Sato-Tate groups of abelian varieties of dimension up to 3

Francesc Fité (MIT)
VaNTAGe Virtual Seminar.

7th April 2020

Layout

(1) Sato-Tate conjecture for elliptic curves and equidistribution
(2) Sato-Tate axioms for $g \leq 3$
(3) Abelian surfaces
4) Abelian threefolds

Layout

(1) Sato-Tate conjecture for elliptic curves and equidistribution
(2) Sato-Tate axioms for $g \leq 3$

(3) Abelian surfaces

4) Abelian threefolds

Frobenius traces of elliptic curves

- k a number field.
- E / k an elliptic curve.
- For a prime \mathfrak{p} of good reduction for E, set

$$
a_{\mathfrak{p}}:=N(\mathfrak{p})+1-\# E\left(\mathbb{F}_{\mathfrak{p}}\right)
$$

- For $\mathfrak{p} \nmid \ell$, we have

$$
a_{\mathfrak{p}}=\operatorname{Tr}\left(\operatorname{Frob}_{\mathfrak{p}} \mid V_{\ell}(E)\right)
$$

- By the Hasse-Weil bound, the normalized Frobenius trace satisfies

$$
\bar{a}_{\mathfrak{p}}:=\frac{a_{\mathfrak{p}}}{\sqrt{N(\mathfrak{p})}} \in[-2,2] .
$$

- The Sato-Tate conjecture is a prediction for the distribution of the \bar{a}_{p} on the interval $[-2,2]$.

Equidistribution: Basic notions

- Let X be a compact topological space and $C(X)$ be the space of continuous \mathbb{C}-valued functions on X.
- A measure is a continuous linear form $\mu: C(X) \longrightarrow \mathbb{C}$.
- Also use the notation $\int_{X} f \mu:=\mu(f)$.
- Assume $\mu(1)=1$ and μ positive.
- Assume given a sequence $\left\{x_{n}\right\}_{n}$ of elements in X.
- $\left\{x_{n}\right\}_{n}$ is said to be μ-equidistributed on X if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)=\int_{X} f \mu \quad \text { for every } f \in C(X)
$$

- Example: If $X=[0,1]$ and μ is the Lebesgue measure, then $\left\{x_{n}\right\}_{n}$ is μ-equistributed on X if and only if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \#\left\{i \leq n \mid x_{i} \in[a, b]\right\}=b-a \quad \text { for every }[a, b] \subseteq X
$$

The Sato-Tate conjecture for elliptic curves

Sato-Tate conjecture for elliptic curves
Let E be an elliptic curve defined over k. The sequence $\left\{\bar{a}_{\mathfrak{p}}\right\}_{\mathfrak{p}}$ is μ_{I}-equidistributed on $I=[-2,2]$, where μ_{I} is of the form

1) $\frac{1}{2 \pi} \sqrt{4-z^{2}} d z$ if E does not have CM.
2) $\frac{1}{\pi} \frac{d z}{\sqrt{4-z^{2}}}$ if E has CM by $M \subseteq k$.
3) $\frac{1}{2} \delta_{0}+\frac{1}{2 \pi} \frac{d z}{\sqrt{4-z^{2}}}$ if E has $C M$ by $M \nsubseteq k$.
4)

2)
3)

Equidistribution: Compact groups

- Let G be a compact group and $X=\operatorname{Conj}(G)$.
- $C(X)$ space of \mathbb{C}-valued continuous class functions on G.
- Let μ_{G} be the Haar measure of G and let $\mu_{X}=\pi_{*}\left(\mu_{G}\right)$, where

$$
\pi: G \longrightarrow X=\operatorname{Conj}(G)
$$

- Example $G=\operatorname{SU}(2):=\left\{\left.\left(\begin{array}{cc}a & b \\ -\bar{b} & \bar{a}\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{C}) \right\rvert\, a \bar{a}+b \bar{b}=1\right\}$.
- $\pi: \operatorname{SU}(2) \rightarrow X \simeq[0, \pi]$ sends a matrix with eigenvalues $e^{i \theta}, e^{-i \theta}$ to θ.
- For $f \in C(X)$, we have $\mu_{X}(f)=\int_{X} f \mu_{X}=\frac{2}{\pi} \int_{0}^{\pi} f(\theta) \sin ^{2} \theta d \theta$.
- Example $G=U(1):=\left\{\left(\begin{array}{cc}e^{i \theta} & 0 \\ 0 & e^{-i \theta}\end{array}\right): \theta \in \mathbb{R} / 2 \pi \mathbb{Z}\right\} \simeq X$.
- For $f \in C(X)$, we have $\mu_{X}(f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) d \theta$.

The Sato-Tate conjecture for abelian varieties

- Let A / k be an abelian variety of dimension $g \geq 1$.
- Consider the ℓ-adic representation attached to A

$$
\varrho_{\ell}: G_{k} \rightarrow \operatorname{Aut}\left(V_{\ell}(A)\right) .
$$

Sato-Tate conjecture for abelian varieties (Serre; mid 1990's)
There exist:

- a compact subgroup $G \subseteq U S p(2 g)$;
- For each prime \mathfrak{p} of good reduction for A, an $x_{\mathfrak{p}} \in \operatorname{Conj}(G)$ s.t.

$$
\operatorname{Charpoly}\left(x_{\mathfrak{p}}\right)=\operatorname{Charpoly}\left(\frac{\varrho_{\ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right)}{\sqrt{N(\mathfrak{p})}}\right) ;
$$

such that the sequence $\left\{x_{\mathfrak{p}}\right\}_{\mathfrak{p}}$ is equidistributed on $X=\operatorname{Conj}(G)$ w.r.t the push forward of the Haar measure of G.

- Moreover, Serre constructs a candidate $\operatorname{ST}(A)$ for G. For $g \leq 3$, Banaszak and Kedlaya define it purely in terms of endomorphisms.

Equidistribution: Moments

- Example: For an elliptic curve E, there are three options for $\operatorname{ST}(E)$:
- $\operatorname{SU}(2)$ if E does not have CM.
- $\mathrm{U}(1)$ if E has CM by $M \subseteq k$.
- $N_{\mathrm{SU}(2)}(\mathrm{U}(1))=\left\langle\mathrm{U}(1),\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right\rangle$ if E has CM by $M \nsubseteq k$.
- Note that the map

$$
\operatorname{Conj}(\operatorname{ST}(A)) \rightarrow \operatorname{Conj}(\operatorname{USp}(2 g)), \quad x \mapsto \operatorname{Charpoly}(x)
$$

is in general not injective.

- The distribution of the "Charpolys" is captured by the moments.
- Let $G \subseteq \operatorname{USp}(2 g)$ be a compact subgroup. $X=\operatorname{Conj}(G)$.
- Let χ denote the character of the tautological rep. $G \rightarrow \mathrm{GL}_{2 g}(\mathbb{C})$.
- For integers $n_{1}, \ldots, n_{g} \geq 0$, define the moment

$$
\mathrm{M}_{n_{1}, \ldots, n_{g}}(G)=\int_{G} \chi^{n_{1}} \cdot\left(\wedge^{2} \chi\right)^{n_{2}} \cdots \cdot\left(\wedge^{g} \chi\right)^{n_{g}} \mu_{G}
$$

Equidistribution: Moments of $\mathrm{SU}(2)$

- Note that:

$$
M_{n_{1}, \ldots, n_{g}}(G)=\left\langle\mathbf{1}, \chi^{n_{1}} \cdot\left(\wedge^{2} \chi\right)^{n_{2}} \cdots \cdot\left(\wedge^{g} \chi\right)^{n_{g}}\right\rangle \in \mathbb{Z}_{\geq 0} .
$$

- Example: $G=\operatorname{SU}(2)$.

The irreducible characters of $\operatorname{SU}(2)$ are

$$
\chi_{n}(\theta)=\operatorname{Sym}^{n}(\chi)(\theta)=e^{-n \theta i}+e^{(2-n) \theta i} \cdots+e^{(n-2) \theta i}+e^{n \theta i}, \quad n \geq 0
$$

The even moments are:

$$
\begin{aligned}
\mathrm{M}_{2 n}(\mathrm{SU}(2)) & =\left\langle\mathbf{1}, \chi^{2 n}\right\rangle \\
& =\left\langle\mathbf{1}, \chi_{2 n}+\left(\binom{2 n}{1}-1\right) \chi_{2 n-1}+\cdots+\left(\binom{2 n}{n}-\binom{2 n}{n-1}\right) \mathbf{1}\right\rangle \\
& =\binom{2 n}{n}-\binom{2 n}{n-1}=\frac{1}{n+1}\binom{2 n}{n}=n \text {-th Catalan number. }
\end{aligned}
$$

- The odd moments are 0 .

Layout

(1) Sato-Tate conjecture for elliptic curves and equidistribution
(2) Sato-Tate axioms for $g \leq 3$

(3) Abelian surfaces

(4) Abelian threefolds

Sato-Tate axioms

- From now on, let A be an abelian variety of dimension $g \leq 3$.
- Banaszak and Kedlaya show that $G=\mathrm{ST}(A)$ satisfies then:

Hodge condition (ST1)

There is a homomorphism $\theta: \mathrm{U}(1) \rightarrow G^{0}$ such that $\theta(u)$ has eigenvalues u and \bar{u} each with multiplicity g. The image of such a θ is called a Hodge circle. Moreover, the Hodge circles generate a dense subgroup of G^{0}.
(Expected in general; known if the Mumford-Tate conjecture holds for A).

Rationality condition (ST2)

For every connected component $H \subseteq G$ and for every irreducible character $\chi: \mathrm{GL}_{2 g}(\mathbb{C}) \rightarrow \mathbb{C}:$

$$
\int_{H} \chi(h) \mu_{\mathrm{G}} \in \mathbb{Z}
$$

where μ_{G} is normalized so that $\mu_{G}(1)=\left[G: G^{0}\right]$.
(Expected in general).

Sato-Tate axioms

Lefschetz condition (ST3)
Write $E:=\left\{\alpha \in \mathrm{M}_{2 g}(\mathbb{C}) \mid g \alpha g^{-1}=\alpha\right.$ for all $\left.g \in G^{0}\right\}$. Then

$$
\left\{\gamma \in \operatorname{USp}(2 g) \mid \gamma \alpha \gamma^{-1}=\alpha \text { for all } \alpha \in E\right\}=G^{0} .
$$

Serre condition (ST4)

Let F / k be the minimal extension such that $\operatorname{End}\left(A_{F}\right) \simeq \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)$. We call F the endomorphism field of A. Then

$$
G / G^{0} \simeq \operatorname{Gal}(F / k) .
$$

- None of (ST3) and (ST4) are expected in general. In particular, Mumford has constructed examples of abelian fourthfolds A with

$$
\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)=\mathbb{Z} \quad \text { and } \quad G^{0} \subsetneq \operatorname{USp}(8)
$$

- Up to conjugacy, 3 subgroups of $\operatorname{USp}(2)$ satisfy the ST axioms.

Layout

(1) Sato-Tate conjecture for elliptic curves and equidistribution
(2) Sato-Tate axioms for $g \leq 3$
(3) Abelian surfaces
4) Abelian threefolds

Sato-Tate groups of abelian surfaces

- Define the Galois endomorphism type of an abelian variety A / k as the isomorphism class of the \mathbb{R}-algebra
$\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{R} \quad$ equipped with the action of $\operatorname{Gal}(F / k)$.
- Example: There are three Galois types of elliptic curves. They are \mathbb{R}, \mathbb{C} (both equipped with the trivial action), and \mathbb{C} equipped with the action of complex conjugation.

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

- Up to conjugacy, 52 subgroups of $\operatorname{USp}(4)$ satisfy the ST axioms. All of them occur as ST groups of abelian surfaces over number fields.
- 34 of them occur as ST groups of abelian surfaces over \mathbb{Q}.
- The ST group and the GET of an abelian surface determine each other uniquely.

Comments on the classification

(ST1) allows 6 possibilities for $G^{0} \subseteq \operatorname{USp}(4)$ ((ST3) is redundant for $g=2$).

G^{0}	$\operatorname{End}\left(A_{\bar{Q})}\right) \otimes \mathbb{R}$	$N_{U S \mathrm{SP}(4)}\left(G^{0}\right) / G^{0}$	$\# \mathcal{A}$
$\mathrm{USp}(4)$	\mathbb{R}	C_{1}	1
$\mathrm{SU}(2) \times \operatorname{SU}(2)$	$\mathbb{R} \times \mathbb{R}$	C_{2}	2
$\mathrm{SU}(2) \times \mathrm{U}(1)$	$\mathbb{R} \times \mathbb{C}$	C_{2}	2
$\mathrm{U}(1) \times \mathrm{U}(1)$	$\mathbb{C} \times \mathbb{C}$	D_{4}	8
$\mathrm{SU}(2)_{2}$	$\mathrm{M}_{2}(\mathbb{R})$	$O(2)$	10
$\mathrm{U}(1)_{2}$	$\mathrm{M}_{2}(\mathbb{C})$	$\operatorname{SO}(3) \times C_{2}$	32

- $\mathcal{A}=$ set of finite subgroups of $N_{\mathrm{USp}(4)}\left(G^{0}\right) / G^{0}$ for which (ST2) is satisfied.
- 3 of the groups in the case $G^{0}=\mathrm{U}(1) \times \mathrm{U}(1)$ do not satisfy (ST4):
- A is $\overline{\mathbb{Q}}$-isogenous to a product of abelian varieties A_{i} with CM by M_{i}.
- $G / G^{0} \simeq \operatorname{Gal}(F / k) \simeq \prod \mathrm{Gal}\left(k M_{i}^{*} / k\right) \subseteq C_{2} \times C_{2}, C_{4}$.

Additional facts

Remark

As G runs over the 52 groups, $\left\{M_{i, j}(G)\right\}_{i, j}$ attains 52 values: Distinct groups yield distinct distributions of charpolys.

Corollary

The degree of the endomorphism field of an abelian surface over a number field divides 48.
(this refines previous results by Silverberg).
Theorem (Johansson, N. Taylor; 2014-19)
For $g=2$ and $k=\mathbb{Q}$, the ST conjecture holds for 33 of the 34 possible ST groups.

Layout

(1) Sato-Tate conjecture for elliptic curves and equidistribution
(2) Sato-Tate axioms for $g \leq 3$
(3) Abelian surfaces
4) Abelian threefolds

Sato-Tate groups for $g=3$

```
Theorem(F.-Kedlaya-Sutherland; 2019)
Up to conjugacy, 410 subgroups of USp(6) satisfy the ST axioms. All of them of them occur as Sato-Tate groups of abelian threefolds over number fields.
```


Corollary

The degree of the endomorphism field $[F: \mathbb{Q}]$ of an abelian threefold over a number field divides 192, 336, or 432.

- This refines a previous result of Guralnick and Kedlaya, which asserts

$$
[F: \mathbb{Q}] \mid 2^{6} \cdot 3^{3} \cdot 7=\operatorname{Lcm}(192,336,432)
$$

Classification: identity components

(ST1) and (ST3) allow 14 possibilities for $G^{0} \subseteq \mathrm{USp}(6)$:

```
USp(6)
U(3)
SU(2) \times USp(4)
U(1)}\times\textrm{USp}(4
U(1) }\times\textrm{SU}(2)\times\textrm{SU}(2
SU(2) }\times\textrm{U}(1)\timesU(1
SU(2) }\times\textrm{SU}(2)
SU(2)}\times\textrm{U}(1)
U(1)}\times\textrm{SU}(2)
U(1)}\times\textrm{U}(1)\mp@subsup{)}{2}{
SU(2) }\times\textrm{SU}(2)\timesSU(2
U(1)}\times\textrm{U}(1)\times\textrm{U}(1
SU(2)
U(1)3
```

Notations:

- For $d \in\{1,3\}$:

$$
\mathrm{U}(d)=\left\{\left.\left(\begin{array}{ll}
u & 0 \\
0 & \bar{u}
\end{array}\right) \right\rvert\, u \in \mathrm{U}(d)^{\mathrm{Std}}\right\}
$$

- For $d \in\{2,3\}$ and $H \in\{S U(2), \mathrm{U}(1)\}$:

$$
H_{d}=\{\operatorname{diag}(u,, u) \mid u \in H\}
$$

- Note in particular that

$$
\mathrm{SU}(2) \times \mathrm{U}(1)_{2} \simeq \mathrm{U}(1) \times \mathrm{SU}(2)_{2} .
$$

Classification: From G^{0} to G

G^{0}	$\operatorname{End}\left(A_{\bar{Q}}\right) \otimes \mathbb{R}$	$N_{U S p(6)}\left(G^{0}\right) / G^{0}$	$\# \mathcal{A}$
$U S p(6)$	\mathbb{R}	C_{1}	1
$U(3)$	\mathbb{C}	C_{2}	2
$S U(2) \times U S p(4)$	$\mathbb{R} \times \mathbb{R}$	C_{1}	1
$U(1) \times U S p(4)$	$\mathbb{C} \times \mathbb{R}$	C_{2}	2
$U(1) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$	$\mathbb{C} \times \mathbb{R} \times \mathbb{R}$	$C_{2} \times C_{2}$	5
$S U(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$	$\mathbb{R} \times \mathbb{C} \times \mathbb{C}$	D_{4}	8
$\mathrm{SU}(2) \times \mathrm{SU}(2)_{2}$	$\mathbb{R} \times \mathrm{M}_{2}(\mathbb{R})$	$O(2)$	10
$\mathrm{SU}(2) \times \mathrm{U}(1)_{2}$	$\mathbb{R} \times \mathrm{M}_{2}(\mathbb{C})$	$\mathrm{SO}(3) \times C_{2}$	32
$\mathrm{U}(1) \times \mathrm{SU}(2)_{2}$	$\mathbb{C} \times \mathrm{M}_{2}(\mathbb{R})$	$C_{2} \times O(2)$	31
$\mathrm{U}(1) \times \mathrm{U}(1)_{2}$	$\mathbb{C} \times \mathrm{M}_{2}(\mathbb{C})$	$C_{2} \times \mathrm{SO}(3) \times C_{2}$	122
$\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$	$\mathbb{R} \times \mathbb{R} \times \mathbb{R}$	S_{3}	4
$\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$	$\mathbb{C} \times \mathbb{C} \times \mathbb{C}$	$\left(C_{2} \times C_{2} \times C_{2}\right) \rtimes S_{3}$	33
$\mathrm{SU}(2)_{3}$	$\mathrm{M}_{3}(\mathbb{R})$	$\mathrm{SO}(3)$	11
$\mathrm{U}(1)_{3}$	$\mathrm{M}_{3}(\mathbb{C})$	$\mathrm{PSU}(3) \rtimes C_{2}$	171

$\mathcal{A}=$ set of finite subgroups of $N_{\mathrm{USp}(6)}\left(G^{0}\right) / G^{0}$ for which (ST2) is satisfied.

Classification: The 23 spurious groups and invariants

- For $G^{0}=\mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$:

As in the case $g=2$, only 5 of 8 groups in \mathcal{A} satisfy (ST4).

- For $G^{0}=U(1) \times U(1) \times U(1)$:

Only 13 of the 33 subgroups in \mathcal{A} satisfy (ST4). Indeed:

- A is isogenous to a product of abelian varieties A_{i} with CM by M_{i}.
- $G / G^{0} \simeq \operatorname{Gal}(F / k) \simeq \Pi \operatorname{Gal}\left(k M_{i}^{*} / k\right) \subseteq C_{2} \times C_{2} \times C_{2}, C_{2} \times C_{4}, C_{6}$.
- This leaves 433-20-3=410 groups, of which 33 are maximal (w.r.t finite inclusions).
- As G runs over the 410 groups, the sequence $\left\{\mathrm{M}_{i, j, k}(G)\right\}_{i, j, k}$ attains 409 values. It only conflates a pair of groups G_{1}, G_{2}, for which however

$$
G_{1} / G_{1}^{0} \simeq\langle 54,5\rangle \not 千\langle 54,8\rangle \simeq G_{2} / G_{2}^{0} .
$$

- Any possible order of G / G^{0} divides 192,336 , or 432 .

Realization

- It suffices to realize the 33 maximal groups (for prescribed G^{0}). Finite index subgroups are realized by base change.
- For 8 of the 14 possibilities for G^{0}, the maximal groups are of the form $G \simeq G_{1} \times G_{2}$ where G_{1} and G_{2} are realizable in dimensions 1 and 2. This accounts for 13 maximal groups.
- USp(6): generic case. Eg.: $y^{2}=x^{7}-x+1 / \mathbb{Q}$.
- $N(\mathrm{U}(3))$: Picard curves. Eg.: $y^{3}=x^{4}+x+1 / \mathbb{Q}$.
- $G^{0}=S U(2) \times S U(2) \times S U(2)$ (1. max. group): $\operatorname{Res}_{\mathbb{Q}}^{L}(E)$, where L / \mathbb{Q} a non-normal cubic and E / L e.c. which is not a \mathbb{Q}-curve.
- $G^{0}=\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$ (3 max. groups):

Products of CM abelian varieties.

- $G^{0}=S U(2)_{3}$ (2 max. groups): Twists of cubes of non CM e.c.
- $G^{0}=\mathrm{U}(1)_{3}$ (12 max. groups): Twists of cubes of CM elliptic curves.

