3 - XEZ[i}:_acts on E, where:
1: —

(X,y) = (=X, 1y)
Define Z[i]-actionon A= E x E x E as:

Need signature to define a nice moduli space!



GU(a, b) Shimura Variety
The GU(a, b) Shimura variety M(a, b)
parametrizes (A, ¢, \,n):

e Aan A.V. of dim a+b e sanactionof O c K
Meeting the signature (a, b) condition:

det(T - u(k); Lie(A)) = (T = 1 (k)3 (T - p2(k))".

M(a,b)p(Fp) = {(A,1,\,n) over Fp}/ =.
This is a moduli space of dimension ab over Fj:
M(a,b

(a.b)p

m a



Objectives

1. Study the Newton stratification of M(a, b),

¢ Describe the geometry of the supersingular locus in several
examples

* See how how the general behavior differs from “low
dimensional” cases

2. Discuss the Ekedahl-Oort stratification of M(a, b)p

3. See how the Ekedahl-Oort stratification informs (or fails to
inform!) the geometry of the supersingular loci



Newton Stratification of Modular Curve

Ane.c. E over Fp is Ane.c. E over Fp is
ordinary if: supersingular if:
* E[p](Fp) = Z/pZ * E[p](Fp) = id
o Ende(E) is an order . Ende(E) is an order
in a quad. im. field in a quat. alg.
* Slopes 0 and 1 * Slope 3

The p-divisible group of E is:
E[p=] =1lim E[p"].

E; and E, are in the same Newton stratum if E{[p™] is
isogenous to Ex[p™].



Newton Stratification of Modular Curve

* Two points E7 and E; of ) are in the same Newton
stratum if E4[p*°] is isogenous to Eo[p*°].

* Y has two Newton strata - ordinary and supersingular

Cor. to Eichler-Deuring Mass Formula:

p . . . g
There are approx. 1, supersingular elliptic curves over Fp.



Newton Stratification of M(a,b),

* Two pOintS (A1 S U1, M, ™ ) and (A27 L2, >\2a 772) of M(a’ b)P
(or of the modular curve )) are in the same Newton
stratum if A{[p>] is isogenous to Ax[p™]

* M(a,b), has a unique closed Newton stratum - the
supersingular locus M(a, b)3°

* How to describe the geometry of M(a, b)z°?



Results on Geometry of M(a, b)3®

* The geometry of M(a, b);° depends on the signature
(a,b). M(a,b) 2 M(b,a), sotake b>a>0.
* The supersingular loci M(a, b);° have been described by...

o,m) | (1,1) (1,2) (1,m-1) | (2,2) (2,m-2) | (a,m-a)

a>3
0-dim’l | 0-dim’l | Vollaard | Vollaard- | Howard- | Imai-F. Incomplete
2008 Wedhorn | Pappas 2021
2010 2014 after perf’;
Howard-
Imai-F.

e We'll consider the (1,2) = (2,1), (2,2), and (2, 3) cases.



Ex: The Supersingular Locus of M(1,2)

Theorem (Vollaard '08)

Assume 7 is suff. small. Each irreducible component of
M(1,2)g° is isomorphic to the Fermat curve

L P+ p+1 p+1 2
Cixy +X{ +X CPFP'

There are p® + 1 int. pts on each irr. comp., and each int. point
is the intersection of p + 1 irr. comps.

M(1,2)p

dim?2
/
M(1,2)5°




Ex: The Supersingular Locus of M(2,2)

Theorem (Howard-Pappas '14)

Assume 7 is suff. small. Each irreducible component of
M(2,2)z° is isomorphic to the Fermat surface

. P+ p+1 p+1 p+1 3
S:xy +X{ +Xy  +Xg c]P’Fp.

Any two irr. components intersect trivially, in a projective line, or
in a point.

M(2,2)p

dim4
«
M(2,2)5°




Deligne-Lusztig Varieties

Moduli spaces of flags in char. p vector spaces, with “fixed
relative position” to Frobenius-twist:
Given G over Fp, B,and w e Ng(T)/T:

X(w) ={gBeG/B|g'Fr(g) e BwB}.
Example: G = SLo, B upper-tri, Ng(T)/T = {1,(9 3 )}
* G/B={lines ( c o)
e rel(¢1,¢2) =1 ifand only if ¢4 = ¢
° If £ =(coer + Cr&), Fr({) = (Chey + clep)

L]
)

X(1) = { T | rel(¢, Fr(€)) = 1} = P'(Fp)

X(§9)={t< F;za | rel(¢,Fr(0)) = (93 )} = P'(Fp) NP (Fp).



Ex: The Supersingular Locus of M(2,3)

Theorem (Howard-Imai-F.)

Assume 7 is suff. small. There are two isomorphism classes of
irreducible components in M(2,3)5%: X' and X?.

X' is isomorphic to a Deligne-Lusztig variety, and X2 is not.
We describe X? explicitly via a map to a Deligne-Lusztig variety.

M(2,3)p

dim6
/
M(2,3)5°




Next

¢ Introduce main technique for study of supersingular loci

e Explain why one might expect Deligne-Lusztig varieties

e Explain what “goes wrong” for signatures beyond (2, 2)



Unitary Rapoport-Zink Spaces
Unitary Rapoport-Zink Space: N'(a,b)(S) = {(G,t, A\, p)}/ =,
e G a supersingular p-div. * 1:0®yZp— End(G) of

gp over Sofdim a+b sign. (a,b)
* p: Gg, » Gg,, quasi-isog

Rapoport-Zink Uniformization

M(a,b) = |f1| r\\(a,b)
L

The I'; are discrete groups (depending on level structure) acting
on N(a,b).

Can study the (more “linear-algebraic”) Rapoport-Zink spaces
N (a, b) to understand the supersingular loci M(a, b)3°



Unitary Rapoport-Zink Spaces

(p-adic) Dieudonné Theory:
There is an equivalence of categories between:
p-adic Dieudonné modules (M, F, V)
o M free rk 2(a+ b) over Z,

(G, A) * F has “slopes 5"

in N'(a,b)(F
(a,b)(Fp) e M has action of sign. (1,2)
[ ] M:p’Mv

Unitary Rapoport-Zink Space: N'(a, b)(Fp) = {(G,1,\, p)}/ =,

N(a,b)(Fp)={McN|pMc FMcM, O -stable, M=p'M"}



The GU(1,2) Rapoport-Zink Space

Thm (Vollaard): Geometry of NV/(1,2)
e N(1,2) decomposes as:

N(1 ) 2) = U N/\
NeLl
indexed by “vertex lattices” A.
e The irr. comp of N(1,2) are precisely the NV. Each is
isomorphic to

. pt p+1 p+1 2
C:xyp +X5 +X —OC]P)FP.
(a Deligne-Lusztig variety).

e (Further results)



The GU(2,2) Rapoport-Zink Space

Thm (Howard-Pappas):
* N(2,2) decomposes as:

N(2,2) = |J Na

NeLl
indexed by “vertex lattices” A.
e The irr. comp of N (2,2) are precisely the M. Each is
isomorphic to

p+1

p+1
+ X5

Pt p+1 _ 3
S xy+x +Xj ‘OCPF,,’
(a Deligne-Lusztig variety).

e (Further results)



Why Expect Deligne-Lusztig Varieties?

Replace (G, , A, p) with p-adic Dieudonné module M to
identify:

N(1,2)(Fp) = {M c N| conditions wrt F}.
(Convert from N to an alternative Hermitian space W:)
N(1,2)(Fp) = {Lc W conditions wrt F}.
Irreducible components N c N (1,2) defined as:
Na(Fp) ={Lc W |pAcLcA &conditions wrt F}.
Replace L with ¢ = L/pA
Na(Fp) = {fc (A/pN)g, | conditions wrt F},

a Deligne-Lusztig variety.



The GU(2,3) Rapoport-Zink Space

Thm (Howard-Imai-F.):
e N(2,3) decomposes as:

N(2,3) = [ Na

NeLl

indexed by “vertex lattices” A.
e Each N, further decomposes as:

Na=N{LNE.

* N} is a Deligne-Lusztig variety. We describe NZ via a map
to a Deligne-Lusztig variety.



Notation
o Let Qp = QF, with ring of integers Z,.

W is an 5-dimensional vector space over Qp, with
Qp-valued Hermitian form.

e For any lattice L ¢ W, L denotes the dual lattice.

e Ac W afixed self-dual Z,-lattice.



Relative Position of Lattices

e Given lattices Ly and Ly in W, we say
Inv; (L2) = (ny,Mp,...,ns) if
L1 = Spanzp{e,-}?:1 and L2 = Spanzp{pnfe,- ?:1.

o Example: Ly =Zp @ Zp® Zp, Lp = pPLp @ Zp & Zp.
Then II'lVL1 (I_2) = (2, 0, 0)

o Example: Ly =Zp® Zp ® Zp, Lo = plp ® pZp ® Zp.
Then IIlVL1 (Lg) = (1 R 1,0)



What goes wrong?

* Replace (G, , A, p) with p-adic Dieudonné module M to
identify:

N (2,3)(Fp) = {M c N| conditions wrt F}.
¢ (Convert from N to an alternative Hermitian space W:)
N (2,3)(Fp) = {Lc W conditions wrt F}.

* Given a vertex lattice A ¢ W, define: N c N'(2,3)as:
Na(Fp)={Lc W |phclLc :—)/\ & conditions wrt F}.

Two issues:
1. IL/pL is not a Fp-vector space
2. N, further decomposes



What goes wrong?
o . pAcLc 15/\,
Na(Fp) = {Lattlces LeW ‘ Inv,(LY)=(1,1,0,0,0)
o Na =N} LINZ, where:

NA(Fp) = {Lattices LcW ’ Inva(L) = (0,0,0,0,-1), }

Inv, (L) =(1,1,0,0,0)

Invpa(L) = (1,0,0,-1,-1),
InVL(LV) = (171707070)

* N} is analogous to previous cases:

1] -~ 1 . ~ c L
p/\} — {E c (p/\//\)Fp | dim(¢) =1, £c¢ }

L L/A

NE(Fp) = {Lattices Lew

LV

win
=N

{L9W|A%L

1
p



What goes wrong?

* N2(Fp) = {Lattices Lcw

InV/\(L) = (1 ) 07 07 -1 ) -1 ):
InVL(LV) = (1 ) 1 ) 07 07 O)
is not analogous to previous cases

e However,
pAc(LnA)cA

1
Ac(L+AN)c—A.
( ) b

e L » (LnA,L+A) defines a map to a Deligne-Lusztig variety

NE > Y2



Results on Geometry of M(a, b)3®

* The supersingular loci M(a, b);° (equivalently RZ spaces
N (a, b)) have been described by...

o,m)y | (1,1) | (1,2) (1,m-1) | (2,2) 2,m-2) | (a,m-a)
a>3
0-dim’l | 0-dim’l | Vollaard | Vollaard- | Howard- | Imai-F. Incomplete
2008 Wedhorn | Pappas 2021
2010 2014 after perf;
Howard-
Imai-F.

* Do not expect irreducible components to be

Deligne-Lusztig varieties beyond (2,2).



Ekedahl-Oort Stratification of Modular Curve

Ane.c. E over Fp is Ane.c. E over F, is
ordinary if: supersingular if:
* E[p](Fp) = Z/pL * E[p](Fp) =id
o Ende(E) is an order . Ende(E) is an order
in a quad. im. field in a quat. alg.
* Slopes 0 and 1 * Slope 3

E; and E; are in the same EO stratum if E1[p] =~ E5[p].
Yp has two EO strata:



Ekedahl-Oort Strata

* (A1,11,\,n1) and (A2, 2, A, n2) are in the same
Ekedahl-Oort stratum of M(a, b), if and only if

(A1[p], 1, A1) 2 (A2[p], 2, A2).

* By a result of Moonen, for each v € W define (H,, ¢y, Ay)
and M(a, b), as:

{(A7L7/\777) € M(a7 b)P | (A[p]vL’)‘an) = (H’Y’L’Y’)"‘/)}'



Ekedahl-Oort Strata of M(1,2),

¢ Index set and closure relations (Moonen,
Viehmann-Wedhorn, Wooding):

©-®

Theorem (Vollaard-Wedhorn)

M(1,2)% = M(1,2)00 UM (1,2)01,

where M(1,2)qo consists of the intersection points and
M(1,2)p1 consists of their complement.



Ekedahl-Oort Strata of M(2,2),

¢ Index set and closure relations (Moonen,
Viehmann-Wedhorn, Wooding:

)= ()~ (=)
4 ¥
©-®

Theorem (Follows from results of Howard-Pappas):

M(2’2)SS = M(172)00UM(172)01 UM(172)10UM(172)025
as follows:



Ekedahl-Oort Strata of M(2,3),

¢ Index set and closure relations (Moonen,
Viehmann-Wedhorn, Wooding'

Theorem (Bhamidipati, Goodson, Groen, Nair, Stacy, F. ):

The EO strata intersecting the supersingular locus are exactly
those indexed by:

700, Y10, Y01, 720, Y02, 703

Further, ~o3 intersects but is not contained in the supersingular
locus.



Ekedahl-Oort Strata of M(2,3),

Comparison with Siegel Modular Variety:




Ekedahl-Oort Strata of M(2,3),

Comparison with Unitary Shimura Varieties of Smaller

Signature:
@ > '@
4 P 4
@ ’ ° ’
4 v

¢
~



Ekedahl-Oort Strata of M(2,3),

Explicit construction:




Ekedahl-Oort Strata of M(2,3),

Comparison with Siegel modular variety (minimal EO strata):

e ).@
3 — 4
@ )
¢ 4

‘—)



General Situation

* The signature (1,2) and signature (2,2) supersingular loci
have similar structure: their irr. components are
Deligne-Lusztig varieties, are a union of Ekedahl-Oort
Strata.

¢ These are examples of Coxeter Type.

e Most unitary Shimura varieties do not have this structure.

o,m)y | (1,1) | (1,2) (1,m-1) | (2,2) 2,m-2) | (a,m-a)
a>3
0-dim’l | 0-dim’l | Vollaard | Vollaard- | Howard- | Imai-F. Incomplete
2008 Wedhorn | Pappas 2021
2010 2014 after perf.;
Howard-
Imai-F.




Thank you!



Ex: The Supersingular Locus of M(2, m-2)

Theorem (Howard-Imai-F.)

Assume 7 is suff. small. There are | 7 | isomorphism classes of
irreducible components in M(2, m-2)z°: X for1<i< Ea
We describe each X' explicitly via a morphism to a
Deligne-Lusztig variety.

Only X' and X!z} (when m even) are isomorphic to
Deligne-Lusztig varieties.

M2, m-2)p
dim2(m-2)
e

M(2,m-2)p°



