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1. Preliminaries: elliptic curves and Hom(E, E")

Elliptic curve E over a field k: projective curve of genus 1
with a rational point O.

Riemann-Roch gives functions x,y € k(E) regular except for
double and triple poles at O. They generate k(F) and satisfy
(extended) Weierstrass equation

y2—I—alxy+a3y=ac3—|—a2x2—|—a4:c—l-a6 =0
[sic: a;, xz,y of weight 7,2, 3] for some a; € k. Conversely, given
a; With A = A(aq,ao,a3,a4,ag) We get an elliptic curve.
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if j(F) = j(E") then E £ E' over k. [*“The j-line is a coarse
moduli space for elliptic curves.” |
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Elliptic curve E over a field k: projective curve of genus 1
with a rational point O.

Riemann-Roch gives functions x,y € k(E) regular except for
double and triple poles at O. They generate k(F) and satisfy
(extended) Weierstrass equation

y2—I—alxy+a3y=:c3—|—a2x2—|—a4:c—l-a6 =0
[sic: a;, xz,y of weight 7,2, 3] for some a; € k. Conversely, given
a; With A = A(aq,ao,a3,a4,ag) We get an elliptic curve.

Different choices of x,y give various a; but same j-invariant
j = CE/A, where ¢cqg = (a%—|—4a2)2—24(a1a3—|—2a4). Conversely
if j(F) = j(E") then E £ E' over k. [*“The j-line is a coarse
moduli space for elliptic curves.” |

If 6 =0 in kK we can assume a; = a» = a3z = 0, and then
j=4-123a3/(4a3 + 27a2). [For future use: ag =0« j =0,
and ag =0« j = 1728.] 1



An elliptic curve has a commutative group law: an algebraic
map Ex FE — E, (P,Q) — P+ @ satisfying the axioms of
an abelian group with origin O. It is characterized by the
property that P+ Q + R = O iff (P) 4+ (Q) + (R) ~ 3(0). If
k C C then E(C) = C/A for some lattice A C C, and then
the group law is consistent with addition in C/A.



An elliptic curve has a commutative group law: an algebraic
map Ex FE — E, (P,Q) — P+ @ satisfying the axioms of
an abelian group with origin O. It is characterized by the
property that P+ Q + R = O iff (P) 4+ (Q) + (R) ~ 3(0). If
k C C then E(C) = C/A for some lattice A C C, and then
the group law is consistent with addition in C/A.

We study mathematical structures via maps between them
that respect the structure. Here this means isogenies. An
iIsogeny between elliptic curves E,E’/k IS an algebraic map ¢ :
E — E' such that ¢(P4+Q) = ¢(P)+¢(Q) holds identically for
P,QQ € E. Remarkably this condition holds for any algebraic
map s.t. ¢(Og) = Opg. (SO this framework accommodates
classical work of Fermat, Euler, ... on descents etc.)

For example, if E = C/A and E/ = C/A\ then ¢ must be of
the form z — cyz for some ¢, such that cyA C A



Given E and E’, the isogenies ¢ : E — E’ themselves form
an abelian group, denoted Hom(E,E"). We allow ¢ to be
defined over any algebraic extension of k. This group comes
with a degree map deg : Hom(E, E') — Z which is a positive-
definite quadratic form. In the complex case, if £ = C/A
and E' = C/N\ then deg(¢) = [N\ : c4/\] for nonzero ¢. [This
quadratic form is also an example of the canonical height on
an elliptic surface, but that's for another VaNTAGe series.]
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an abelian group, denoted Hom(E,E"). We allow ¢ to be
defined over any algebraic extension of k. This group comes
with a degree map deg : Hom(E, E') — Z which is a positive-
definite quadratic form. In the complex case, if £ = C/A
and E' = C/N\ then deg(¢) = [N\ : c4/\] for nonzero ¢. [This
quadratic form is also an example of the canonical height on
an elliptic surface, but that's for another VaNTAGe series.]

In the special case E/ = E we obtain the group Hom(E, E)
of isogenies from E to itself, which has additional structure
because such isogenies are closed also under composition.
This gives Hom(FE, E) the structure of a ring, called the
endomorphism ring End(E); the product of ¢1,¢> € End(FE)
IS the composition ¢1 o ¢o. The identity map 1p : E — E
is the unit of End(E). The remainder of these Preliminar-
ies describes the classification of elliptic curves E/k by their
endomorphism rings End(F).



The map End(E) — k. An isogeny ¢ : E — E’ defined over
some field k1 O k induces a map between the one-dim. Lie al-
gebras of E, E’, and pulls back to a map between the one-dim.
spaces of holo. diffs. on E/ and E. For E/ = E either of these
constructions associates to ¢ the same element of k1, and
gives a canonical ring homomorphism p : Endg. (E) — k1.
Then kerp is the two-sided ideal of inseparable isogenies.




The map End(E) — k. An isogeny ¢ : E — E’ defined over
some field k1 O k induces a map between the one-dim. Lie al-
gebras of E, E/, and pulls back to a map between the one-dim.
spaces of holo. diffs. on E’ and E. For E/ = E either of these
constructions associates to ¢ the same element of k;, and
gives a canonical ring homomorphism p : Endg, (E) — k3.
Then kerp is the two-sided ideal of inseparable isogenies.

In char. zero kerp = {0}, whence Endg, < k1, and in par-
ticular End(FE) is a commutative ring. Putting k& (or at least
Q(aq,a5,a35,a4,a5)) in C, we get End(E) — C with

p(d) =cg5  degp=[A:cyN] = |¢cl?
for all ¢ € End(FE). Since deg¢ € Z we conclude that either
End(E) = Z or End(FE) is a quadratic imaginary ring O_p =
Z[5(D++/=D)]. The former case is ordinary; the latter, CM
(complex multiplication). The beautiful theory of CM curves
(and higher ab.vars.), and their moduli, is the main theme of
this VaNTAGe series; we'll need only a small taste of it here.
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In char. p > 0 there can be inseparable isogenies ¢ = 0 and
noncommutative End(E). For example, assume char(k) #£ 2,
and let E : y?2 = 23 — z over a field that contains i = /—1.
Then End(FE) contains ¢ : (x,y) — (—z,iy) with p(¢) = i (be-
cause dx/y pulls back to d(—z)/(iy) = idx/y). There's also
the Frobenius isogeny F : (z,y) — (xP,yP), with p(F) = 0.
Then Fi = (_?1)7:}7, so End(E) does not commute if p =
3 mod 4.

Exercise: What happens for y2 = 23 —1 and (z,v) — ({32, y)7?



In char. p > 0 there can be inseparable isogenies ¢ = 0 and
noncommutative End(E). For example, assume char(k) #£ 2,
and let E : y?2 = 23 — z over a field that contains i = /—1.
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In general, in char. p > 0 the Z-rank of End(FE) can be 1, 2,
or 4. The first case, equivalent to End(FE) = Z, happens iff j
is not in any finite field; that is, iff j ¢ F,. If j € F, then usually
End(E) = O_p for some D, but there is a finite number of
values of 7, all in Fpg, for which End(FE) has rank 4. The curve
FE is said to be ordinary in the former case, supersingular in
the latter.

[INB such curves do not have geometric singularities . . .|



Why does j € F, imply End(E) # Z? If j € F, then we
can choose aq,ay,a3,a,4,ag iNn some finite field F,, so again
End(FE) contains Fy : (z,y) — (z%,y?). Usually that's enough
because Fy ¢ Z. For instance, degn = n2 for n € Z, while
deg Fy; = q, so if ¢ = p© with e odd then we're done. Curiously,
if ¢ is a square then F, = 4+¢!/2 is possible — but then E is
supersingular!
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End(FE) contains Fy : (z,y) — (z%,y?). Usually that's enough
because Fy ¢ Z. For instance, degn = n2 for n € Z, while
deg Fy; = q, so if ¢ = p© with e odd then we're done. Curiously,
if ¢ is a square then F, = 4+¢!/2 is possible — but then E is
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The general situation is described by Deuring (1941). Sup-
pose j € F,. Then:

If & is ordinary, End(FE) is an order in some imag.quad.field

QGK/—D) in which p splits, say p = pp, with p(¢) = ¢ mod p
and (F') = p¢. In this case (EF,End(F)) lifts to a CM curve

over Q.

In supersingular case, ...



If E is supersingular then End(FE) is a maximal order in the
quaternion algebra Ap . Every ¢ € End(E) is either in Z
or generates an order in some QG/—D) in which p is inert
or ramified; if ¢ ¢ Z then (E,¢) again lifts to a CM curve
over Q, but this time infinitely many different curves arise
this way. Here p takes values in Fpg, and some power of Fjy
is in Z.



If E is supersingular then End(FE) is a maximal order in the
quaternion algebra Ap~. Every ¢ € End(E) is either in Z
or generates an order in some QG/—D) in which p is inert
or ramified; if ¢ € Z then (FE,¢) again lifts to a CM curve
over Q, but this time infinitely many different curves arise
this way. Here p takes values in Fp2, and some power of Fjy
is in Z.

Going the other way, if £ is a CM curve over some number
field K, with CM field End(E) ®7 Q = Q(/—D), then j = j,
is an algebraic integer. Thus for any prime p of K above p
we have a reduction j modp. If E is an elliptic curve with
that j-invariant over the fraction field, then E is ordinary if
p splits in Q(/—D), and supersingular if not.

Example (=D = —4): a curve in char. p with 7 = 1728 is
supersingular iff p =3 mod 4 (or p = 2, as with y2 +y = z3).

7



What if we start from two different CM invariants 34, 5o, say
0 and —147197952000 (with —D = —3 and —67), and work
in a field k of char. p where 51 = jo, i.e. modulo a factor p of
j1 — j2? Then there's a curve E/k for which End(E) accom-
modates both O_D1 and O_DQ. So E must be supersingular,
and moreover p can't be too large — turns out that p must
divide (D1Do—x2)/4 for some z, so in particular p < D1 D5 /4.

Gross and Zagier (Crelle 355 (1984), 191—-220) figured out
the exact prime factorization of [Nm(j — j/)|. For example,
147197952000 = 2153353113 = 52803. Amusing conse-
quence: 1 mile = e”\/6_7/3 feet 4+ about 0.27 microns.

[Why ¢™672 The curve C/A is CM iff A = Zwi @ Zwo With
T = wo/wy iMag.quadratic. Also j = ¢! 4 744 + O(¢) with
gq=e2"T: now 7 = (1 ++/—67)/2 =g = —e~™V6T uetc ]



Further facts about supersingular curves:

o If ¢ = p°© then E/F, is supersingular iff |E(F;)| =1 mod p. In
particular if e=1 (i.e. ¢ =p) and p > 5 then |E/F,| = q+ 1.

e The number of supersing. j-invariants in E > is p/124+0(1);
more precisely, [p/12]| 4+ 6 where § = 0 unless p = +1 mod 12
in which case § = F1. Of those, O(p!/21€) are in E,; for p > 2
the number of supersingular j € F, is %(H(—p) + H(—4p))
[note H(—p) =0 if p=1 mod 4]. Table:

p |2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Np2 1111 2 1 2 2 3 3 3 3 4 4 5
Npil 111 2 1 2 2 3 3 3 1 4 2 5

(You may recognize N, also as 1 + g(Xo(p)), and N, also as

% the number of fixed points of wp. It may not look like
Np = O(sz), but soon ...e.g. forp =971,977,983,991,997
the counts are 30,10,27,17,7 out of 82,82,83,83,83.)
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2. Primes of supersingular reduction

Now fix a curve E over Q (or more generally over some num-
ber field K). At all but finitely many primes p (or p), we can
reduce E to get an elliptic curve E over the residue field with
j(E) = j(E) mod p (or mod p). Since j(E) is in a finite field,
E is at least CM. How often is E supersingular?

10



2. Primes of supersingular reduction

Now fix a curve E over Q (or more generally over some num-
ber field K). At all but finitely many primes p (or p), we can
reduce E to get an elliptic curve E over the residue field with
j(E) = j(E) mod p (or mod p). Since j(E) is in a finite field,
E is at least CM. How often is E supersingular?

Some easy observations:

e Except for finitely many primes this depends only on the
rational (or algebraic) number j.

e If F is already CM then we know FE is supersingular iff the
residue characteristic p is not split in the CM field. This
happens for 1/2 of primes p by Cebotarev; the infinitude of
such p is elementary, a la Euclid. For example, if j = 1728
(e.g. if Eis y2 = 23 — ), we need p = —1 mod 4, so factor
(4TI ; p;) — 1, etc.

But what if £ is ordinary? 10



What do we expect?

Over Q, a “random’” E mod p is supersingular with probability
about Cp~1/2 on average. So the number of such primes

p < x, call it mg(x, F¥), should be asymptotic to

C Z p_1/2 ~ C'n(x)/\/x ~ Cl$1/2/ log .
psw
This is the Lang-Trotter conjecture, with C’ replaced by some
other Cr > 0 to account for the Galois structure of the
torsion points of E. (E.g., if E has a rational 2-torsion point
then #(E(Fp)) is even, and thus likelier to equal p+ 1.)
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What do we expect?

Over Q, a “random’” E mod p is supersingular with probability
about Cp~1/2 on average. So the number of such primes
p < x, call it mg(x, F¥), should be asymptotic to

C Z p_1/2 ~ C'n(x)/\/x ~ Cl$1/2/ log x.
p<x

This is the Lang-Trotter conjecture, with C’ replaced by some
other Cr > 0 to account for the Galois structure of the
torsion points of E. (E.g., if E has a rational 2-torsion point
then #(E(Fp)) is even, and thus likelier to equal p+ 1.)

This does seem roughly consistent with experiment; e.g. for
E =X1(11) : y2 4+ y = 23 — 22 the supersingular primes are

2, 19, 29, 199, 569, 809,
1289, 1439, 2539, 3319, 3559, 3919, 5519, 9419, 9539, 9929,

then 26 primes in [10%,10°], 57 primes in [10°,10°], “etc.”
11



What about FE/K for a general number field K7

Depends on the exponent f in Nm(p) = p/. Write

[K:Q]
mo(z, E) = Y mo(x, E, f),

f=1
where wg(x, E, f) is the number of supersingular p of norm
< zx such that the residue field has degree f over the prime
field. With finitely many exceptions, j, generates the residue
field, so mg(x, E,f) = O(1) for each f > 2. For f = 1 we
expect ~ C 121/2/log x as before — by Cebotarev a positive
proportion of primes has f = 1. As for f = 2, a random
j € F 2 is supersingular with probability about 1/(12p), so we
expect mo(z, E,2) ~ Cgo3 <z 1/p and >« 1/p ~ loglogx.
So there should also be infinitely many supersingular primes
of norm p?, but very sparse.

12



What can we prove?

If £ is not CM then certainly mg(x, E) = o(w(x)), by applying
Cebotarev to the torsion field K(E[N!]) and letting N — oo.
The upper bound on wg(x, E) /7 (x) decays very slowly, though
Serre used sieve methods to show prove mg(z, E) = O(z3/%)
conditional on GRH for K(E[N!]).

This is not special to *trace zero”: for each fixed t € Z we
can get a similar upper bound on #{p <z : |[E/Fp| = p+1—t}
(and likewise for general K).

The t = 0 case is special for lower bounds, though. We
noted already that ¢ must be even if £ has a 2-torsion point;
moreover if E is the CM curve y2 = 23 — x then ¢t = +2 gives
p=n?+ 1 and that's a famous open problem.

Until 1986, the ¢t = 0 question was open too. ..

13



Theorem. [NDE 1986, 1987] Every E/Q has infinitely many
supersingular primes. More generally, if E is defined over a
number field and jr has a real conjugate then E has infinitely
many supersingular primes.

Idea: Force EEmod p to be supersingular by making j, con-
gruent mod p to a CM j-invariant j_, (so p is a factor of the
numerator of Nm(j, —j_p)) with p not split in Q(v/—D).

Example: Let E = X1(11) again. Then j, = —212/11. Try
D = —67. Calculate

212 1619177467904 212395306999
Jp—i-67 = 17 +5280% = 11 - 11 ’

and the prime 395306999 is inert in Q(/—67) so it is a super-
singular prime for E.

Problem: How to ensure at least one new supersingular prime
factor of Nm(j, —j_p)7

14



As in Euclid’s proof, we have a finite list p1,...,pn Of primes to
avoid, here the primes of bad reduction and the supersingular
primes we already know. We avoid them by choosing D so
that each p; does split in QG/—D).

As in the Euclid variation for p = —1 mod 4, we ensure that
at least one prime factor of Nm(j, —j_p) does not split in
QG/—D) by arranging that the numerator of Nm(j, —j_p)
does not have x_p, = +1.

15



As in Euclid’s proof, we have a finite list p1,...,pn Of primes to
avoid, here the primes of bad reduction and the supersingular
primes we already know. We avoid them by choosing D so
that each p; does split in QG/—D).

As in the Euclid variation for p = —1 mod 4, we ensure that
at least one prime factor of Nm(j, —j_p) does not split in
QG/—D) by arranging that the numerator of Nm(j, —j_p)
does not have x_p, = +1.

Fortunately, for each odd prime factor [ of D the minimal
polynomial P_p of j_p is either a square or X — 1728 times
a square mod [. The unpaired factor X — 1728 arises iff
D =1 or D = 4]. [This is shown using arguments similar
to the upper bound on factors of Nm(j_D—j_D,).] Example:
P_53(X) = (X —1728)(X 4+ 4)2 mod 23.
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It remains to control the sign of P_p(j,). For j, € Q we use
P_;P_4;, which has one large positive root j(/—1) and one
large negative root j(%(l—l—\/—_l)). Dirichlet’s theorem provide
infinitely many [ = —1 mod 4 such that each x_;(p;) = +1. A
sufficiently large one makes P_;(j;)P_4;(jz) < 0, and we're
soon done.
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Mazur asked: what about other number fields?
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It remains to control the sign of P_p(j,). For j, € Q we use
P_;P_4;, which has one large positive root j(/—1) and one
large negative root j(%(l—l—\/—_l)). Dirichlet’s theorem provide
infinitely many [ = —1 mod 4 such that each x_;(p;) = +1. A
sufficiently large one makes P_;(j;)P_4;(jz) < 0, and we're
soon done.

Mazur asked: what about other number fields?
So I've done all E/Q but only one number field . ..

If [Q(jz) : Q] is odd, so j, has an odd number of real con-
jugates, the same argument works. If the number is even
but positive, we need one more trick: instead of P_;P_,;, use
P, P, which has one large root and one that depends on
l1/l>. By Dirichlet we can choose [1/l> within e. We adjust
the ratio so exactly one factor of Nm(j, —j_p) is negative,
and proceed as before.
16



Distribution of supersingular primes

Also as with Euclid, the proof is constructive, and gives effec-
tive lower bounds on Np(z, E), but these bounds grow very
slowly — much worse even than the loglogx from Euclid.
Even under GRH (more precisely, ERH for quadratic charac-
ters) the best lower bounds we have are Ng(z, E) > loglogx
for all x and Ng(xzn, E) > log,, for an infinite sequence of x,.

Curiously, this approach also gives an upper bound: we get
No(z, E) < g z3/* unconditionally for all non-CM curves E.

17



.-and if jp has no real conjugates?

For many totally complex j, we can still prove infinitely many
supersingular primes using P_;(j;): all that's needed is a
suitable factor of the numeratorof j, — 1728. But there are
some E for which Ng(x, E) should grow much more slowly,
because we can prove Ng(z, E,1) = O(1) so Ngo(x, E,2) is our
only hope.

18



.-and if jp has no real conjugates?

For many totally complex j, we can still prove infinitely many
supersingular primes using P_;(j;): all that's needed is a
suitable factor of the numeratorof j, — 1728. But there are
some E for which Ng(x, E) should grow much more slowly,
because we can prove Ng(z, E,1) = O(1) so Ngo(x, E,2) is our
only hope.

Say that j € Q(7) and E has a torsion group of order 4; for
example, E : y? = 23 4+ (2i — 4)z° 4 4z, so jp = 214/(i — 4),
and (x,y) = (2,2i+2) is a 4-torsion point. If rational prime p
is pp in Q(i) then p+ 1 = 2 mod 4, so neither E mod p nor
E mod p can be supersingular. So any supersingular p must
be —1 mod 4; computation shows no such p < 10°. Likewise
for £/Q(G/—3) with a 3-torsion point, “etc.”

But there are still many cases where Cr > 0 but we have no
proof of Ng(z, E) — oo.

18



3. Further variations
To apply this technique in other contexts, we need:
A moduli space, such as the j-line X(1);

An infinite family of subvarieties of codimension one, gener-
alizing P_p = 0;

And some luck in being able to arrange for x(...) = +1.
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More 1-dim. examples: some complex points on Xg(p)/w
(David Jao, 2003); rational points on some Shimura curves

(Marat Sadykov, 2004). New ingredient: Hecke's angular
equidistribution theorem.
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3. Further variations
To apply this technique in other contexts, we need:
A moduli space, such as the j-line X(1);

An infinite family of subvarieties of codimension one, gener-
alizing P_p = 0;

And some luck in being able to arrange for x(...) = +1.

More 1-dim. examples: some complex points on Xg(p)/w
(David Jao, 2003); rational points on some Shimura curves
(Marat Sadykov, 2004). New ingredient: Hecke's angular
equidistribution theorem.

Also, examples of Drinfeld modules with no supersingular
reductions (even for f > 1; Bjorn Poonen, 1997).

Higher dimensions? Maybe stay tuned for the rest of
VaNTAGe X. ..
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THE END
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