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Frobenius traces of elliptic curves

k a number field.

E/k an elliptic curve.

For a prime p of good reduction for E , set

ap := N(p) + 1−#E (Fp) .

For p - `, we have
ap = Tr(Frobp |V`(E )) .

By the Hasse-Weil bound, the normalized Frobenius trace satisfies

ap :=
ap√
N(p)

∈ [−2, 2] .

The Sato–Tate conjecture is a prediction for the distribution of the ap
on the interval [−2, 2].
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Equidistribution: Basic notions

Let X be a compact topological space and C (X ) be the space of
continuous C-valued functions on X .

A measure is a continuous linear form µ : C (X ) −→ C.

Also use the notation
∫
X f µ := µ(f ).

Assume µ(1) = 1 and µ positive.

Assume given a sequence {xn}n of elements in X .

{xn}n is said to be µ-equidistributed on X if

lim
n→∞

1

n

n∑
i=1

f (xi ) =

∫
X
f µ for every f ∈ C (X ) .

Example: If X = [0, 1] and µ is the Lebesgue measure, then {xn}n is
µ-equistributed on X if and only if

lim
n→∞

1

n
#{i ≤ n | xi ∈ [a, b]} = b − a for every [a, b] ⊆ X .
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The Sato–Tate conjecture for elliptic curves

Sato–Tate conjecture for elliptic curves

Let E be an elliptic curve defined over k . The sequence {ap}p is
µI -equidistributed on I = [−2, 2], where µI is of the form

1)
1

2π

√
4− z2dz if E does not have CM.

2)
1

π

dz√
4− z2

if E has CM by M ⊆ k .

3)
1

2
δ0 +

1

2π

dz√
4− z2

if E has CM by M 6⊆ k .

1) 2) 3)
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Equidistribution: Compact groups

Let G be a compact group and X = Conj(G ).

C (X ) space of C-valued continuous class functions on G .

Let µG be the Haar measure of G and let µX = π∗(µG), where

π : G −→ X = Conj(G ) .

Example G = SU(2) :=

{(
a b

−b a

)
∈ GL2(C) | aa + bb = 1

}
.

I π : SU(2)→ X ' [0, π] sends a matrix with eigenvalues e iθ, e−iθ to θ.

I For f ∈ C (X ), we have µX (f ) =
∫
X
f µX = 2

π

∫ π

0
f (θ) sin2 θdθ.

Example G = U(1) :=

{(
e iθ 0
0 e−iθ

)
: θ ∈ R/2πZ

}
' X .

I For f ∈ C (X ), we have µX (f ) = 1
2π

∫ 2π

0
f (θ)dθ.
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The Sato–Tate conjecture for abelian varieties
Let A/k be an abelian variety of dimension g ≥ 1.
Consider the `-adic representation attached to A

%` : Gk → Aut(V`(A)) .

Sato–Tate conjecture for abelian varieties (Serre; mid 1990’s)

There exist:

a compact subgroup G ⊆ USp(2g);

For each prime p of good reduction for A, an xp ∈ Conj(G) s.t.

Charpoly(xp) = Charpoly

(
%`(Frobp)√

N(p)

)
;

such that the sequence {xp}p is equidistributed on X = Conj(G ) w.r.t the
push forward of the Haar measure of G .

Moreover, Serre constructs a candidate ST(A) for G . For g ≤ 3,
Banaszak and Kedlaya define it purely in terms of endomorphisms.
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Equidistribution: Moments
Example: For an elliptic curve E , there are three options for ST(E ):

I SU(2) if E does not have CM.

I U(1) if E has CM by M ⊆ k .

I NSU(2)(U(1)) =

〈
U(1),

(
0 1
−1 0

)〉
if E has CM by M 6⊆ k.

Note that the map

Conj(ST(A))→ Conj(USp(2g)) , x 7→ Charpoly(x)

is in general not injective.

The distribution of the “Charpolys” is captured by the moments.

Let G ⊆ USp(2g) be a compact subgroup. X = Conj(G ).

Let χ denote the character of the tautological rep. G → GL2g (C).

For integers n1, . . . , ng ≥ 0, define the moment

Mn1,...,ng (G ) =

∫
G
χn1 · (∧2χ)n2 · · · · · (∧gχ)ngµG .
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Equidistribution: Moments of SU(2)

Note that:

Mn1,...,ng (G ) = 〈1, χn1 · (∧2χ)n2 · · · · · (∧gχ)ng 〉 ∈ Z≥0.

Example: G = SU(2).
The irreducible characters of SU(2) are

χn(θ) = Symn(χ)(θ) = e−nθi + e(2−n)θi · · ·+ e(n−2)θi + enθi , n ≥ 0 .

The even moments are:

M2n(SU(2)) = 〈1, χ2n〉
= 〈1, χ2n +

((2n
1

)
− 1
)
χ2n−1 + · · ·+

((2n
n

)
−
( 2n
n−1
))
1〉

=
(2n
n

)
−
( 2n
n−1
)

= 1
n+1

(2n
n

)
= n-th Catalan number.

The odd moments are 0.
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Sato–Tate axioms
From now on, let A be an abelian variety of dimension g ≤ 3.
Banaszak and Kedlaya show that G = ST(A) satisfies then:

Hodge condition (ST1)

There is a homomorphism θ : U(1)→ G 0 such that θ(u) has eigenvalues u
and u each with multiplicity g . The image of such a θ is called a Hodge
circle. Moreover, the Hodge circles generate a dense subgroup of G 0.

(Expected in general; known if the Mumford–Tate conjecture holds for A).

Rationality condition (ST2)

For every connected component H ⊆ G and for every irreducible character
χ : GL2g (C)→ C: ∫

H
χ(h)µG ∈ Z ,

where µG is normalized so that µG (1) = [G : G 0].

(Expected in general).
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Sato–Tate axioms

Lefschetz condition (ST3)

Write E := {α ∈ M2g (C) | gαg−1 = α for all g ∈ G 0}. Then

{γ ∈ USp(2g)|γαγ−1 = α for all α ∈ E} = G 0 .

Serre condition (ST4)

Let F/k be the minimal extension such that End(AF ) ' End(AQ).
We call F the endomorphism field of A. Then

G/G 0 ' Gal(F/k) .

None of (ST3) and (ST4) are expected in general. In particular,
Mumford has constructed examples of abelian fourthfolds A with

End(AQ) = Z and G 0 ( USp(8) .

Up to conjugacy, 3 subgroups of USp(2) satisfy the ST axioms.
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Sato–Tate groups of abelian surfaces

Define the Galois endomorphism type of an abelian variety A/k as the
isomorphism class of the R-algebra

End(AQ)⊗ R equipped with the action of Gal(F/k).

Example: There are three Galois types of elliptic curves. They are R,
C (both equipped with the trivial action), and C equipped with the
action of complex conjugation.

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

Up to conjugacy, 52 subgroups of USp(4) satisfy the ST axioms. All
of them occur as ST groups of abelian surfaces over number fields.

34 of them occur as ST groups of abelian surfaces over Q.

The ST group and the GET of an abelian surface determine each
other uniquely.
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Comments on the classification
(ST1) allows 6 possibilities for G 0 ⊆ USp(4) ((ST3) is redundant for g = 2).

G 0 End(AQ)⊗ R NUSp(4)(G
0)/G 0 #A

USp(4) R C1 1

SU(2)× SU(2) R× R C2 2

SU(2)× U(1) R× C C2 2

U(1)× U(1) C× C D4 8

SU(2)2 M2(R) O(2) 10

U(1)2 M2(C) SO(3)× C2 32

55

A = set of finite subgroups of NUSp(4)(G
0)/G 0 for which (ST2) is satisfied.

3 of the groups in the case G 0 = U(1)× U(1) do not satisfy (ST4):

I A is Q-isogenous to a product of abelian varieties Ai with CM by Mi .

I G/G 0 ' Gal(F/k) '
∏

Gal(kM∗
i /k) ⊆ C2 × C2,C4.
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Additional facts

Remark

As G runs over the 52 groups, {Mi ,j(G )}i ,j attains 52 values:
Distinct groups yield distinct distributions of charpolys.

Corollary

The degree of the endomorphism field of an abelian surface over a number
field divides 48.

(this refines previous results by Silverberg).

Theorem (Johansson, N. Taylor; 2014-19)

For g = 2 and k = Q, the ST conjecture holds for 33 of the 34 possible
ST groups.
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Sato–Tate groups for g = 3

Theorem(F.-Kedlaya-Sutherland; 2019)

Up to conjugacy, 410 subgroups of USp(6) satisfy the ST axioms. All of
them of them occur as Sato–Tate groups of abelian threefolds over
number fields.

Corollary

The degree of the endomorphism field [F : Q] of an abelian threefold over
a number field divides 192, 336, or 432.

This refines a previous result of Guralnick and Kedlaya, which asserts

[F : Q] | 26 · 33 · 7 = Lcm(192, 336, 432) .
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Classification: identity components
(ST1) and (ST3) allow 14 possibilities for G 0 ⊆ USp(6):

USp(6)

U(3)

SU(2)× USp(4)

U(1)× USp(4)

U(1)× SU(2)× SU(2)

SU(2)× U(1)× U(1)

SU(2)× SU(2)2

SU(2)× U(1)2

U(1)× SU(2)2

U(1)× U(1)2

SU(2)× SU(2)× SU(2)

U(1)× U(1)× U(1)

SU(2)3

U(1)3

Notations:

For d ∈ {1, 3}:

U(d) =

{(
u 0
0 u

)
|u ∈ U(d)Std

}
For d ∈ {2, 3} and H ∈ {SU(2),U(1)}:

Hd = {diag(u, d. . ., u) |u ∈ H }

Note in particular that

SU(2)× U(1)2 ' U(1)× SU(2)2 .
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Classification: From G 0 to G

G 0 End(AQ)⊗ R NUSp(6)(G
0)/G 0 #A

USp(6) R C1 1

U(3) C C2 2

SU(2)× USp(4) R× R C1 1

U(1)× USp(4) C× R C2 2

U(1)× SU(2)× SU(2) C× R× R C2 × C2 5

SU(2)× U(1)× U(1) R× C× C D4 8

SU(2)× SU(2)2 R×M2(R) O(2) 10

SU(2)× U(1)2 R×M2(C) SO(3)× C2 32

U(1)× SU(2)2 C×M2(R) C2 × O(2) 31

U(1)× U(1)2 C×M2(C) C2 × SO(3)× C2 122

SU(2)× SU(2)× SU(2) R× R× R S3 4

U(1)× U(1)× U(1) C× C× C (C2 × C2 × C2) o S3 33

SU(2)3 M3(R) SO(3) 11

U(1)3 M3(C) PSU(3) o C2 171

A = set of finite subgroups of NUSp(6)(G
0)/G 0 for which (ST2) is satisfied.
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Classification: The 23 spurious groups and invariants

For G 0 = SU(2)× U(1)× U(1):
As in the case g = 2, only 5 of 8 groups in A satisfy (ST4).

For G 0 = U(1)× U(1)× U(1):
Only 13 of the 33 subgroups in A satisfy (ST4). Indeed:

I A is isogenous to a product of abelian varieties Ai with CM by Mi .
I G/G 0 ' Gal(F/k) '

∏
Gal(kM∗

i /k) ⊆ C2 × C2 × C2,C2 × C4,C6.

This leaves 433-20-3=410 groups, of which 33 are maximal
(w.r.t finite inclusions).

As G runs over the 410 groups, the sequence {Mi ,j ,k(G )}i ,j ,k attains
409 values. It only conflates a pair of groups G1,G2, for which
however

G1/G
0
1 ' 〈54, 5〉 6' 〈54, 8〉 ' G2/G

0
2 .

Any possible order of G/G 0 divides 192, 336, or 432.
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Realization

It suffices to realize the 33 maximal groups (for prescribed G 0).
Finite index subgroups are realized by base change.

For 8 of the 14 possibilities for G 0, the maximal groups are of the
form G ' G1 × G2 where G1 and G2 are realizable in dimensions 1
and 2. This accounts for 13 maximal groups.

USp(6): generic case. Eg.: y2 = x7 − x + 1/Q.

N(U(3)): Picard curves. Eg.: y3 = x4 + x + 1/Q.

G 0 = SU(2)× SU(2)× SU(2) (1. max. group): ResLQ(E ), where L/Q
a non-normal cubic and E/L e.c. which is not a Q-curve.

G 0 = U(1)× U(1)× U(1) (3 max. groups):
Products of CM abelian varieties.

G 0 = SU(2)3 (2 max. groups): Twists of cubes of non CM e.c.

G 0 = U(1)3 (12 max. groups): Twists of cubes of CM elliptic curves.
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