Sato–Tate groups of abelian varieties of dimension up to 3

Francesc Fité (MIT)

VaNTAGe Virtual Seminar.

7th April 2020

- 2 Sato–Tate axioms for $g \leq 3$
- 3 Abelian surfaces
- 4 Abelian threefolds

1 Sato-Tate conjecture for elliptic curves and equidistribution

2 Sato–Tate axioms for $g \leq 3$

3 Abelian surfaces

Abelian threefolds

Frobenius traces of elliptic curves

- k a number field.
- E/k an elliptic curve.
- For a prime p of good reduction for E, set

$$a_{\mathfrak{p}} := N(\mathfrak{p}) + 1 - \#E(\mathbb{F}_{\mathfrak{p}}).$$

• For $\mathfrak{p} \nmid \ell$, we have

$$a_{\mathfrak{p}} = \mathsf{Tr}(\mathsf{Frob}_{\mathfrak{p}} \,|\, V_{\ell}(E))$$
 .

• By the Hasse-Weil bound, the normalized Frobenius trace satisfies

$$\overline{a}_{\mathfrak{p}} := rac{a_{\mathfrak{p}}}{\sqrt{N(\mathfrak{p})}} \in [-2, 2].$$

The Sato-Tate conjecture is a prediction for the distribution of the a
p
on the interval [-2, 2].

Equidistribution: Basic notions

- Let X be a compact topological space and C(X) be the space of continuous C-valued functions on X.
- A measure is a continuous linear form $\mu \colon C(X) \longrightarrow \mathbb{C}$.
- Also use the notation $\int_X f\mu := \mu(f)$.
- Assume $\mu(1) = 1$ and μ positive.
- Assume given a sequence $\{x_n\}_n$ of elements in X.
- $\{x_n\}_n$ is said to be μ -equidistributed on X if

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n f(x_i) = \int_X f\mu \quad \text{for every } f\in C(X).$$

• Example: If X = [0, 1] and μ is the Lebesgue measure, then $\{x_n\}_n$ is μ -equistributed on X if and only if

$$\lim_{n\to\infty}\frac{1}{n}\#\{i\leq n\,|\,x_i\in[a,b]\}=b-a\qquad\text{for every }[a,b]\subseteq X\,.$$

The Sato-Tate conjecture for elliptic curves

Sato-Tate conjecture for elliptic curves

Let *E* be an elliptic curve defined over *k*. The sequence $\{\overline{a}_{\mathfrak{p}}\}_{\mathfrak{p}}$ is μ_I -equidistributed on I = [-2, 2], where μ_I is of the form

1)
$$\frac{1}{2\pi}\sqrt{4-z^2}dz$$
 if *E* does not have CM.
2) $\frac{1}{\pi}\frac{dz}{\sqrt{4-z^2}}$ if *E* has CM by $M \subseteq k$.
3) $\frac{1}{2}\delta_0 + \frac{1}{2\pi}\frac{dz}{\sqrt{4-z^2}}$ if *E* has CM by $M \not\subseteq k$.

Equidistribution: Compact groups

- Let G be a compact group and $X = \operatorname{Conj}(G)$.
- *C*(*X*) space of \mathbb{C} -valued continuous *class functions* on *G*.
- Let μ_G be the Haar measure of G and let $\mu_X = \pi_*(\mu_G)$, where

$$\pi\colon G\longrightarrow X=\operatorname{Conj}(G)$$

• Example
$$G = SU(2) := \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \in GL_2(\mathbb{C}) \, | \, a\overline{a} + b\overline{b} = 1 \right\}.$$

• π : SU(2) $\rightarrow X \simeq [0, \pi]$ sends a matrix with eigenvalues $e^{i\theta}, e^{-i\theta}$ to θ .

• For $f \in C(X)$, we have $\mu_X(f) = \int_X f \mu_X = \frac{2}{\pi} \int_0^{\pi} f(\theta) \sin^2 \theta d\theta$.

• Example $G = U(1) := \left\{ \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} : \theta \in \mathbb{R}/2\pi\mathbb{Z} \right\} \simeq X.$

• For $f \in C(X)$, we have $\mu_X(f) = \frac{1}{2\pi} \int_0^{2\pi} f(\theta) d\theta$.

The Sato-Tate conjecture for abelian varieties

- Let A/k be an abelian variety of dimension $g \ge 1$.
- Consider the ℓ -adic representation attached to A

 $\varrho_\ell \colon G_k \to \operatorname{Aut}(V_\ell(A)).$

Sato-Tate conjecture for abelian varieties (Serre; mid 1990's) There exist:

- a compact subgroup $G \subseteq USp(2g)$;
- For each prime $\mathfrak p$ of good reduction for A, an $x_\mathfrak p\in \operatorname{Conj}(\mathrm{G})$ s.t.

$$\operatorname{Charpoly}(x_{\mathfrak{p}}) = \operatorname{Charpoly}\left(\frac{\varrho_{\ell}(\mathsf{Frob}_{\mathfrak{p}})}{\sqrt{N(\mathfrak{p})}}\right);$$

such that the sequence $\{x_{\mathfrak{p}}\}_{\mathfrak{p}}$ is equidistributed on $X = \operatorname{Conj}(G)$ w.r.t the push forward of the Haar measure of G.

• Moreover, Serre constructs a candidate ST(A) for G. For $g \le 3$, Banaszak and Kedlaya define it purely in terms of endomorphisms.

Equidistribution: Moments

- Example: For an elliptic curve E, there are three options for ST(E):
 - ▶ SU(2) if *E* does not have CM.
 - U(1) if E has CM by $M \subseteq k$.

•
$$N_{SU(2)}(U(1)) = \left\langle U(1), \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\rangle$$
 if E has CM by $M \not\subseteq k$.

Note that the map

 $\operatorname{Conj}(\operatorname{ST}(A)) \to \operatorname{Conj}(\operatorname{USp}(2g)), \qquad x \mapsto \operatorname{Charpoly}(x)$

is in general not injective.

- The distribution of the "Charpolys" is captured by the moments.
- Let $G \subseteq \mathsf{USp}(2g)$ be a compact subgroup. $X = \operatorname{Conj}(G)$.
- Let χ denote the character of the tautological rep. $G \to GL_{2g}(\mathbb{C})$.
- For integers $n_1, \ldots, n_g \geq 0$, define the moment

$$\mathrm{M}_{n_1,\ldots,n_g}(G) = \int_G \chi^{n_1} \cdot (\wedge^2 \chi)^{n_2} \cdots (\wedge^g \chi)^{n_g} \mu_G$$

Equidistribution: Moments of SU(2)

Note that:

$$\mathsf{M}_{n_1,\ldots,n_g}(G) = \langle \mathbf{1}, \chi^{n_1} \cdot (\wedge^2 \chi)^{n_2} \cdot \cdots \cdot (\wedge^g \chi)^{n_g} \rangle \in \mathbb{Z}_{\geq 0}.$$

• Example: G = SU(2). The irreducible characters of SU(2) are

$$\chi_n(\theta) = \operatorname{Sym}^n(\chi)(\theta) = e^{-n\theta i} + e^{(2-n)\theta i} \cdots + e^{(n-2)\theta i} + e^{n\theta i}, \quad n \ge 0.$$

The even moments are:

• The odd moments are 0.

Sato–Tate conjecture for elliptic curves and equidistribution

2 Sato–Tate axioms for $g \leq 3$

3 Abelian surfaces

Abelian threefolds

Sato-Tate axioms

- From now on, let A be an abelian variety of dimension $g \leq 3$.
- Banaszak and Kedlaya show that G = ST(A) satisfies then:

Hodge condition (ST1)

There is a homomorphism θ : U(1) $\rightarrow G^0$ such that $\theta(u)$ has eigenvalues u and \overline{u} each with multiplicity g. The image of such a θ is called a *Hodge circle*. Moreover, the Hodge circles generate a dense subgroup of G^0 .

(Expected in general; known if the Mumford-Tate conjecture holds for A).

Rationality condition (ST2)

For every connected component $H \subseteq G$ and for every irreducible character $\chi: \operatorname{GL}_{2g}(\mathbb{C}) \to \mathbb{C}:$ $\int_{\mathbb{C}} \chi(h) \mu \in \mathbb{Z}$

$$\int_{H} \chi(h) \mu_{\rm G} \in \mathbb{Z} \,,$$

where μ_G is normalized so that $\mu_G(1) = [G : G^0]$.

(Expected in general).

Sato-Tate axioms

Lefschetz condition (ST3)

Write
$$E := \{ \alpha \in \mathsf{M}_{2g}(\mathbb{C}) | g \alpha g^{-1} = \alpha \text{ for all } g \in G^0 \}$$
. Then

$$\{\gamma\in\mathsf{USp}(2g)|\gammalpha\gamma^{-1}=lpha$$
 for all $lpha\in\mathsf{E}\}=\mathsf{G}^{\mathsf{0}}$.

Serre condition (ST4)

Let F/k be the minimal extension such that $\operatorname{End}(A_F) \simeq \operatorname{End}(A_{\overline{\mathbb{Q}}})$. We call F the endomorphism field of A. Then

 $G/G^0 \simeq \operatorname{Gal}(F/k)$.

 None of (ST3) and (ST4) are expected in general. In particular, Mumford has constructed examples of abelian fourthfolds A with

$$\operatorname{End}(A_{\overline{\mathbb{O}}}) = \mathbb{Z}$$
 and $G^0 \subsetneq \operatorname{USp}(8)$.

• Up to conjugacy, 3 subgroups of USp(2) satisfy the ST axioms.

Sato–Tate conjecture for elliptic curves and equidistribution

2 Sato–Tate axioms for $g \leq 3$

3 Abelian surfaces

Abelian threefolds

Sato-Tate groups of abelian surfaces

• Define the *Galois endomorphism type* of an abelian variety *A*/*k* as the isomorphism class of the ℝ-algebra

 $\operatorname{End}(A_{\overline{\mathbb{O}}})\otimes \mathbb{R}$ equipped with the action of $\operatorname{Gal}(F/k)$.

• Example: There are three Galois types of elliptic curves. They are \mathbb{R} , \mathbb{C} (both equipped with the trivial action), and \mathbb{C} equipped with the action of complex conjugation.

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

- Up to conjugacy, 52 subgroups of USp(4) satisfy the ST axioms. All of them occur as ST groups of abelian surfaces over number fields.
- $\bullet\,$ 34 of them occur as ST groups of abelian surfaces over $\mathbb{Q}.$
- The ST group and the GET of an abelian surface determine each other uniquely.

Comments on the classification

(ST1) allows 6 possibilities for $G^0 \subseteq \text{USp}(4)$ ((ST3) is redundant for g = 2).

G^0	$End(A_{\overline{\mathbb{Q}}})\otimes \mathbb{R}$	$N_{\mathrm{USp}(4)}(G^0)/G^0$	$\#\mathcal{A}$
USp(4)	\mathbb{R}	<i>C</i> ₁	1
$SU(2) \times SU(2)$	$\mathbb{R} \times \mathbb{R}$	<i>C</i> ₂	2
${\sf SU}(2) imes {\sf U}(1)$	$\mathbb{R} imes \mathbb{C}$	<i>C</i> ₂	2
${\sf U}(1) imes {\sf U}(1)$	$\mathbb{C} imes \mathbb{C}$	D_4	8
SU(2) ₂	$M_2(\mathbb{R})$	<i>O</i> (2)	10
$U(1)_{2}$	$M_2(\mathbb{C})$	$SO(3) \times C_2$	32
			55

- $\mathcal{A} = \text{set of finite subgroups of } N_{\text{USp}(4)}(G^0)/G^0 \text{ for which (ST2) is satisfied.}$
- 3 of the groups in the case $G^0 = U(1) \times U(1)$ do not satisfy (ST4):
 - A is $\overline{\mathbb{Q}}$ -isogenous to a product of abelian varieties A_i with CM by M_i .
 - $G/G^0 \simeq \operatorname{Gal}(F/k) \simeq \prod \operatorname{Gal}(kM_i^*/k) \subseteq C_2 \times C_2, C_4.$

Additional facts

Remark

As G runs over the 52 groups, $\{M_{i,j}(G)\}_{i,j}$ attains 52 values: Distinct groups yield distinct distributions of charpolys.

Corollary

The degree of the endomorphism field of an abelian surface over a number field divides 48.

(this refines previous results by Silverberg).

Theorem (Johansson, N. Taylor; 2014-19)

For g = 2 and $k = \mathbb{Q}$, the ST conjecture holds for 33 of the 34 possible ST groups.

Sato-Tate conjecture for elliptic curves and equidistribution

2 Sato–Tate axioms for $g \leq 3$

3 Abelian surfaces

Sato–Tate groups for g = 3

Theorem(F.-Kedlaya-Sutherland; 2019)

Up to conjugacy, 410 subgroups of USp(6) satisfy the ST axioms. All of them of them occur as Sato–Tate groups of abelian threefolds over number fields.

Corollary

The degree of the endomorphism field $[F : \mathbb{Q}]$ of an abelian threefold over a number field divides 192, 336, or 432.

• This refines a previous result of Guralnick and Kedlaya, which asserts

$$[F:\mathbb{Q}] \mid 2^{6} \cdot 3^{3} \cdot 7 = \mathsf{Lcm}(192, 336, 432).$$

Classification: identity components (ST1) and (ST3) allow 14 possibilities for $G^0 \subseteq USp(6)$:

USp(6)U(3) $SU(2) \times USp(4)$ $U(1) \times USp(4)$ $U(1) \times SU(2) \times SU(2)$ $SU(2) \times U(1) \times U(1)$ $SU(2) \times SU(2)_2$ $SU(2) \times U(1)_2$ $U(1) \times SU(2)_2$ $U(1) \times U(1)_2$ $SU(2) \times SU(2) \times SU(2)$ $U(1) \times U(1) \times U(1)$ $SU(2)_3$ $U(1)_{3}$

Notations:

• For $d \in \{1,3\}$:

$$\mathsf{U}(d) = \left\{ egin{pmatrix} u & 0 \ 0 & \overline{u} \end{pmatrix} | u \in \mathsf{U}(d)^{\mathrm{Std}}
ight\}$$

• For $d \in \{2,3\}$ and $H \in \{SU(2), U(1)\}$:

$$H_d = \{ \operatorname{diag}(u, \overset{d}{\ldots}, u) \, | \, u \in H \, \}$$

• Note in particular that

$${\sf SU}(2) imes {\sf U}(1)_2\simeq {\sf U}(1) imes {\sf SU}(2)_2$$
 .

Classification: From G^0 to G

G^0	$End(A_{\overline{\mathbb{O}}})\otimes \mathbb{R}$	$N_{\mathrm{USp}(6)}(G^0)/G^0$	$\#\mathcal{A}$
USp(6)	\mathbb{R}	<i>C</i> ₁	1
U(3)	\mathbb{C}	<i>C</i> ₂	2
SU(2) imes USp(4)	$\mathbb{R} imes \mathbb{R}$	C_1	1
U(1) imes USp(4)	$\mathbb{C} imes \mathbb{R}$	<i>C</i> ₂	2
U(1) imesSU(2) imesSU(2)	$\mathbb{C}\times\mathbb{R}\times\mathbb{R}$	$C_2 \times C_2$	5
${\sf SU}(2) imes {\sf U}(1) imes {\sf U}(1)$	$\mathbb{R}\times\mathbb{C}\times\mathbb{C}$	D_4	8
$SU(2) \times SU(2)_2$	$\mathbb{R} imes M_2(\mathbb{R})$	<i>O</i> (2)	10
${\sf SU}(2) imes {\sf U}(1)_2$	$\mathbb{R}\timesM_2(\mathbb{C})$	$SO(3) imes C_2$	32
$U(1) imesSU(2)_2$	$\mathbb{C} imes M_2(\mathbb{R})$	$C_2 imes O(2)$	31
${\sf U}(1) imes {\sf U}(1)_2$	$\mathbb{C} imes M_2(\mathbb{C})$	$C_2 imes SO(3) imes C_2$	122
$SU(2) \times SU(2) \times SU(2)$	$\mathbb{R}\times\mathbb{R}\times\mathbb{R}$	S_3	4
U(1) imesU(1) imesU(1)	$\mathbb{C}\times\mathbb{C}\times\mathbb{C}$	$(C_2 \times C_2 \times C_2) \rtimes S_3$	33
SU(2) ₃	$M_3(\mathbb{R})$	SO(3)	11
$U(1)_{3}$	$M_3(\mathbb{C})$	$PSU(3) \rtimes C_2$	171

 $\mathcal{A} =$ set of finite subgroups of $N_{\text{USp}(6)}(G^0)/G^0$ for which (ST2) is satisfied.

Classification: The 23 spurious groups and invariants

- For $G^0 = SU(2) \times U(1) \times U(1)$: As in the case g = 2, only 5 of 8 groups in A satisfy (ST4).
- For $G^0 = U(1) \times U(1) \times U(1)$: Only 13 of the 33 subgroups in \mathcal{A} satisfy (ST4). Indeed:
 - A is isogenous to a product of abelian varieties A_i with CM by M_i .
 - $G/G^0 \simeq \operatorname{Gal}(F/k) \simeq \prod \operatorname{Gal}(kM_i^*/k) \subseteq C_2 \times C_2 \times C_2, C_2 \times C_4, C_6.$
- This leaves 433-20-3=410 groups, of which 33 are maximal (w.r.t finite inclusions).
- As G runs over the 410 groups, the sequence $\{M_{i,j,k}(G)\}_{i,j,k}$ attains 409 values. It only conflates a pair of groups G_1, G_2 , for which however

$$G_1/G_1^0 \simeq \langle 54,5
angle
ot \simeq \langle 54,8
angle \simeq G_2/G_2^0$$
.

• Any possible order of G/G^0 divides 192, 336, or 432.

Realization

- It suffices to realize the 33 maximal groups (for prescribed G^0). Finite index subgroups are realized by base change.
- For 8 of the 14 possibilities for G^0 , the maximal groups are of the form $G \simeq G_1 \times G_2$ where G_1 and G_2 are realizable in dimensions 1 and 2. This accounts for 13 maximal groups.
- USp(6): generic case. Eg.: $y^2 = x^7 x + 1/\mathbb{Q}$.
- N(U(3)): Picard curves. Eg.: $y^3 = x^4 + x + 1/\mathbb{Q}$.
- $G^0 = SU(2) \times SU(2) \times SU(2)$ (1. max. group): $\text{Res}_{\mathbb{Q}}^L(E)$, where L/\mathbb{Q} a non-normal cubic and E/L e.c. which is not a \mathbb{Q} -curve.
- $G^0 = U(1) \times U(1) \times U(1)$ (3 max. groups): Products of CM abelian varieties.
- $G^0 = SU(2)_3$ (2 max. groups): Twists of cubes of non CM e.c.
- $G^0 = U(1)_3$ (12 max. groups): Twists of cubes of CM elliptic curves.