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@ Sato-Tate conjecture for elliptic curves and equidistribution



Frobenius traces of elliptic curves

@ k a number field.
e E/k an elliptic curve.
@ For a prime p of good reduction for E, set

a, = N(p) + 1 — #E(F,).

For p 1 ¢, we have
ay = Tr(Froby [Vi(E)).

By the Hasse-Weil bound, the normalized Frobenius trace satisfies

3= c[-2,2].

Vv N(p)

The Sato—Tate conjecture is a prediction for the distribution of the 3,
on the interval [-2,2].
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Equidistribution: Basic notions

@ Let X be a compact topological space and C(X) be the space of
continuous C-valued functions on X.

A measure is a continuous linear form u: C(X) — C.
Also use the notation [y fu := pu(f).

Assume p(1) = 1 and p positive.

Assume given a sequence {xp}, of elements in X.

{Xn}n is said to be p-equidistributed on X if

1 n
lim fo(x,-) :/ fro forevery f € C(X).
i=1 X

n—00 N 4

Example: If X =[0,1] and p is the Lebesgue measure, then {x,}, is
p-equistributed on X if and only if

1
lim —#{i <n|x; €[a,b]} =b—a for every [a,b] C X .

n—oo N
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The Sato—Tate conjecture for elliptic curves

Sato—Tate conjecture for elliptic curves

Let E be an elliptic curve defined over k. The sequence {3}, is
,u/-equidistributed on | =[—2,2], where p; is of the form

1) \/ — z2dz if E does not have CM.

dz

27
1 .
%ﬁlehasCMbyMgk.
1
2

1 dz
2m /4 — 22

Yy Y]

—dp + if E has CM by M ¢ k.
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Equidistribution: Compact groups

@ Let G be a compact group and X = Conj(G).
e C(X) space of C-valued continuous class functions on G.

@ Let pg be the Haar measure of G and let ux = m.(ug), where
m: G — X = Conj(G).

Example G = SU(2) = {(jb g

) € GLy(C)|aa + bb = 1}.

» 7: SU(2) — X ~ [0, 7] sends a matrix with eigenvalues e’ e~ to 6.
» For f € C(X), we have pux(f) = [y fux = 2 [ £(0)sin® 0do.
i0
Example G = U(1) := {(eo eo,-g> NS R/27TZ} ~ X.

» For f € C(X), we have ux(f) = %foh £(6)do.
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The Sato—Tate conjecture for abelian varieties

@ Let A/k be an abelian variety of dimension g > 1.
o Consider the ¢-adic representation attached to A

o0: G — Aut(Vi(A)).

Sato—Tate conjecture for abelian varieties (Serre; mid 1990's)
There exist:

@ a compact subgroup G C USp(2g);

@ For each prime p of good reduction for A, an x, € Conj(G) s.t.

Charpoly(x,) = Charpoly <M) ;

Vv N(p)

such that the sequence {x,}, is equidistributed on X = Conj(G) w.r.t the
push forward of the Haar measure of G.

@ Moreover, Serre constructs a candidate ST(A) for G. For g < 3,
Banaszak and Kedlaya define it purely in terms of endomorphisms.
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Equidistribution: Moments
e Example: For an elliptic curve E, there are three options for ST(E):
» SU(2) if E does not have CM.
» U(1) if E has CM by M C k.

> Nsyg)(U(1)) = <U(1), (_01 (1))> if £ has CM by M ¢ k.

Note that the map
Conj(ST(A)) — Conj(USp(2g)), x +— Charpoly(x)

is in general not injective.

The distribution of the “Charpolys” is captured by the moments.
Let G C USp(2g) be a compact subgroup. X = Conj(G).

Let x denote the character of the tautological rep. G — GLyg(C).
For integers ny,...,ng > 0, define the moment

Mnl,...,ng(G) = /me . (/\2X)nz e (/\gX)ngluG‘
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Equidistribution: Moments of SU(2)
e Note that:
May,.ng (G) = (1, x™ - (A2X)™ - -+ - (A8X)"™) € Zso.

e Example: G =SU(2).
The irreducible characters of SU(2) are

Xn(e) — Sym”(x)(G) — e—n0i+e(2—n)0i . _I_e(n—2)0i_|_en0i’ n>0.

The even moments are:

M2s(SU(2)) = (L,x*")
= <17X2” + ((21”) - ]‘)X2n—1 +eoet ((2:) - (n2—nl))1>

= (2n") - (nz_”l) = Fll(i") = n-th Catalan number.

@ The odd moments are 0.
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Sato—Tate axioms

@ From now on, let A be an abelian variety of dimension g < 3.
@ Banaszak and Kedlaya show that G = ST(A) satisfies then:

Hodge condition (ST1)

There is a homomorphism #: U(1) — G° such that 6(u) has eigenvalues u
and T each with multiplicity g. The image of such a 4 is called a Hodge
circle. Moreover, the Hodge circles generate a dense subgroup of G°.

v

(Expected in general; known if the Mumford—Tate conjecture holds for A).

Rationality condition (ST2)

For every connected component H C G and for every irreducible character
X: GLog(C) = C:

/ x(hpe € Z,
H

where pi¢ is normalized so that ug(1) =[G : GY].

(Expected in general).
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Sato—Tate axioms
Lefschetz condition (ST3)
Write E := {a € Mpz(C) |gag™ = « for all g € G°}. Then

{y € USp(2g)|yay™* = aforalla € E} = G°.

Serre condition (ST4)

Let F/k be the minimal extension such that End(Af) >~ End(Ag).
We call F the endomorphism field of A. Then

G/G° ~ Gal(F/k).

@ None of (ST3) and (ST4) are expected in general. In particular,
Mumford has constructed examples of abelian fourthfolds A with

End(Ag) =Z and  G°C USp(8).
e Up to conjugacy, 3 subgroups of USp(2) satisfy the ST axioms.
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Sato—Tate groups of abelian surfaces

e Define the Galois endomorphism type of an abelian variety A/k as the
isomorphism class of the R-algebra

End(Ag) ® R equipped with the action of Gal(F/k).

@ Example: There are three Galois types of elliptic curves. They are R,
C (both equipped with the trivial action), and C equipped with the
action of complex conjugation.

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

e Up to conjugacy, 52 subgroups of USp(4) satisfy the ST axioms. All
of them occur as ST groups of abelian surfaces over number fields.

@ 34 of them occur as ST groups of abelian surfaces over Q.

@ The ST group and the GET of an abelian surface determine each
other uniquely.
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Comments on the classification

(ST1) allows 6 possibilities for GO C USp(4) ((ST3) is redundant for g = 2).

GO End(Ag) ® R Nyspa)(G°)/G° #A
USp(4) R G 1
SU(2) x SU(2) R x R G 2
SU(2) x U(1) R x C G 2
U(1) x U(1) CxC D, 8
SU(2)2 Ma(R) 0(2) 10
U(1), M,(C) SO(3)x G 32

55

@ A = set of finite subgroups of Nysy)(G°®)/GP for which (ST2) is satisfied.

@ 3 of the groups in the case G° = U(1) x U(1) do not satisfy (ST4):

» Ais Q-isogenous to a product of abelian varieties A; with CM by M;.

» G/G% ~ Gal(F/k) ~ ] Gal(kM: /k) C G x Gy, Cy.
]

16/23



Additional facts

Remark

As G runs over the 52 groups, {M; ;(G)};; attains 52 values:
Distinct groups yield distinct distributions of charpolys.

Corollary

The degree of the endomorphism field of an abelian surface over a number
field divides 48.

v

(this refines previous results by Silverberg).

Theorem (Johansson, N. Taylor; 2014-19)

For g =2 and k = Q, the ST conjecture holds for 33 of the 34 possible
ST groups.
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Sato—Tate groups for g =3

Theorem(F.-Kedlaya-Sutherland; 2019)

Up to conjugacy, 410 subgroups of USp(6) satisfy the ST axioms. All of
them of them occur as Sato—Tate groups of abelian threefolds over
number fields.

Corollary

The degree of the endomorphism field [F : Q] of an abelian threefold over
a number field divides 192, 336, or 432.

@ This refines a previous result of Guralnick and Kedlaya, which asserts

[F:Q]|2°-3% 7 =Lecm(192,336,432).
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Classification: identity components
(ST1) and (ST3) allow 14 possibilities for G° C USp(6):

USp(6)

u(3) _

SU(2) x USp(4) Notations:

U(1) x USp(4) e For d e {1,3}:

U(1) x SU(2) x SU(2) -

SU(2) x U(1) x U(1) U(d) = {(0 n) u € U(d)sm}
SU(2) x SU(2),

SU(2) x U(1). e For d € {2,3} and H € {SU(2),U(1)}:

U(1) x SU(2)

= {diag(u,.9.,u) |u
. Hy = {diag(u. . u) v € H)

SU(2) x SU(2) x SU(2) @ Note in particular that

U(1) x U(1) x U(1) SU(2) x U(1)» ~ U(1) x SU(2)».
SU(2)s

U(1)s
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Classification: From G°% to G

GO End(Ag) ® R Nusp(e)(G°)/G°  #A
USp(6) R G 1
u(3) C G 2
SU(2) x USp(4) R xR G 1
U(1) x USp(4) CxR G 2
U(1) x SU(2) x SU(2) CxRxR G x G 5
SU(2) x U(1) x U(1) RxCxC D, 8
SU(2) x SU(2)2 R x My(R) 0(2) 10
SU(2) ( ) R x My(C) SO(B)x G 32
U(l) ( ) C x MQ(C) C2 X 50(3) X C2 122
SU(2) x SU(2) x SU(2) RxRxR S3 4
U(1) x U(1) x U(1) CxCxC (GxGxG)xS 33
SU(2)s Ms(R) s0(3) 11
U(1); M3(C) PSU(3) x & 171

A = set of finite subgroups of Nysp(e)(G®)/G® for which (ST2) is satisfied.
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Classification: The 23 spurious groups and invariants

e For G% =SU(2) x U(1) x U(1):
As in the case g = 2, only 5 of 8 groups in A satisfy (ST4).
e For G%=U(1) x U(1) x U(1):
Only 13 of the 33 subgroups in A satisfy (ST4). Indeed:
» A is isogenous to a product of abelian varieties A; with CM by M;.
» G/G° ~ Gal(F/k) ~ [T Gal(kM} /k) C G x G x G, G X Gy, G.
@ This leaves 433-20-3=410 groups, of which 33 are maximal
(w.r.t finite inclusions).
@ As G runs over the 410 groups, the sequence {M; «(G)};j « attains
409 values. It only conflates a pair of groups Gi, Gy, for which

however
G1/GY ~ (54,5) 2 (54,8) ~ G,/GY.

@ Any possible order of G/GO divides 192, 336, or 432.

] 22/23



Realization

o It suffices to realize the 33 maximal groups (for prescribed G°).
Finite index subgroups are realized by base change.

@ For 8 of the 14 possibilities for G2, the maximal groups are of the
form G ~ Gy x Gy where G; and Gy are realizable in dimensions 1
and 2. This accounts for 13 maximal groups.

e USp(6): generic case. Eg.: y?> = x" — x4+ 1/Q.

e N(U(3)): Picard curves. Eg.: y® = x* 4+ x +1/Q.

e G%=SU(2) x SU(2) x SU(2) (1. max. group): Res@(E), where L/Q
a non-normal cubic and E/L e.c. which is not a Q-curve.

e G%=U(1) x U(1) x U(1) (3 max. groups):
Products of CM abelian varieties.

e G°%=SU(2)3 (2 max. groups): Twists of cubes of non CM e.c.

e G°%=U(1); (12 max. groups): Twists of cubes of CM elliptic curves.
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