Supersingular Loci of Unitary Shimura Varieties

Maria Fox, Oklahoma State University

Motivation: Modular Curves over $\overline{\mathbb{F}}_p$

Seek to understand

$$\mathcal{Y}_{\rho}(\overline{\mathbb{F}}_{\rho})$$
 = {elliptic curves E over $\overline{\mathbb{F}}_{\rho}$ }/ \cong

j-invariant (Dedekind or Klein, 1800's)

There is a bijection:

$$\mathcal{Y}_{p}(\overline{\mathbb{F}}_{p}) \iff \overline{\mathbb{F}}_{p}$$

$$E: y^{2} = x^{3} + Ax + B \implies j(E) = \frac{1728(4A)^{3}}{16(4A^{3} + 27B^{2})}$$

$$E_{j}: y^{2} = x^{3} - \frac{1}{4}x^{2} - \frac{36}{j - 1728}x - \frac{1}{j - 1728} \iff j$$

GU(a,b) Shimura Variety

Fix a quad. im. field K and $p \neq 2$ inert in K

The GU(a, b) Shimura variety $\mathcal{M}(a, b)$

parametrizes $(A, \iota, \lambda, \eta)$:

• A an A.V. of dim a+b

• ι an action of $\mathcal{O} \subseteq K$

Meeting the signature (a, b) condition:

$$\det(T - \iota(k); \operatorname{Lie}(A)) = (T - \varphi_1(k))^a (T - \varphi_2(k))^b.$$

Example: Let
$$E: y^2 = x^3 - x$$
. $\mathbb{Z}[i]$ acts on E , where: $i: E \to E$

$$(x,y)\mapsto (-x,iy)$$

Define $\mathbb{Z}[i]$ -action on $A = E \times E \times E$ as:

Need signature to define a nice moduli space!

GU(a,b) Shimura Variety

The GU(a, b) Shimura variety $\mathcal{M}(a, b)$

parametrizes $(A, \iota, \lambda, \eta)$:

A an A.V. of dim a+b

• ι an action of $\mathcal{O} \subseteq K$

Meeting the signature (a, b) condition:

$$\det(T - \iota(K); \operatorname{Lie}(A)) = (T - \varphi_1(K))^a (T - \varphi_2(K))^b.$$

$$\mathcal{M}(a,b)_p(\overline{\mathbb{F}}_p) = \{(A,\iota,\lambda,\eta) \text{ over } \overline{\mathbb{F}}_p\}/\cong.$$

This is a moduli space of dimension *ab* over $\overline{\mathbb{F}}_p$:

$$\mathcal{M}(a,b)_p$$
 dim ab

Objectives

- 1. Study the Newton stratification of $\mathcal{M}(a,b)_p$
 - Describe the geometry of the supersingular locus in several examples
 - See how how the general behavior differs from "low dimensional" cases
- 2. Discuss the Ekedahl-Oort stratification of $\mathcal{M}(a,b)_p$
- 3. See how the Ekedahl-Oort stratification informs (or fails to inform!) the geometry of the supersingular loci

Newton Stratification of Modular Curve

An e.c. E over $\overline{\mathbb{F}}_p$ is ordinary if:

- $E[p](\overline{\mathbb{F}}_p) = \mathbb{Z}/p\mathbb{Z}$
- $\operatorname{End}_{\overline{\mathbb{F}}_{\rho}}(E)$ is an order in a quad. im. field
- Slopes 0 and 1

An e.c. E over $\overline{\mathbb{F}}_p$ is supersingular if:

- $E[p](\overline{\mathbb{F}}_p) = id$
- End_{F_p}(E) is an order in a quat. alg.
- Slope ¹/₂

The *p*-divisible group of *E* is:

$$E[p^{\infty}] = \lim_{k \to \infty} E[p^k].$$

 E_1 and E_2 are in the same Newton stratum if $E_1[p^{\infty}]$ is isogenous to $E_2[p^{\infty}]$.

Newton Stratification of Modular Curve

- Two points E_1 and E_2 of \mathcal{Y}_p are in the same Newton stratum if $E_1[p^{\infty}]$ is isogenous to $E_2[p^{\infty}]$.
- \mathcal{Y} has two Newton strata ordinary and supersingular

Cor. to Eichler-Deuring Mass Formula:

There are approx. $\frac{\rho}{12}$ supersingular elliptic curves over $\overline{\mathbb{F}}_{\rho}$.

Newton Stratification of $\mathcal{M}(a,b)_p$

• Two points $(A_1, \iota_1, \lambda_1, \eta_1)$ and $(A_2, \iota_2, \lambda_2, \eta_2)$ of $\mathcal{M}(a, b)_p$ (or of the modular curve \mathcal{Y}) are in the same Newton stratum if $A_1[p^{\infty}]$ is isogenous to $A_2[p^{\infty}]$

• $\mathcal{M}(a,b)_p$ has a unique closed Newton stratum - the supersingular locus $\mathcal{M}(a,b)_p^{ss}$

• How to describe the geometry of $\mathcal{M}(a,b)_p^{ss}$?

Results on Geometry of $\mathcal{M}(a,b)_p^{ss}$

- The geometry of $\mathcal{M}(a,b)_p^{ss}$ depends on the signature (a,b). $\mathcal{M}(a,b) \cong \mathcal{M}(b,a)$, so take $b \ge a \ge 0$.
- The supersingular loci $\mathcal{M}(a,b)_p^{ss}$ have been described by...

(0,m)	(1,1)	(1,2)	(1, m-1)	(2,2)	(2, m-2)	(a, m – a)
						a ≥ 3
0-dim'l	0-dim'l	Vollaard 2008	Vollaard- Wedhorn 2010	Howard- Pappas 2014	Imai-F. 2021 after perf.; Howard- Imai-F.	Incomplete

• We'll consider the (1,2) = (2,1), (2,2), and (2,3) cases.

Ex: The Supersingular Locus of $\mathcal{M}(1,2)$

Theorem (Vollaard '08)

Assume η is suff. small. Each irreducible component of $\mathcal{M}(1,2)^{ss}_p$ is isomorphic to the Fermat curve

$$C: x_0^{p+1} + x_1^{p+1} + x_2^{p+1} \subset \mathbb{P}^2_{\overline{\mathbb{F}}_p}.$$

There are $p^3 + 1$ int. pts on each irr. comp., and each int. point is the intersection of p + 1 irr. comps.

$$\mathcal{M}(1,2)_{p}^{ss}$$
 dim 2

Ex: The Supersingular Locus of $\mathcal{M}(2,2)$

Theorem (Howard-Pappas '14)

Assume η is suff. small. Each irreducible component of $\mathcal{M}(\mathbf{2},\mathbf{2})^{ss}_{p}$ is isomorphic to the Fermat surface

$$S: x_0^{p+1} + x_1^{p+1} + x_2^{p+1} + x_3^{p+1} \subset \mathbb{P}^3_{\overline{\mathbb{F}}_p}.$$

Any two irr. components intersect trivially, in a projective line, or in a point.

$$\mathcal{M}(2,2)_p$$
 dim 4 $\mathcal{M}(2,2)_p^{ss}$

Deligne-Lusztig Varieties

Moduli spaces of flags in char. *p* vector spaces, with "fixed relative position" to Frobenius-twist:

Given G over \mathbb{F}_p , B, and $w \in N_G(T)/T$:

$$X(w) = \{gB \in G/B \mid g^{-1}Fr(g) \in BwB\}.$$

Example: $G = SL_2$, B upper-tri, $N_G(T)/T = \{1, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\}$.

- $G/B \cong \{ \text{ lines } \ell \subseteq \overline{\mathbb{F}}_p^2 \}$
- $rel(\ell_1, \ell_2) = 1$ if and only if $\ell_1 = \ell_2$
- If $\ell = \langle c_0 e_1 + c_1 e_2 \rangle$, $Fr(\ell) = \langle c_0^p e_1 + c_1^p e_2 \rangle$

• So,
$$X(1) = \{ \ell \subseteq \overline{\mathbb{F}}_{\rho}^{2} \mid \operatorname{rel}(\ell, \operatorname{Fr}(\ell)) = 1 \} = \mathbb{P}^{1}(\mathbb{F}_{\rho})$$
$$X(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}) = \{ \ell \subseteq \overline{\mathbb{F}}_{\rho}^{2} \mid \operatorname{rel}(\ell, \operatorname{Fr}(\ell)) = (\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}) \} = \mathbb{P}^{1}(\overline{\mathbb{F}}_{\rho}) \setminus \mathbb{P}^{1}(\mathbb{F}_{\rho}).$$

Ex: The Supersingular Locus of $\mathcal{M}(2,3)$

Theorem (Howard-Imai-F.)

Assume η is suff. small. There are two isomorphism classes of irreducible components in $\mathcal{M}(2,3)_p^{ss}$: X^1 and X^2 .

 X^1 is isomorphic to a Deligne-Lusztig variety, and X^2 is not. We describe X^2 explicitly via a map to a Deligne-Lusztig variety.

$$\mathcal{M}(2,3)_p$$
 dim 6

Next

Introduce main technique for study of supersingular loci

Explain why one might expect Deligne-Lusztig varieties

Explain what "goes wrong" for signatures beyond (2,2)

Unitary Rapoport-Zink Spaces

Unitary Rapoport-Zink Space: $\mathcal{N}(a,b)(S) = \{(G,\iota,\lambda,\rho)\}/\cong$,

 G a supersingular p-div. gp over S of dim a + b

- $\iota : \mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_p \to \operatorname{End}(G)$ of sign. (a, b)
- $\rho: G_{S_0} \to \mathbb{G}_{S_0}$, quasi-isog

Rapoport-Zink Uniformization

$$\mathcal{M}(a,b)_p^{ss} \cong \bigsqcup_{j=1}^m \Gamma_j \backslash \mathcal{N}(a,b)$$

The Γ_j are discrete groups (depending on level structure) acting on $\mathcal{N}(a,b)$.

Can study the (more "linear-algebraic") Rapoport-Zink spaces $\mathcal{N}(a,b)$ to understand the supersingular loci $\mathcal{M}(a,b)^{ss}_{p}$

Unitary Rapoport-Zink Spaces

(p-adic) Dieudonné Theory:

There is an equivalence of categories between:

$$p$$
-adic Dieudonné modules (M, F, V)

$$(G,\iota,\lambda)$$

in $\mathcal{N}(a,b)(\overline{\mathbb{F}}_p)$

•
$$M$$
 free rk $2(a+b)$ over \mathbb{Z}_p

- F has "slopes $\frac{1}{2}$ "
- M has action of sign. (1,2)
- $M = p^i M^{\vee}$

Unitary Rapoport-Zink Space:
$$\mathcal{N}(a,b)(\overline{\mathbb{F}}_p) = \{(G,\iota,\lambda,\rho)\}/\cong$$
,

$$\mathcal{N}(a,b)(\overline{\mathbb{F}}_p) = \{ M \subseteq \mathbb{N} \mid pM \subseteq FM \subseteq M, \mathcal{O} - \text{stable}, M = p^i M^{\vee} \}$$

The GU(1,2) Rapoport-Zink Space

Thm (Vollaard): Geometry of $\mathcal{N}(1,2)$

• $\mathcal{N}(1,2)$ decomposes as:

$$\mathcal{N}(1,2)=\bigcup_{\Lambda\in\mathcal{L}}\mathcal{N}_{\Lambda}$$

indexed by "vertex lattices" Λ.

• The irr. comp of $\mathcal{N}(1,2)$ are precisely the \mathcal{N}_{Λ} . Each is isomorphic to

$$C: X_0^{p+1} + X_1^{p+1} + X_2^{p+1} = 0 \subset \mathbb{P}^2_{\overline{\mathbb{F}}_p}.$$

(a Deligne-Lusztig variety).

• (Further results)

The GU(2,2) Rapoport-Zink Space

Thm (Howard-Pappas):

• $\mathcal{N}(2,2)$ decomposes as:

$$\mathcal{N}(2,2)=\bigcup_{\Lambda\in\mathcal{L}}\mathcal{N}_{\Lambda}$$

indexed by "vertex lattices" Λ.

• The irr. comp of $\mathcal{N}(2,2)$ are precisely the $\mathcal{N}_{\Lambda}.$ Each is isomorphic to

$$S: x_0^{p+1} + x_1^{p+1} + x_2^{p+1} + x_3^{p+1} = 0 \subset \mathbb{P}^{3}_{\mathbb{F}_p},$$

(a Deligne-Lusztig variety).

• (Further results)

Why Expect Deligne-Lusztig Varieties?

 Replace (G, ι, λ, ρ) with p-adic Dieudonné module M to identify:

$$\mathcal{N}(1,2)(\overline{\mathbb{F}}_p) = \{M \subseteq \mathbb{N} \mid \text{ conditions wrt } F\}.$$

• (Convert from $\mathbb N$ to an alternative Hermitian space W:)

$$\mathcal{N}(1,2)(\overline{\mathbb{F}}_p) = \{L \subseteq W \mid \text{ conditions wrt } F\}.$$

• Irreducible components $\mathcal{N}_{\Lambda} \subset \mathcal{N}(1,2)$ defined as:

$$\mathcal{N}_{\Lambda}(\overline{\mathbb{F}}_p) = \{L \subseteq W \mid p\Lambda \subseteq L \subseteq \Lambda \text{ & conditions wrt } F\}.$$

• Replace L with $\ell = L/p\Lambda$

$$\mathcal{N}_{\Lambda}(\overline{\mathbb{F}}_{p}) = \{\ell \subseteq (\Lambda/p\Lambda)_{\overline{\mathbb{F}}_{p}} \mid \text{conditions wrt } F\},$$

a Deligne-Lusztig variety.

The GU(2,3) Rapoport-Zink Space

Thm (Howard-Imai-F.):

• $\mathcal{N}(2,3)$ decomposes as:

$$\mathcal{N}(2,3)=\bigcup_{\Lambda\in\mathcal{L}}\mathcal{N}_{\Lambda}$$

indexed by "vertex lattices" A.

• Each \mathcal{N}_{Λ} further decomposes as:

$$\mathcal{N}_{\Lambda}=\mathcal{N}_{\Lambda}^{1} \bigsqcup \mathcal{N}_{\Lambda}^{2}.$$

 N_Λ¹ is a Deligne-Lusztig variety. We describe N_Λ² via a map to a Deligne-Lusztig variety.

Notation

- Let $\breve{\mathbb{Q}}_p = \widehat{\mathbb{Q}_p^{nr}}$, with ring of integers $\breve{\mathbb{Z}}_p$.
- W is an 5-dimensional vector space over $\tilde{\mathbb{Q}}_p$, with $\tilde{\mathbb{Q}}_p$ -valued Hermitian form.
- For any lattice $L \subseteq W$, L^{\vee} denotes the dual lattice.
- $\Lambda \subseteq W$ a fixed self-dual \mathbb{Z}_p -lattice.

Relative Position of Lattices

• Given lattices L_1 and L_2 in W, we say $\operatorname{Inv}_{L_1}(L_2) = (n_1, n_2, \dots, n_5)$ if $L_1 = \operatorname{Span}_{\mathbb{Z}_p} \{e_i\}_{i=1}^5$ and $L_2 = \operatorname{Span}_{\mathbb{Z}_p} \{p^{n_i}e_i\}_{i=1}^5$.

• Example: $L_1 = \breve{\mathbb{Z}}_p \oplus \breve{\mathbb{Z}}_p \oplus \breve{\mathbb{Z}}_p$, $L_2 = p^2 \breve{\mathbb{Z}}_p \oplus \breve{\mathbb{Z}}_p \oplus \breve{\mathbb{Z}}_p$. Then $\operatorname{Inv}_{L_1}(L_2) = (2,0,0)$.

• Example: $L_1 = \breve{\mathbb{Z}}_p \oplus \breve{\mathbb{Z}}_p \oplus \breve{\mathbb{Z}}_p$, $L_2 = p\breve{\mathbb{Z}}_p \oplus p\breve{\mathbb{Z}}_p \oplus \breve{\mathbb{Z}}_p$. Then $\operatorname{Inv}_{L_1}(L_2) = (1, 1, 0)$.

What goes wrong?

• Replace $(G, \iota, \lambda, \rho)$ with p-adic Dieudonné module M to identify:

$$\mathcal{N}(2,3)(\overline{\mathbb{F}}_p) = \{M \subseteq \mathbb{N} \mid \text{ conditions wrt } F\}.$$

• (Convert from $\mathbb N$ to an alternative Hermitian space W:)

$$\mathcal{N}(2,3)(\overline{\mathbb{F}}_p) = \{L \subseteq W \mid \text{ conditions wrt } F\}.$$

• Given a vertex lattice $\Lambda \subseteq W$, define: $\mathcal{N}_{\Lambda} \subset \mathcal{N}(2,3)$ as:

$$\mathcal{N}_{\Lambda}(\overline{\mathbb{F}}_p) = \{ L \subseteq W \mid p\Lambda \subseteq L \subseteq \frac{1}{p}\Lambda \text{ & conditions wrt } F \}.$$

Two issues:

- 1. $\frac{1}{p}L/pL$ is not a $\overline{\mathbb{F}_p}$ -vector space
- 2. \mathcal{N}_{Λ} further decomposes

What goes wrong?

$$\mathcal{N}_{\Lambda}(\overline{\mathbb{F}}_{p}) = \left\{ \text{Lattices } L \subseteq W \middle| \begin{array}{c} p\Lambda \subseteq L \subseteq \frac{1}{p}\Lambda, \\ \operatorname{Inv}_{L}(L^{\vee}) = (1, 1, 0, 0, 0) \end{array} \right\}$$

• $\mathcal{N}_{\Lambda} = \mathcal{N}_{\Lambda}^{1} \sqcup \mathcal{N}_{\Lambda}^{2}$, where:

$$\mathcal{N}^1_{\Lambda}(\overline{\mathbb{F}}_p) = \left\{ \text{Lattices } L \subseteq W \,\middle| \, \begin{array}{c} \operatorname{Inv}_{\Lambda}(L) = (0,0,0,0,-1), \\ \operatorname{Inv}_{L}(L^{\vee}) = (1,1,0,0,0) \end{array} \right\}$$

$$\mathcal{N}^2_{\Lambda}(\overline{\mathbb{F}}_p) = \left\{ \text{Lattices } L \subseteq W \,\middle| \, \begin{array}{c} \operatorname{Inv}_{\Lambda}(L) = (1,0,0,-1,-1), \\ \operatorname{Inv}_{L}(L^{\vee}) = (1,1,0,0,0) \end{array} \right\}$$

• $\mathcal{N}_{\Lambda}^{1}$ is analogous to previous cases:

$$\left\{ L \subseteq W \mid \Lambda \subseteq L \subseteq \frac{1}{3} \frac{1}{\rho} L^{\vee} \subseteq \frac{1}{\rho} \Lambda \right\} \xrightarrow{\sim} \left\{ \ell \subseteq \left(\frac{1}{\rho} \Lambda / \Lambda \right)_{\overline{\mathbb{F}}_{\rho}} \mid \dim(\ell) = 1, \ \ell \subseteq \ell^{\perp} \right\}$$

$$L \mapsto L / \Lambda$$

What goes wrong?

- $\mathcal{N}^2_{\Lambda}(\overline{\mathbb{F}}_p) = \left\{ \text{Lattices } L \subseteq W \,\middle|\, \begin{array}{c} \operatorname{Inv}_{\Lambda}(L) = (1,0,0,-1,-1), \\ \operatorname{Inv}_{L}(L^{\vee}) = (1,1,0,0,0) \end{array} \right\}$ is not analogous to previous cases
- However,

$$p\Lambda \subseteq (L \cap \Lambda) \subseteq \Lambda$$

 $\Lambda \subseteq (L + \Lambda) \subseteq \frac{1}{p}\Lambda.$

• $L \mapsto (L \cap \Lambda, L + \Lambda)$ defines a map to a Deligne-Lusztig variety

$$\mathcal{N}^2_{\Lambda} \to Y^2_{\Lambda}$$

Results on Geometry of $\mathcal{M}(a,b)_p^{ss}$

• The supersingular loci $\mathcal{M}(a,b)_p^{ss}$ (equivalently RZ spaces $\mathcal{N}(a,b)$) have been described by...

(0, <i>m</i>)	(1,1)	(1,2)	(1, m-1)	(2,2)	(2, <i>m</i> – 2)	(a, m – a)
						a≥3 ′
0-dim'l	0-dim'l	Vollaard	Vollaard-	Howard-	Imai-F.	Incomplete
		2008	Wedhorn	Pappas	2021	
			2010	2014	after perf.;	
					Howard-	
					Imai-F.	

 Do not expect irreducible components to be Deligne-Lusztig varieties beyond (2,2).

Ekedahl-Oort Stratification of Modular Curve

An e.c. E over $\overline{\mathbb{F}}_p$ is ordinary if:

- $E[p](\overline{\mathbb{F}}_p) = \mathbb{Z}/p\mathbb{Z}$
- End_{ℙρ}(E) is an order in a quad. im. field
- Slopes 0 and 1

An e.c. E over $\overline{\mathbb{F}}_p$ is supersingular if:

- $E[p](\overline{\mathbb{F}}_p) = id$
- End_{F_p}(E) is an order in a quat. alg.
- Slope $\frac{1}{2}$

 E_1 and E_2 are in the same EO stratum if $E_1[p] \cong E_2[p]$. \mathcal{Y}_p has two EO strata:

Ekedahl-Oort Strata

• $(A_1, \iota_1, \lambda, \eta_1)$ and $(A_2, \iota_2, \lambda, \eta_2)$ are in the same Ekedahl-Oort stratum of $\mathcal{M}(a, b)_p$ if and only if $(A_1[p], \iota_1, \lambda_1) \cong (A_2[p], \iota_2, \lambda_2)$.

• By a result of Moonen, for each $\gamma \in \mathcal{W}$ define $(H_{\gamma}, \iota_{\gamma}, \lambda_{\gamma})$ and $\mathcal{M}(a, b)_{\gamma}$ as:

$$\{(A,\iota,\lambda,\eta)\in\mathcal{M}(a,b)_p\mid (A[p],\iota,\lambda,\eta)\cong (H_\gamma,\iota_\gamma,\lambda_\gamma)\}.$$

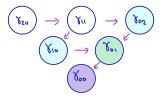
 Index set and closure relations (Moonen, Viehmann-Wedhorn, Wooding):

Theorem (Vollaard-Wedhorn)

$$\mathcal{M}(1,2)^{ss} = \mathcal{M}(1,2)_{00} \bigcup \mathcal{M}(1,2)_{01},$$

where $\mathcal{M}(1,2)_{00}$ consists of the intersection points and $\mathcal{M}(1,2)_{01}$ consists of their complement.

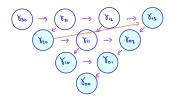
 Index set and closure relations (Moonen, Viehmann-Wedhorn, Wooding:



Theorem (Follows from results of Howard-Pappas):

 $\mathcal{M}(2,2)^{ss} = \mathcal{M}(1,2)_{00} \cup \mathcal{M}(1,2)_{01} \cup \mathcal{M}(1,2)_{10} \cup \mathcal{M}(1,2)_{02},$ as follows:

 Index set and closure relations (Moonen, Viehmann-Wedhorn, Wooding:



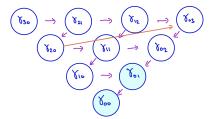
Theorem (Bhamidipati, Goodson, Groen, Nair, Stacy, F.):

The EO strata intersecting the supersingular locus are exactly those indexed by:

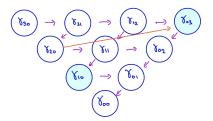
$$\gamma_{00}, \gamma_{10}, \gamma_{01}, \gamma_{20}, \gamma_{02}, \gamma_{03}$$

Further, γ_{03} intersects but is not contained in the supersingular locus.

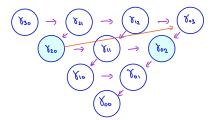
Comparison with Siegel Modular Variety:



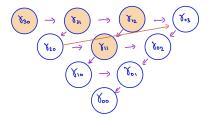
Comparison with Unitary Shimura Varieties of Smaller Signature:



Explicit construction:



Comparison with Siegel modular variety (minimal EO strata):



General Situation

- The signature (1,2) and signature (2,2) supersingular loci have similar structure: their irr. components are Deligne-Lusztig varieties, are a union of Ekedahl-Oort Strata.
- These are examples of Coxeter Type.
- Most unitary Shimura varieties do not have this structure.

(0,m)	(1,1)	(1,2)	(1, m-1)	(2,2)	(2, m-2)	(a, m-a)
						<i>a</i> ≥ 3
0-dim'l	0-dim'l	Vollaard	Vollaard-	Howard-	Imai-F.	Incomplete
		2008	Wedhorn	Pappas	2021	
			2010	2014	after perf.;	
					Howard-	
					Imai-F.	

Thank you!

Ex: The Supersingular Locus of $\mathcal{M}(2, m-2)$

Theorem (Howard-Imai-F.)

Assume η is suff. small. There are $\lfloor \frac{m}{2} \rfloor$ isomorphism classes of irreducible components in $\mathcal{M}(2,m-2)_p^{ss}\colon X^i$ for $1 \le i \le \lfloor \frac{m}{2} \rfloor$. We describe each X^i explicitly via a morphism to a Deligne-Lusztig variety.

Only X^1 and $X^{\lfloor \frac{m}{2} \rfloor}$ (when m even) are isomorphic to Deligne-Lusztig varieties.

$$\mathcal{M}(2, m-2)_{p} \atop \dim 2(m-2)$$

$$\mathcal{M}(2, m-2)_{p}^{ss}$$