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1. Preliminaries: elliptic curves and Hom(E,E′)

Elliptic curve E over a field k: projective curve of genus 1
with a rational point O.

Riemann-Roch gives functions x, y ∈ k(E) regular except for
double and triple poles at O. They generate k(E) and satisfy
(extended) Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 = 0

[sic: ai, x, y of weight i,2,3] for some ai ∈ k. Conversely, given
ai with ∆ = ∆(a1, a2, a3, a4, a6) we get an elliptic curve.

Different choices of x, y give various ai but same j-invariant
j = c34/∆, where c4 = (a2

1+4a2)2−24(a1a3+2a4). Conversely
if j(E) = j(E′) then E ∼= E′ over k̄. [“The j-line is a coarse
moduli space for elliptic curves.”]

If 6 6= 0 in k we can assume a1 = a2 = a3 = 0, and then
j = 4 · 123a3

4/(4a3
4 + 27a2

6). [For future use: a4 = 0⇔ j = 0,
and a6 = 0⇔ j = 1728.] 1
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An elliptic curve has a commutative group law: an algebraic

map E × E → E, (P,Q) 7→ P + Q satisfying the axioms of

an abelian group with origin O. It is characterized by the

property that P + Q + R = O iff (P ) + (Q) + (R) ∼ 3(O). If

k ⊆ C then E(C) ∼= C/Λ for some lattice Λ ⊂ C, and then

the group law is consistent with addition in C/Λ.

We study mathematical structures via maps between them

that respect the structure. Here this means isogenies. An

isogeny between elliptic curves E,E′/k is an algebraic map φ :

E → E′ such that φ(P+Q) = φ(P )+φ(Q) holds identically for

P,Q ∈ E. Remarkably this condition holds for any algebraic

map s.t. φ(OE) = OE′. (So this framework accommodates

classical work of Fermat, Euler, . . . on descents etc.)

For example, if E = C/Λ and E′ = C/Λ′ then φ must be of

the form z 7→ cφz for some cφ such that cφΛ ⊆ Λ′.
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Given E and E′, the isogenies φ : E → E′ themselves form

an abelian group, denoted Hom(E,E′). We allow φ to be

defined over any algebraic extension of k. This group comes

with a degree map deg : Hom(E,E′)→ Z which is a positive-

definite quadratic form. In the complex case, if E = C/Λ

and E′ = C/Λ′ then deg(φ) = [Λ′ : cφΛ] for nonzero φ. [This

quadratic form is also an example of the canonical height on

an elliptic surface, but that’s for another VaNTAGe series.]

In the special case E′ = E we obtain the group Hom(E,E)

of isogenies from E to itself, which has additional structure

because such isogenies are closed also under composition.

This gives Hom(E,E) the structure of a ring, called the

endomorphism ring End(E); the product of φ1, φ2 ∈ End(E)

is the composition φ1 ◦ φ2. The identity map 1E : E → E

is the unit of End(E). The remainder of these Preliminar-

ies describes the classification of elliptic curves E/k by their

endomorphism rings End(E).
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The map End(E)→ k̄. An isogeny φ : E → E′ defined over
some field k1 ⊇ k induces a map between the one-dim. Lie al-
gebras of E,E′, and pulls back to a map between the one-dim.
spaces of holo. diffs. on E′ and E. For E′ = E either of these
constructions associates to φ the same element of k1, and
gives a canonical ring homomorphism ρ : Endk1

(E) → k1.
Then ker ρ is the two-sided ideal of inseparable isogenies.

In char. zero ker ρ = {0}, whence Endk1
↪→ k1, and in par-

ticular End(E) is a commutative ring. Putting k (or at least
Q(a1, a2, a3, a4, a6)) in C, we get End(E) ↪→ C with

ρ(φ) = cφ, degφ = [Λ : cφΛ] = |φc|2

for all φ ∈ End(E). Since degφ ∈ Z we conclude that either
End(E) = Z or End(E) is a quadratic imaginary ring O−D =
Z[1

2(D+
√
−D)]. The former case is ordinary ; the latter, CM

(complex multiplication). The beautiful theory of CM curves
(and higher ab.vars.), and their moduli, is the main theme of
this VaNTAGe series; we’ll need only a small taste of it here.
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In char. p > 0 there can be inseparable isogenies φ 6= 0 and
noncommutative End(E). For example, assume char(k) 6= 2,
and let E : y2 = x3 − x over a field that contains i =

√
−1.

Then End(E) contains φ : (x, y) 7→ (−x, iy) with ρ(φ) = i (be-
cause dx/y pulls back to d(−x)/(iy) = i dx/y). There’s also
the Frobenius isogeny F : (x, y) 7→ (xp, yp), with ρ(F ) = 0.
Then Fi = (−1

p )iF , so End(E) does not commute if p ≡
3 mod 4.

Exercise: What happens for y2 = x3−1 and (x, y) 7→ (ζ3x, y)?

In general, in char. p > 0 the Z-rank of End(E) can be 1, 2,
or 4. The first case, equivalent to End(E) = Z, happens iff j

is not in any finite field; that is, iff j /∈ Fp. If j ∈ Fp then usually
End(E) ∼= O−D for some D, but there is a finite number of
values of j, all in Fp2, for which End(E) has rank 4. The curve
E is said to be ordinary in the former case, supersingular in
the latter.

[NB such curves do not have geometric singularities . . . ]
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Why does j ∈ Fp imply End(E) 6= Z? If j ∈ Fp then we

can choose a1, a2, a3, a4, a6 in some finite field Fq, so again

End(E) contains Fq : (x, y) 7→ (xq, yq). Usually that’s enough

because Fq /∈ Z. For instance, degn = n2 for n ∈ Z, while

degFq = q, so if q = pe with e odd then we’re done. Curiously,

if q is a square then Fq = ±q1/2 is possible — but then E is

supersingular!

The general situation is described by Deuring (1941). Sup-

pose j ∈ Fp. Then:

If E is ordinary, End(E) is an order in some imag.quad.field

Q(
√
−D) in which p splits, say p = pp, with ρ(φ) = φ mod p

and (F ) = pe. In this case (E,End(E)) lifts to a CM curve

over Q.

In supersingular case, . . .
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If E is supersingular then End(E) is a maximal order in the

quaternion algebra Ap,∞. Every φ ∈ End(E) is either in Z

or generates an order in some Q(
√
−D) in which p is inert

or ramified; if φ /∈ Z then (E, φ) again lifts to a CM curve

over Q, but this time infinitely many different curves arise

this way. Here ρ takes values in Fp2, and some power of Fq
is in Z.

Going the other way, if E is a CM curve over some number

field K, with CM field End(E)⊗Z Q = Q(
√
−D), then j = jE

is an algebraic integer. Thus for any prime p of K above p

we have a reduction j mod p. If Ē is an elliptic curve with

that j-invariant over the fraction field, then Ē is ordinary if

p splits in Q(
√
−D), and supersingular if not.

Example (−D = −4): a curve in char. p with j = 1728 is

supersingular iff p ≡ 3 mod 4 (or p = 2, as with y2 + y = x3).
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that j-invariant over the fraction field, then Ē is ordinary if
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What if we start from two different CM invariants j1, j2, say

0 and −147197952000 (with −D = −3 and −67), and work

in a field k of char. p where j1 = j2, i.e. modulo a factor p of

j1− j2? Then there’s a curve E/k for which End(E) accom-

modates both O−D1
and O−D2

. So E must be supersingular,

and moreover p can’t be too large — turns out that p must

divide (D1D2−x2)/4 for some x, so in particular p ≤ D1D2/4.

Gross and Zagier (Crelle 355 (1984), 191–220) figured out

the exact prime factorization of
∣∣Nm(j − j′)

∣∣. For example,

147197952000 = 2153353113 = 52803. Amusing conse-

quence: 1 mile = eπ
√

67/3 feet + about 0.27 microns.

[Why eπ
√

67? The curve C/Λ is CM iff Λ = Zω1 ⊕ Zω2 with

τ := ω2/ω1 imag.quadratic. Also j = q−1 + 744 + O(q) with

q = e2πiτ ; now τ = (1 +
√
−67)/2 =⇒ q = −e−π

√
67, “etc.”]
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Further facts about supersingular curves:

• If q = pe then E/Fq is supersingular iff |E(Fq)| ≡ 1 mod p. In

particular if e = 1 (i.e. q = p) and p ≥ 5 then |E/Fq| = q + 1.

• The number of supersing. j-invariants in Fp2 is p/12+O(1);

more precisely, dp/12e+ δ where δ = 0 unless p ≡ ±1 mod 12

in which case δ = ∓1. Of those, O(p1/2+ε) are in Fp; for p > 2

the number of supersingular j ∈ Fp is 1
2(H(−p) + H(−4p))

[note H(−p) = 0 if p ≡ 1 mod 4]. Table:

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 · · ·
N
p2 1 1 1 1 2 1 2 2 3 3 3 3 4 4 5 · · ·

Np 1 1 1 1 2 1 2 2 3 3 3 1 4 2 5 · · ·

(You may recognize Np2 also as 1 + g(X0(p)), and Np also as
1
2 the number of fixed points of wp. It may not look like

Np = o(Np2), but soon . . . e.g. for p = 971,977,983,991,997

the counts are 30,10,27,17,7 out of 82,82,83,83,83.)
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2. Primes of supersingular reduction

Now fix a curve E over Q (or more generally over some num-
ber field K). At all but finitely many primes p (or p), we can
reduce E to get an elliptic curve Ē over the residue field with
j(Ē) ≡ j(E) mod p (or mod p). Since j(Ē) is in a finite field,
Ē is at least CM. How often is Ē supersingular?

Some easy observations:

• Except for finitely many primes this depends only on the
rational (or algebraic) number jE.

• If E is already CM then we know Ē is supersingular iff the
residue characteristic p is not split in the CM field. This
happens for 1/2 of primes p by Čebotarev; the infinitude of
such p is elementary, à la Euclid. For example, if j = 1728
(e.g. if E is y2 = x3 − x), we need p ≡ −1 mod 4, so factor
(4
∏N
i=1 pi)− 1, etc.

But what if E is ordinary? 10
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What do we expect?

Over Q, a “random” Ē mod p is supersingular with probability
about Cp−1/2 on average. So the number of such primes
p ≤ x, call it π0(x,E), should be asymptotic to

C
∑
p≤x

p−1/2 ∼ C′π(x)/
√
x ∼ C′x1/2/ logx.

This is the Lang-Trotter conjecture, with C′ replaced by some
other CE > 0 to account for the Galois structure of the
torsion points of E. (E.g., if E has a rational 2-torsion point
then #(Ē(Fp)) is even, and thus likelier to equal p+ 1.)

This does seem roughly consistent with experiment; e.g. for
E = X1(11) : y2 + y = x3 − x2 the supersingular primes are

2, 19, 29, 199, 569, 809,
1289, 1439, 2539, 3319, 3559, 3919, 5519, 9419, 9539, 9929,

then 26 primes in [104,105], 57 primes in [105,106], “etc.”
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What about E/K for a general number field K?

Depends on the exponent f in Nm(p) = pf . Write

π0(x,E) =
[K:Q]∑
f=1

π0(x,E, f),

where π0(x,E, f) is the number of supersingular p of norm

≤ x such that the residue field has degree f over the prime

field. With finitely many exceptions, jE generates the residue

field, so π0(x,E, f) = O(1) for each f > 2. For f = 1 we

expect ∼ CE,1x1/2/ logx as before — by Čebotarev a positive

proportion of primes has f = 1. As for f = 2, a random

j ∈ Fp2 is supersingular with probability about 1/(12p), so we

expect π0(x,E,2) ∼ CE,2
∑
p≤x 1/p and

∑
p≤x 1/p ∼ log logx.

So there should also be infinitely many supersingular primes

of norm p2, but very sparse.
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What can we prove?

If E is not CM then certainly π0(x,E) = o(π(x)), by applying

Čebotarev to the torsion field K(E[N !]) and letting N →∞.

The upper bound on π0(x,E)/π(x) decays very slowly, though

Serre used sieve methods to show prove π0(x,E) = O(x3/4)

conditional on GRH for K(E[N !]).

This is not special to “trace zero”: for each fixed t ∈ Z we

can get a similar upper bound on #{p ≤ x : |E/Fp| = p+1−t}
(and likewise for general K).

The t = 0 case is special for lower bounds, though. We

noted already that t must be even if E has a 2-torsion point;

moreover if E is the CM curve y2 = x3− x then t = ±2 gives

p = n2 + 1 and that’s a famous open problem.

Until 1986, the t = 0 question was open too. . .
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Theorem. [NDE 1986, 1987] Every E/Q has infinitely many

supersingular primes. More generally, if E is defined over a

number field and jE has a real conjugate then E has infinitely

many supersingular primes.

Idea: Force E mod p to be supersingular by making jE con-

gruent mod p to a CM j-invariant j−D (so p is a factor of the

numerator of Nm(jE − j−D)) with p not split in Q(
√
−D).

Example: Let E = X1(11) again. Then jE = −212/11. Try

D = −67. Calculate

jE − j−67 = −
212

11
+52803 =

1619177467904

11
=

212395306999

11
,

and the prime 395306999 is inert in Q(
√
−67) so it is a super-

singular prime for E.

Problem: How to ensure at least one new supersingular prime

factor of Nm(jE − j−D)?

14



As in Euclid’s proof, we have a finite list p1, . . . , pn of primes to

avoid, here the primes of bad reduction and the supersingular

primes we already know. We avoid them by choosing D so

that each pi does split in Q(
√
−D).

As in the Euclid variation for p ≡ −1 mod 4, we ensure that

at least one prime factor of Nm(jE − j−D) does not split in

Q(
√
−D) by arranging that the numerator of Nm(jE − j−D)

does not have χ−D = +1.

Fortunately, for each odd prime factor l of D the minimal

polynomial P−D of j−D is either a square or X − 1728 times

a square mod l. The unpaired factor X − 1728 arises iff

D = l or D = 4l. [This is shown using arguments similar

to the upper bound on factors of Nm(j−D− j−D′).] Example:

P−23(X) ≡ (X − 1728)(X + 4)2 mod 23.
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It remains to control the sign of P−D(jE). For jE ∈ Q we use

P−lP−4l, which has one large positive root j(
√
−l ) and one

large negative root j(1
2(1+

√
−l)). Dirichlet’s theorem provide

infinitely many l ≡ −1 mod 4 such that each χ−l(pi) = +1. A

sufficiently large one makes P−l(jE)P−4l(jE) < 0, and we’re

soon done.

Mazur asked: what about other number fields?

So I’ve done all E/Q but only one number field . . .

If [Q(jE) : Q] is odd, so jE has an odd number of real con-

jugates, the same argument works. If the number is even

but positive, we need one more trick: instead of P−lP−4l, use

Pl1Pl2, which has one large root and one that depends on

l1/l2. By Dirichlet we can choose l1/l2 within ε. We adjust

the ratio so exactly one factor of Nm(jE − j−D) is negative,

and proceed as before.
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Distribution of supersingular primes

Also as with Euclid, the proof is constructive, and gives effec-

tive lower bounds on N0(x,E), but these bounds grow very

slowly — much worse even than the log logx from Euclid.

Even under GRH (more precisely, ERH for quadratic charac-

ters) the best lower bounds we have are N0(x,E)� log logx

for all x and N0(xn, E)� logn for an infinite sequence of xn.

Curiously, this approach also gives an upper bound: we get

N0(x,E)�E x3/4 unconditionally for all non-CM curves E.
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. . . and if jE has no real conjugates?

For many totally complex jE we can still prove infinitely many

supersingular primes using P−l(jE): all that’s needed is a

suitable factor of the numeratorof jE − 1728. But there are

some E for which N0(x,E) should grow much more slowly,

because we can prove N0(x,E,1) = O(1) so N0(x,E,2) is our

only hope.

Say that j ∈ Q(i) and E has a torsion group of order 4; for

example, E : y2 = x3 + (2i − 4)x2 + 4x, so jE = 214/(i − 4),

and (x, y) = (2,2i+2) is a 4-torsion point. If rational prime p

is pp̄ in Q(i) then p + 1 ≡ 2 mod 4, so neither E mod p nor

E mod p̄ can be supersingular. So any supersingular p must

be −1 mod 4; computation shows no such p < 106. Likewise

for E/Q(
√
−3) with a 3-torsion point, “etc.”

But there are still many cases where CE > 0 but we have no

proof of N0(x,E)→∞.
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3. Further variations

To apply this technique in other contexts, we need:

A moduli space, such as the j-line X(1);

An infinite family of subvarieties of codimension one, gener-
alizing P−D = 0;

And some luck in being able to arrange for χ(. . .) 6= +1.

More 1-dim. examples: some complex points on X0(p)/w
(David Jao, 2003); rational points on some Shimura curves
(Marat Sadykov, 2004). New ingredient: Hecke’s angular
equidistribution theorem.

Also, examples of Drinfeld modules with no supersingular
reductions (even for f > 1; Bjorn Poonen, 1997).

Higher dimensions? Maybe stay tuned for the rest of
VaNTAGe X. . .
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