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Motivation: Modular Curves over Fp

Seek to understand

Yp(Fp) = {elliptic curves E over Fp}/ ≅

j-invariant (Dedekind or Klein, 1800’s)

There is a bijection:
Yp(Fp) ↔ Fp

E ∶ y2 = x3 +Ax +B ↦ j(E) = 1728(4A)3

16(4A3+27B2)
Ej ∶ y2 = x3 − 1

4x2 − 36
j−1728x − 1

j−1728 ←[ j



GU(a,b) Shimura Variety
Fix a quad. im. field K and p ≠ 2 inert in K

The GU(a,b) Shimura varietyM(a,b)

parametrizes (A, ι, λ, η):
● A an A.V. of dim a+b ● ι an action of O ⊆ K
Meeting the signature (a,b) condition:

det(T − ι(k); Lie(A)) = (T − ϕ1(k))a(T − ϕ2(k))b.

Example: Let E ∶ y2 = x3 − x . Z[i] acts on E , where:
i ∶ E → E

(x ,y) ↦ (−x , iy)
Define Z[i]-action on A = E ×E ×E as:

Need signature to define a nice moduli space!



GU(a,b) Shimura Variety
The GU(a,b) Shimura varietyM(a,b)

parametrizes (A, ι, λ, η):
● A an A.V. of dim a+b ● ι an action of O ⊆ K
Meeting the signature (a,b) condition:

det(T − ι(k); Lie(A)) = (T − ϕ1(k))a(T − ϕ2(k))b.

M(a,b)p(Fp) = {(A, ι, λ, η) over Fp}/ ≅ .

This is a moduli space of dimension ab over Fp:

dim ab
M(a,b)p



Objectives

1. Study the Newton stratification ofM(a,b)p

● Describe the geometry of the supersingular locus in several
examples

● See how how the general behavior differs from “low
dimensional” cases

2. Discuss the Ekedahl-Oort stratification ofM(a,b)p

3. See how the Ekedahl-Oort stratification informs (or fails to
inform!) the geometry of the supersingular loci



Newton Stratification of Modular Curve

An e.c. E over Fp is
ordinary if:
● E[p](Fp) = Z/pZ
● EndFp

(E) is an order
in a quad. im. field

● Slopes 0 and 1

An e.c. E over Fp is
supersingular if:
● E[p](Fp) = id
● EndFp

(E) is an order
in a quat. alg.

● Slope 1
2

The p-divisible group of E is:

E[p∞] = lim
→

E[pk ].

E1 and E2 are in the same Newton stratum if E1[p∞] is
isogenous to E2[p∞].



Newton Stratification of Modular Curve

● Two points E1 and E2 of Yp are in the same Newton
stratum if E1[p∞] is isogenous to E2[p∞].

● Y has two Newton strata - ordinary and supersingular

Cor. to Eichler-Deuring Mass Formula:

There are approx. p
12 supersingular elliptic curves over Fp.



Newton Stratification ofM(a,b)p

● Two points (A1, ι1, λ1, η1) and (A2, ι2, λ2, η2) ofM(a,b)p
(or of the modular curve Y) are in the same Newton
stratum if A1[p∞] is isogenous to A2[p∞]

● M(a,b)p has a unique closed Newton stratum - the
supersingular locusM(a,b)ss

p

● How to describe the geometry ofM(a,b)ss
p ?



Results on Geometry ofM(a,b)ss
p

● The geometry ofM(a,b)ss
p depends on the signature

(a,b). M(a,b) ≅M(b,a), so take b ≥ a ≥ 0.
● The supersingular lociM(a,b)ss

p have been described by...

(0,m) (1,1) (1,2) (1,m − 1) (2,2) (2,m − 2) (a,m − a)
a ≥ 3

0-dim’l 0-dim’l Vollaard
2008

Vollaard-
Wedhorn
2010

Howard-
Pappas
2014

Imai-F.
2021
after perf.;
Howard-
Imai-F.

Incomplete

● We’ll consider the (1,2) = (2,1), (2,2), and (2,3) cases.



Ex: The Supersingular Locus ofM(1,2)

Theorem (Vollaard ’08)

Assume η is suff. small. Each irreducible component of
M(1,2)ss

p is isomorphic to the Fermat curve

C ∶ xp+1
0 + xp+1

1 + xp+1
2 ⊂ P2

Fp
.

There are p3 + 1 int. pts on each irr. comp., and each int. point
is the intersection of p + 1 irr. comps.

dim 2
M(1,2)p

M(1,2)ss
p



Ex: The Supersingular Locus ofM(2,2)

Theorem (Howard-Pappas ’14)

Assume η is suff. small. Each irreducible component of
M(2,2)ss

p is isomorphic to the Fermat surface

S ∶ xp+1
0 + xp+1

1 + xp+1
2 + xp+1

3 ⊂ P3
Fp
.

Any two irr. components intersect trivially, in a projective line, or
in a point.

dim 4
M(2,2)p

M(2,2)ss
p



Deligne-Lusztig Varieties
Moduli spaces of flags in char. p vector spaces, with “fixed
relative position” to Frobenius-twist:
Given G over Fp, B, and w ∈ NG(T )/T :

X(w) = {gB ∈ G/B ∣ g−1Fr(g) ∈ BwB}.

Example: G = SL2, B upper-tri, NG(T )/T = {1, ( 0 −1
1 0 )}.

● G/B ≅ { lines ` ⊆ F2
p}

● rel(`1, `2) = 1 if and only if `1 = `2
● If ` = ⟨coe1 + c1e2⟩, Fr(`) = ⟨cp

oe1 + cp
1e2⟩

● So,
X(1) = {` ⊆ F2

p ∣ rel(`,Fr(`)) = 1} = P1(Fp)

X( 0 −1
1 0 ) = {` ⊆ F2

p ∣ rel(`,Fr(`)) = ( 0 −1
1 0 )} = P1(Fp) ∖ P1(Fp).



Ex: The Supersingular Locus ofM(2,3)

Theorem (Howard-Imai-F.)

Assume η is suff. small. There are two isomorphism classes of
irreducible components inM(2,3)ss

p : X 1 and X 2.
X 1 is isomorphic to a Deligne-Lusztig variety, and X 2 is not.
We describe X 2 explicitly via a map to a Deligne-Lusztig variety.

dim 6
M(2,3)p

M(2,3)ss
p



Next

● Introduce main technique for study of supersingular loci

● Explain why one might expect Deligne-Lusztig varieties

● Explain what “goes wrong” for signatures beyond (2,2)



Unitary Rapoport-Zink Spaces
Unitary Rapoport-Zink Space: N(a,b)(S) = {(G, ι, λ, ρ)}/ ≅,

● G a supersingular p-div.
gp over S of dim a + b

● ι ∶ O ⊗Z Zp → End(G) of
sign. (a,b)

● ρ ∶ GS0 → GS0 , quasi-isog

Rapoport-Zink Uniformization

M(a,b)ss
p ≅

m
⊔
j=1

Γj/N(a,b)

The Γj are discrete groups (depending on level structure) acting
on N(a,b).

Can study the (more “linear-algebraic”) Rapoport-Zink spaces
N(a,b) to understand the supersingular lociM(a,b)ss

p



Unitary Rapoport-Zink Spaces

(p-adic) Dieudonné Theory:

There is an equivalence of categories between:

(G, ι, λ)
in N(a,b)(Fp)

p-adic Dieudonné modules (M,F ,V)
● M free rk 2(a + b) over Z̆p

● F has “slopes 1
2 ”

● M has action of sign. (1,2)
● M = piM∨

Unitary Rapoport-Zink Space: N(a,b)(Fp) = {(G, ι, λ, ρ)}/ ≅,

N(a,b)(Fp) = {M ⊆ N ∣ pM ⊆ FM ⊆ M, O − stable, M = piM∨}



The GU(1,2) Rapoport-Zink Space

Thm (Vollaard): Geometry of N(1,2)

● N(1,2) decomposes as:

N(1,2) = ⋃
Λ∈L
NΛ

indexed by “vertex lattices” Λ.
● The irr. comp of N(1,2) are precisely the NΛ. Each is

isomorphic to

C ∶ xp+1
0 + xp+1

1 + xp+1
2 = 0 ⊂ P2

Fp
.

(a Deligne-Lusztig variety).
● (Further results)



The GU(2,2) Rapoport-Zink Space

Thm (Howard-Pappas):

● N(2,2) decomposes as:

N(2,2) = ⋃
Λ∈L
NΛ

indexed by “vertex lattices” Λ.
● The irr. comp of N(2,2) are precisely the NΛ. Each is

isomorphic to

S ∶ xp+1
0 + xp+1

1 + xp+1
2 + xp+1

3 = 0 ⊂ P3
Fp
,

(a Deligne-Lusztig variety).
● (Further results)



Why Expect Deligne-Lusztig Varieties?
● Replace (G, ι, λ, ρ) with p-adic Dieudonné module M to

identify:

N(1,2)(Fp) = {M ⊆ N ∣ conditions wrt F}.

● (Convert from N to an alternative Hermitian space W : )

N(1,2)(Fp) = {L ⊆ W ∣ conditions wrt F}.

● Irreducible components NΛ ⊂ N(1,2) defined as:

NΛ(Fp) = {L ⊆ W ∣ pΛ ⊆ L ⊆ Λ & conditions wrt F}.

● Replace L with ` = L/pΛ

NΛ(Fp) = {` ⊆ (Λ/pΛ)Fp
∣ conditions wrt F},

a Deligne-Lusztig variety.



The GU(2,3) Rapoport-Zink Space

Thm (Howard-Imai-F.):

● N(2,3) decomposes as:

N(2,3) = ⋃
Λ∈L
NΛ

indexed by “vertex lattices” Λ.
● Each NΛ further decomposes as:

NΛ = N 1
Λ⊔N 2

Λ .

● N 1
Λ is a Deligne-Lusztig variety. We describe N 2

Λ via a map
to a Deligne-Lusztig variety.



Notation

● Let Q̆p = Q̂nr
p , with ring of integers Z̆p.

● W is an 5-dimensional vector space over Q̆p, with
Q̆p-valued Hermitian form.

● For any lattice L ⊆ W , L∨ denotes the dual lattice.

● Λ ⊆ W a fixed self-dual Z̆p-lattice.



Relative Position of Lattices

● Given lattices L1 and L2 in W , we say
InvL1(L2) = (n1,n2, . . . ,n5) if
L1 = SpanZ̆p

{ei}5
i=1 and L2 = SpanZ̆p

{pni ei}5
i=1.

● Example: L1 = Z̆p ⊕ Z̆p ⊕ Z̆p, L2 = p2Z̆p ⊕ Z̆p ⊕ Z̆p.
Then InvL1(L2) = (2,0,0).

● Example: L1 = Z̆p ⊕ Z̆p ⊕ Z̆p, L2 = pZ̆p ⊕ pZ̆p ⊕ Z̆p.
Then InvL1(L2) = (1,1,0).



What goes wrong?
● Replace (G, ι, λ, ρ) with p-adic Dieudonné module M to

identify:

N(2,3)(Fp) = {M ⊆ N ∣ conditions wrt F}.

● (Convert from N to an alternative Hermitian space W : )

N(2,3)(Fp) = {L ⊆ W ∣ conditions wrt F}.

● Given a vertex lattice Λ ⊆ W , define: NΛ ⊂ N(2,3)as:

NΛ(Fp) = {L ⊆ W ∣ pΛ ⊆ L ⊆ 1
p

Λ & conditions wrt F}.

Two issues:
1. 1

p L/pL is not a Fp-vector space

2. NΛ further decomposes



What goes wrong?

NΛ(Fp) = {Lattices L ⊆ W ∣ pΛ ⊆ L ⊆ 1
p Λ,

InvL(L∨) = (1,1,0,0,0) }

● NΛ = N 1
Λ ⊔N 2

Λ , where:

N 1
Λ(Fp) = {Lattices L ⊆ W ∣ InvΛ(L) = (0,0,0,0,−1),

InvL(L∨) = (1,1,0,0,0) }

N 2
Λ(Fp) = {Lattices L ⊆ W ∣ InvΛ(L) = (1,0,0,−1,−1),

InvL(L∨) = (1,1,0,0,0) }

● N 1
Λ is analogous to previous cases:

{L ⊆ W ∣ Λ ⊆
1

L ⊆
3

1
p

L∨ ⊆
1

1
p

Λ} ∼Ð→
⎧⎪⎪⎨⎪⎪⎩
` ⊆ (1

p
Λ/Λ)

Fp

∣ dim(`) = 1, ` ⊆ `⊥
⎫⎪⎪⎬⎪⎪⎭

L↦ L/Λ

and is isomorphic to a Deligne-Lusztig variety.



What goes wrong?

● N 2
Λ(Fp) = {Lattices L ⊆ W ∣ InvΛ(L) = (1,0,0,−1,−1),

InvL(L∨) = (1,1,0,0,0) }

is not analogous to previous cases
● However,

pΛ ⊆ (L ∩ Λ) ⊆ Λ

Λ ⊆ (L + Λ) ⊆ 1
p

Λ.

● L↦ (L∩Λ,L+Λ) defines a map to a Deligne-Lusztig variety

N 2
Λ → Y 2

Λ



Results on Geometry ofM(a,b)ss
p

● The supersingular lociM(a,b)ss
p (equivalently RZ spaces

N(a,b)) have been described by...

(0,m) (1,1) (1,2) (1,m − 1) (2,2) (2,m − 2) (a,m − a)
a ≥ 3

0-dim’l 0-dim’l Vollaard
2008

Vollaard-
Wedhorn
2010

Howard-
Pappas
2014

Imai-F.
2021
after perf.;
Howard-
Imai-F.

Incomplete

● Do not expect irreducible components to be
Deligne-Lusztig varieties beyond (2,2).



Ekedahl-Oort Stratification of Modular Curve

An e.c. E over Fp is
ordinary if:
● E[p](Fp) = Z/pZ
● EndFp

(E) is an order
in a quad. im. field

● Slopes 0 and 1

An e.c. E over Fp is
supersingular if:
● E[p](Fp) = id
● EndFp

(E) is an order
in a quat. alg.

● Slope 1
2

E1 and E2 are in the same EO stratum if E1[p] ≅ E2[p].
Yp has two EO strata:



Ekedahl-Oort Strata

● (A1, ι1, λ, η1) and (A2, ι2, λ, η2) are in the same
Ekedahl-Oort stratum ofM(a,b)p if and only if
(A1[p], ι1, λ1) ≅ (A2[p], ι2, λ2).

● By a result of Moonen, for each γ ∈ W define (Hγ , ιγ , λγ)
andM(a,b)γ as:

{(A, ι, λ, η) ∈ M(a,b)p ∣ (A[p], ι, λ, η) ≅ (Hγ , ιγ , λγ)}.



Ekedahl-Oort Strata ofM(1,2)p
● Index set and closure relations (Moonen,

Viehmann-Wedhorn, Wooding):

Theorem (Vollaard-Wedhorn)

M(1,2)ss =M(1,2)00⋃M(1,2)01,

whereM(1,2)00 consists of the intersection points and
M(1,2)01 consists of their complement.



Ekedahl-Oort Strata ofM(2,2)p
● Index set and closure relations (Moonen,

Viehmann-Wedhorn, Wooding:

Theorem (Follows from results of Howard-Pappas):

M(2,2)ss =M(1,2)00⋃M(1,2)01⋃M(1,2)10⋃M(1,2)02,
as follows:



Ekedahl-Oort Strata ofM(2,3)p
● Index set and closure relations (Moonen,

Viehmann-Wedhorn, Wooding:

Theorem (Bhamidipati, Goodson, Groen, Nair, Stacy, F. ):

The EO strata intersecting the supersingular locus are exactly
those indexed by:

γ00, γ10, γ01, γ20, γ02, γ03

Further, γ03 intersects but is not contained in the supersingular
locus.



Ekedahl-Oort Strata ofM(2,3)p

Comparison with Siegel Modular Variety:



Ekedahl-Oort Strata ofM(2,3)p

Comparison with Unitary Shimura Varieties of Smaller
Signature:



Ekedahl-Oort Strata ofM(2,3)p

Explicit construction:



Ekedahl-Oort Strata ofM(2,3)p

Comparison with Siegel modular variety (minimal EO strata):



General Situation

● The signature (1,2) and signature (2,2) supersingular loci
have similar structure: their irr. components are
Deligne-Lusztig varieties, are a union of Ekedahl-Oort
Strata.

● These are examples of Coxeter Type.

● Most unitary Shimura varieties do not have this structure.

(0,m) (1,1) (1,2) (1,m − 1) (2,2) (2,m − 2) (a,m − a)
a ≥ 3

0-dim’l 0-dim’l Vollaard
2008

Vollaard-
Wedhorn
2010

Howard-
Pappas
2014

Imai-F.
2021
after perf.;
Howard-
Imai-F.

Incomplete



Thank you!



Ex: The Supersingular Locus ofM(2,m − 2)

Theorem (Howard-Imai-F.)

Assume η is suff. small. There are ⌊m
2 ⌋ isomorphism classes of

irreducible components inM(2,m − 2)ss
p : X i for 1 ≤ i ≤ ⌊m

2 ⌋.
We describe each X i explicitly via a morphism to a
Deligne-Lusztig variety.
Only X 1 and X ⌊m

2 ⌋ (when m even) are isomorphic to
Deligne-Lusztig varieties.

dim 2(m − 2)
M(2,m − 2)p

M(2,m − 2)ss
p


