Supersingular reduction of elliptic curves

introductory lecture at
VaNTAGe series 10

26 October 2021

Noam D. Elkies
Harvard University

Overview

1. Preliminaries: elliptic curves and $\operatorname{Hom}\left(E, E^{\prime}\right)$
2. Primes of supersingular reduction
3. Further variations

1. Preliminaries: elliptic curves and $\operatorname{Hom}\left(E, E^{\prime}\right)$

Elliptic curve E over a field k : projective curve of genus 1 with a rational point O.

Riemann-Roch gives functions $x, y \in k(E)$ regular except for double and triple poles at O. They generate $k(E)$ and satisfy (extended) Weierstrass equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}=0
$$

[sic: a_{i}, x, y of weight $i, 2,3$] for some $a_{i} \in k$. Conversely, given a_{i} with $\Delta=\Delta\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right)$ we get an elliptic curve.

1. Preliminaries: elliptic curves and $\operatorname{Hom}\left(E, E^{\prime}\right)$

Elliptic curve E over a field k : projective curve of genus 1 with a rational point O.

Riemann-Roch gives functions $x, y \in k(E)$ regular except for double and triple poles at O. They generate $k(E)$ and satisfy (extended) Weierstrass equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}=0
$$

[sic: a_{i}, x, y of weight $i, 2,3$] for some $a_{i} \in k$. Conversely, given a_{i} with $\Delta=\Delta\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right)$ we get an elliptic curve.

Different choices of x, y give various a_{i} but same j-invariant $j=c_{4}^{3} / \Delta$, where $c_{4}=\left(a_{1}^{2}+4 a_{2}\right)^{2}-24\left(a_{1} a_{3}+2 a_{4}\right)$. Conversely if $j(E)=j\left(E^{\prime}\right)$ then $E \cong E^{\prime}$ over \bar{k}. ["The j-line is a coarse moduli space for elliptic curves."]

1. Preliminaries: elliptic curves and $\operatorname{Hom}\left(E, E^{\prime}\right)$

Elliptic curve E over a field k : projective curve of genus 1 with a rational point O.

Riemann-Roch gives functions $x, y \in k(E)$ regular except for double and triple poles at O. They generate $k(E)$ and satisfy (extended) Weierstrass equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}=0
$$

[sic: a_{i}, x, y of weight $i, 2,3$] for some $a_{i} \in k$. Conversely, given a_{i} with $\Delta=\Delta\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right)$ we get an elliptic curve.

Different choices of x, y give various a_{i} but same j-invariant $j=c_{4}^{3} / \Delta$, where $c_{4}=\left(a_{1}^{2}+4 a_{2}\right)^{2}-24\left(a_{1} a_{3}+2 a_{4}\right)$. Conversely if $j(E)=j\left(E^{\prime}\right)$ then $E \cong E^{\prime}$ over \bar{k}. ["The j-line is a coarse moduli space for elliptic curves."]

If $6 \neq 0$ in k we can assume $a_{1}=a_{2}=a_{3}=0$, and then $j=4 \cdot 12^{3} a_{4}^{3} /\left(4 a_{4}^{3}+27 a_{6}^{2}\right)$. [For future use: $a_{4}=0 \Leftrightarrow j=0$, and $a_{6}=0 \Leftrightarrow j=1728$.]

An elliptic curve has a commutative group law: an algebraic map $E \times E \rightarrow E,(P, Q) \mapsto P+Q$ satisfying the axioms of an abelian group with origin O. It is characterized by the property that $P+Q+R=O$ iff $(P)+(Q)+(R) \sim 3(O)$. If $k \subseteq \mathbf{C}$ then $E(\mathbf{C}) \cong \mathbf{C} / \wedge$ for some lattice $\wedge \subset C$, and then the group law is consistent with addition in C / \wedge.

An elliptic curve has a commutative group law: an algebraic map $E \times E \rightarrow E,(P, Q) \mapsto P+Q$ satisfying the axioms of an abelian group with origin O. It is characterized by the property that $P+Q+R=O$ iff $(P)+(Q)+(R) \sim 3(O)$. If $k \subseteq \mathbf{C}$ then $E(\mathbf{C}) \cong \mathbf{C} / \wedge$ for some lattice $\wedge \subset C$, and then the group law is consistent with addition in C / \wedge.

We study mathematical structures via maps between them that respect the structure. Here this means isogenies. An isogeny between elliptic curves $E, E^{\prime} / k$ is an algebraic map ϕ : $E \rightarrow E^{\prime}$ such that $\phi(P+Q)=\phi(P)+\phi(Q)$ holds identically for $P, Q \in E$. Remarkably this condition holds for any algebraic map s.t. $\phi\left(O_{E}\right)=O_{E^{\prime}}$. (So this framework accommodates classical work of Fermat, Euler, ... on descents etc.)

For example, if $E=\mathbf{C} / \Lambda$ and $E^{\prime}=\mathbf{C} / \Lambda^{\prime}$ then ϕ must be of the form $z \mapsto c_{\phi} z$ for some c_{ϕ} such that $c_{\phi} \Lambda \subseteq \Lambda^{\prime}$.

Given E and E^{\prime}, the isogenies $\phi: E \rightarrow E^{\prime}$ themselves form an abelian group, denoted $\operatorname{Hom}\left(E, E^{\prime}\right)$. We allow ϕ to be defined over any algebraic extension of k. This group comes with a degree map deg : $\operatorname{Hom}\left(E, E^{\prime}\right) \rightarrow \mathbf{Z}$ which is a positivedefinite quadratic form. In the complex case, if $E=\mathbf{C} / \wedge$ and $E^{\prime}=\mathbf{C} / \Lambda^{\prime}$ then $\operatorname{deg}(\phi)=\left[\Lambda^{\prime}: c_{\phi} \Lambda\right]$ for nonzero ϕ. [This quadratic form is also an example of the canonical height on an elliptic surface, but that's for another VaNTAGe series.]

Given E and E^{\prime}, the isogenies $\phi: E \rightarrow E^{\prime}$ themselves form an abelian group, denoted $\operatorname{Hom}\left(E, E^{\prime}\right)$. We allow ϕ to be defined over any algebraic extension of k. This group comes with a degree map deg: $\operatorname{Hom}\left(E, E^{\prime}\right) \rightarrow \mathbf{Z}$ which is a positivedefinite quadratic form. In the complex case, if $E=\mathbf{C} / \wedge$ and $E^{\prime}=\mathbf{C} / \Lambda^{\prime}$ then $\operatorname{deg}(\phi)=\left[\Lambda^{\prime}: c_{\phi} \Lambda\right]$ for nonzero ϕ. [This quadratic form is also an example of the canonical height on an elliptic surface, but that's for another VaNTAGe series.]

In the special case $E^{\prime}=E$ we obtain the group $\operatorname{Hom}(E, E)$ of isogenies from E to itself, which has additional structure because such isogenies are closed also under composition. This gives $\operatorname{Hom}(E, E)$ the structure of a ring, called the endomorphism ring End (E); the product of $\phi_{1}, \phi_{2} \in \operatorname{End}(E)$ is the composition $\phi_{1} \circ \phi_{2}$. The identity map $1_{E}: E \rightarrow E$ is the unit of $\operatorname{End}(E)$. The remainder of these Preliminaries describes the classification of elliptic curves E / k by their endomorphism rings End (E).

The map $\operatorname{End}(E) \rightarrow \bar{k}$. An isogeny $\phi: E \rightarrow E^{\prime}$ defined over some field $k_{1} \supseteq k$ induces a map between the one-dim. Lie algebras of E, E^{\prime}, and pulls back to a map between the one-dim. spaces of holo. diffs. on E^{\prime} and E. For $E^{\prime}=E$ either of these constructions associates to ϕ the same element of k_{1}, and gives a canonical ring homomorphism $\rho: \operatorname{End}_{k_{1}}(E) \rightarrow k_{1}$. Then ker ρ is the two-sided ideal of inseparable isogenies.

The map $\operatorname{End}(E) \rightarrow \bar{k}$. An isogeny $\phi: E \rightarrow E^{\prime}$ defined over some field $k_{1} \supseteq k$ induces a map between the one-dim. Lie algebras of E, E^{\prime}, and pulls back to a map between the one-dim. spaces of holo. diffs. on E^{\prime} and E. For $E^{\prime}=E$ either of these constructions associates to ϕ the same element of k_{1}, and gives a canonical ring homomorphism $\rho:$ End $_{k_{1}}(E) \rightarrow k_{1}$. Then ker ρ is the two-sided ideal of inseparable isogenies.

In char. zero $\operatorname{ker} \rho=\{0\}$, whence $\operatorname{End}_{k_{1}} \hookrightarrow k_{1}$, and in particular $\operatorname{End}(E)$ is a commutative ring. Putting k (or at least $\left.\mathbf{Q}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right)\right)$ in \mathbf{C}, we get $\operatorname{End}(E) \hookrightarrow \mathbf{C}$ with

$$
\rho(\phi)=c_{\phi}, \quad \operatorname{deg} \phi=\left[\wedge: c_{\phi} \wedge\right]=\left|\phi_{c}\right|^{2}
$$

for all $\phi \in \operatorname{End}(E)$. Since deg $\phi \in \mathbf{Z}$ we conclude that either $\operatorname{End}(E)=\mathrm{Z}$ or $\operatorname{End}(E)$ is a quadratic imaginary ring $O_{-D}=$ $\mathrm{Z}\left[\frac{1}{2}(D+\sqrt{-D})\right]$. The former case is ordinary; the latter, $C M$ (complex multiplication). The beautiful theory of CM curves (and higher ab.vars.), and their moduli, is the main theme of this VaNTAGe series; we'll need only a small taste of it here.

In char. $p>0$ there can be inseparable isogenies $\phi \neq 0$ and noncommutative $\operatorname{End}(E)$. For example, assume $\operatorname{char}(k) \neq 2$, and let $E: y^{2}=x^{3}-x$ over a field that contains $i=\sqrt{-1}$. Then End (E) contains $\phi:(x, y) \mapsto(-x, i y)$ with $\rho(\phi)=i$ (because $d x / y$ pulls back to $d(-x) /(i y)=i d x / y)$. There's also the Frobenius isogeny $F:(x, y) \mapsto\left(x^{p}, y^{p}\right)$, with $\rho(F)=0$. Then $F i=\left(\frac{-1}{p}\right) i F$, so $\operatorname{End}(E)$ does not commute if $p \equiv$ $3 \bmod 4$.

Exercise: What happens for $y^{2}=x^{3}-1$ and $(x, y) \mapsto\left(\zeta_{3} x, y\right)$?

In char. $p>0$ there can be inseparable isogenies $\phi \neq 0$ and noncommutative $\operatorname{End}(E)$. For example, assume $\operatorname{char}(k) \neq 2$, and let $E: y^{2}=x^{3}-x$ over a field that contains $i=\sqrt{-1}$. Then End (E) contains $\phi:(x, y) \mapsto(-x, i y)$ with $\rho(\phi)=i$ (because $d x / y$ pulls back to $d(-x) /(i y)=i d x / y)$. There's also the Frobenius isogeny $F:(x, y) \mapsto\left(x^{p}, y^{p}\right)$, with $\rho(F)=0$. Then $F i=\left(\frac{-1}{p}\right) i F$, so $\operatorname{End}(E)$ does not commute if $p \equiv$ $3 \bmod 4$.

Exercise: What happens for $y^{2}=x^{3}-1$ and $(x, y) \mapsto\left(\zeta_{3} x, y\right)$?
In general, in char. $p>0$ the Z-rank of End(E) can be 1, 2 , or 4. The first case, equivalent to $\operatorname{End}(E)=\mathbf{Z}$, happens iff j is not in any finite field; that is, iff $j \notin \overline{\mathbf{F}_{p}}$. If $j \in \overline{\mathbf{F}_{p}}$ then usually End $(E) \cong O_{-D}$ for some D, but there is a finite number of values of j, all in $\mathbf{F}_{p^{2}}$, for which $\operatorname{End}(E)$ has rank 4. The curve E is said to be ordinary in the former case, supersingular in the latter.
[NB such curves do not have geometric singularities ...]

Why does $j \in \overline{\mathbf{F}_{p}}$ imply $\operatorname{End}(E) \neq \mathbf{Z}$? If $j \in \overline{\mathbf{F}_{p}}$ then we can choose $a_{1}, a_{2}, a_{3}, a_{4}, a_{6}$ in some finite field \mathbf{F}_{q}, so again End (E) contains $F_{q}:(x, y) \mapsto\left(x^{q}, y^{q}\right)$. Usually that's enough because $F_{q} \notin \mathbf{Z}$. For instance, $\operatorname{deg} n=n^{2}$ for $n \in \mathbf{Z}$, while $\operatorname{deg} F_{q}=q$, so if $q=p^{e}$ with e odd then we're done. Curiously, if q is a square then $F_{q}= \pm q^{1 / 2}$ is possible - but then E is supersingular!

Why does $j \in \overline{\mathbf{F}_{p}}$ imply $\operatorname{End}(E) \neq \mathbf{Z}$? If $j \in \overline{\mathbf{F}_{p}}$ then we can choose $a_{1}, a_{2}, a_{3}, a_{4}, a_{6}$ in some finite field \mathbf{F}_{q}, so again End (E) contains $F_{q}:(x, y) \mapsto\left(x^{q}, y^{q}\right)$. Usually that's enough because $F_{q} \notin \mathbf{Z}$. For instance, $\operatorname{deg} n=n^{2}$ for $n \in \mathbf{Z}$, while deg $F_{q}=q$, so if $q=p^{e}$ with e odd then we're done. Curiously, if q is a square then $F_{q}= \pm q^{1 / 2}$ is possible - but then E is supersingular!

The general situation is described by Deuring (1941). Suppose $j \in \overline{\mathbf{F}_{p}}$. Then:

If E is ordinary, $\operatorname{End}(E)$ is an order in some imag.quad.field $\mathrm{Q}(\sqrt{-D})$ in which p splits, say $p=\mathfrak{p p}$, with $\rho(\phi)=\phi \bmod \mathfrak{p}$ and $(F)=\mathfrak{p}^{e}$. In this case $(E, E n d(E))$ lifts to a CM curve over $\overline{\mathbf{Q}}$.

In supersingular case, ...

If E is supersingular then $\operatorname{End}(E)$ is a maximal order in the quaternion algebra $A_{p, \infty}$. Every $\phi \in \operatorname{End}(E)$ is either in \mathbf{Z} or generates an order in some $\mathbf{Q}(\sqrt{-D})$ in which p is inert or ramified; if $\phi \notin \mathrm{Z}$ then (E, ϕ) again lifts to a CM curve over $\overline{\mathbf{Q}}$, but this time infinitely many different curves arise this way. Here ρ takes values in $\mathbf{F}_{p^{2}}$, and some power of F_{q} is in Z .

If E is supersingular then $E n d(E)$ is a maximal order in the quaternion algebra $A_{p, \infty}$. Every $\phi \in \operatorname{End}(E)$ is either in \mathbf{Z} or generates an order in some $\mathbf{Q}(\sqrt{-D})$ in which p is inert or ramified; if $\phi \notin \mathbf{Z}$ then (E, ϕ) again lifts to a CM curve over $\overline{\mathbf{Q}}$, but this time infinitely many different curves arise this way. Here ρ takes values in $\mathbf{F}_{p^{2}}$, and some power of F_{q} is in \mathbf{Z}.

Going the other way, if E is a CM curve over some number field K, with $C M$ field End $(E) \otimes_{\mathbf{Z}} \mathbf{Q}=\mathbf{Q}(\sqrt{-D})$, then $j=j_{E}$ is an algebraic integer. Thus for any prime \mathfrak{p} of K above p we have a reduction $j \bmod \mathfrak{p}$. If \bar{E} is an elliptic curve with that j-invariant over the fraction field, then \bar{E} is ordinary if p splits in $\mathbf{Q}(\sqrt{-D})$, and supersingular if not.

Example $(-D=-4)$: a curve in char. p with $j=1728$ is supersingular iff $p \equiv 3 \bmod 4$ (or $p=2$, as with $y^{2}+y=x^{3}$).

What if we start from two different CM invariants j_{1}, j_{2}, say 0 and -147197952000 (with $-D=-3$ and -67), and work in a field k of char. p where $j_{1}=j_{2}$, i.e. modulo a factor p of $j_{1}-j_{2}$? Then there's a curve E / k for which End (E) accommodates both $O_{-D_{1}}$ and $O_{-D_{2}}$. So E must be supersingular, and moreover p can't be too large - turns out that p must divide $\left(D_{1} D_{2}-x^{2}\right) / 4$ for some x, so in particular $p \leq D_{1} D_{2} / 4$.

Gross and Zagier (Crelle 355 (1984), 191-220) figured out the exact prime factorization of $\left|\mathrm{Nm}\left(j-j^{\prime}\right)\right|$. For example, $147197952000=2^{15} 3^{3} 5^{3} 11^{3}=5280^{3}$. Amusing consequence: 1 mile $=e^{\pi \sqrt{67} / 3}$ feet + about 0.27 microns.
[Why $e^{\pi \sqrt{67}}$? The curve \mathbf{C} / \wedge is CM iff $\wedge=\mathbf{Z} \omega_{1} \oplus \mathbf{Z} \omega_{2}$ with $\tau:=\omega_{2} / \omega_{1}$ imag.quadratic. Also $j=q^{-1}+744+O(q)$ with $q=e^{2 \pi i \tau}$; now $\tau=(1+\sqrt{-67}) / 2 \Longrightarrow q=-e^{-\pi \sqrt{67}}$, "etc."]

Further facts about supersingular curves:

- If $q=p^{e}$ then E / \mathbf{F}_{q} is supersingular iff $\left|E\left(\mathbf{F}_{q}\right)\right| \equiv 1 \bmod p$. In particular if $e=1$ (i.e. $q=p$) and $p \geq 5$ then $\left|E / \mathbf{F}_{q}\right|=q+1$.
- The number of supersing. j-invariants in $\mathbf{F}_{p^{2}}$ is $p / 12+O(1)$; more precisely, $\lceil p / 12\rceil+\delta$ where $\delta=0$ unless $p \equiv \pm 1 \bmod 12$ in which case $\delta=\mp 1$. Of those, $O\left(p^{1 / 2+\epsilon}\right)$ are in \mathbf{F}_{p}; for $p>2$ the number of supersingular $j \in \mathbf{F}_{p}$ is $\frac{1}{2}(H(-p)+H(-4 p))$ [note $H(-p)=0$ if $p \equiv 1 \bmod 4$]. Table:

p	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	\cdots
$N_{p^{2}}$	1	1	1	1	2	1	2	2	3	3	3	3	4	4	5	\cdots
N_{p}	1	1	1	1	2	1	2	2	3	3	3	1	4	2	5	\cdots

(You may recognize $N_{p^{2}}$ also as $1+g\left(\mathrm{X}_{0}(p)\right)$, and N_{p} also as $\frac{1}{2}$ the number of fixed points of w_{p}. It may not look like $N_{p}=o\left(N_{p^{2}}\right)$, but soon ...e.g. for $p=971,977,983,991,997$ the counts are $30,10,27,17,7$ out of $82,82,83,83,83$.)

2. Primes of supersingular reduction

Now fix a curve E over \mathbf{Q} (or more generally over some number field K). At all but finitely many primes p (or \mathfrak{p}), we can reduce E to get an elliptic curve \bar{E} over the residue field with $j(\bar{E}) \equiv j(E) \bmod p($ or $\bmod \mathfrak{p})$. Since $j(\bar{E})$ is in a finite field, \bar{E} is at least CM. How often is \bar{E} supersingular?

2. Primes of supersingular reduction

Now fix a curve E over \mathbf{Q} (or more generally over some number field K). At all but finitely many primes p (or \mathfrak{p}), we can reduce E to get an elliptic curve \bar{E} over the residue field with $j(\bar{E}) \equiv j(E) \bmod p($ or $\bmod \mathfrak{p})$. Since $j(\bar{E})$ is in a finite field, \bar{E} is at least CM. How often is \bar{E} supersingular?

Some easy observations:

- Except for finitely many primes this depends only on the rational (or algebraic) number j_{E}.
- If E is already $C M$ then we know \bar{E} is supersingular iff the residue characteristic p is not split in the CM field. This happens for $1 / 2$ of primes p by Čebotarev; the infinitude of such p is elementary, à la Euclid. For example, if $j=1728$ (e.g. if E is $y^{2}=x^{3}-x$), we need $p \equiv-1 \bmod 4$, so factor $\left(4 \prod_{i=1}^{N} p_{i}\right)-1$, etc.

But what if E is ordinary?

What do we expect?

Over Q, a "random" \bar{E} mod p is supersingular with probability about $C p^{-1 / 2}$ on average. So the number of such primes $p \leq x$, call it $\pi_{0}(x, E)$, should be asymptotic to

$$
C \sum_{p \leq x} p^{-1 / 2} \sim C^{\prime} \pi(x) / \sqrt{x} \sim C^{\prime} x^{1 / 2} / \log x
$$

This is the Lang-Trotter conjecture, with C^{\prime} replaced by some other $C_{E}>0$ to account for the Galois structure of the torsion points of E. (E.g., if E has a rational 2 -torsion point then $\#\left(\bar{E}\left(\mathbf{F}_{p}\right)\right)$ is even, and thus likelier to equal $p+1$.)

What do we expect?

Over Q, a "random" \bar{E} mod p is supersingular with probability about $C p^{-1 / 2}$ on average. So the number of such primes $p \leq x$, call it $\pi_{0}(x, E)$, should be asymptotic to

$$
C \sum_{p \leq x} p^{-1 / 2} \sim C^{\prime} \pi(x) / \sqrt{x} \sim C^{\prime} x^{1 / 2} / \log x
$$

This is the Lang-Trotter conjecture, with C^{\prime} replaced by some other $C_{E}>0$ to account for the Galois structure of the torsion points of E. (E.g., if E has a rational 2 -torsion point then $\#\left(\bar{E}\left(\mathbf{F}_{p}\right)\right)$ is even, and thus likelier to equal $p+1$.)

This does seem roughly consistent with experiment; e.g. for $E=\mathrm{X}_{1}(11): y^{2}+y=x^{3}-x^{2}$ the supersingular primes are

2, 19, 29, 199, 569, 809,
1289, 1439, 2539, 3319, 3559, 3919, 5519, 9419, 9539, 9929,
then 26 primes in $\left[10^{4}, 10^{5}\right], 57$ primes in $\left[10^{5}, 10^{6}\right]$, "etc."

What about E / K for a general number field K ?
Depends on the exponent f in $\operatorname{Nm}(\mathfrak{p})=p^{f}$. Write

$$
\pi_{0}(x, E)=\sum_{f=1}^{[K: Q]} \pi_{0}(x, E, f),
$$

where $\pi_{0}(x, E, f)$ is the number of supersingular \mathfrak{p} of norm $\leq x$ such that the residue field has degree f over the prime field. With finitely many exceptions, j_{E} generates the residue field, so $\pi_{0}(x, E, f)=O(1)$ for each $f>2$. For $f=1$ we expect $\sim C_{E, 1} x^{1 / 2} / \log x$ as before - by Čebotarev a positive proportion of primes has $f=1$. As for $f=2$, a random $j \in \mathbf{F}_{p^{2}}$ is supersingular with probability about $1 /(12 p)$, so we expect $\pi_{0}(x, E, 2) \sim C_{E, 2} \sum_{p \leq x} 1 / p$ and $\sum_{p \leq x} 1 / p \sim \log \log x$. So there should also be infinitely many supersingular primes of norm p^{2}, but very sparse.

If E is not CM then certainly $\pi_{0}(x, E)=o(\pi(x))$, by applying Čebotarev to the torsion field $K(E[N!])$ and letting $N \rightarrow \infty$. The upper bound on $\pi_{0}(x, E) / \pi(x)$ decays very slowly, though Serre used sieve methods to show prove $\pi_{0}(x, E)=O\left(x^{3 / 4}\right)$ conditional on GRH for $K(E[N!])$.

This is not special to "trace zero": for each fixed $t \in \mathbf{Z}$ we can get a similar upper bound on $\#\left\{p \leq x:\left|E / \mathbf{F}_{p}\right|=p+1-t\right\}$ (and likewise for general K).

The $t=0$ case is special for lower bounds, though. We noted already that t must be even if E has a 2-torsion point; moreover if E is the CM curve $y^{2}=x^{3}-x$ then $t= \pm 2$ gives $p=n^{2}+1$ and that's a famous open problem.

Until 1986, the $t=0$ question was open too...

Theorem. [NDE 1986, 1987] Every E/Q has infinitely many supersingular primes. More generally, if E is defined over a number field and j_{E} has a real conjugate then E has infinitely many supersingular primes.

Idea: Force $E \bmod p$ to be supersingular by making j_{E} congruent $\bmod p$ to a CM j-invariant j_{-D} (so p is a factor of the numerator of $\left.\operatorname{Nm}\left(j_{E}-j_{-D}\right)\right)$ with p not split in $\mathbf{Q}(\sqrt{-D})$.

Example: Let $E=\mathrm{X}_{1}$ (11) again. Then $j_{E}=-2^{12} / 11$. Try $D=-67$. Calculate
$j_{E}-j_{-67}=-\frac{2^{12}}{11}+5280^{3}=\frac{1619177467904}{11}=\frac{2^{12} 395306999}{11}$,
and the prime 395306999 is inert in $\mathbf{Q}(\sqrt{-67})$ so it is a supersingular prime for E.

Problem: How to ensure at least one new supersingular prime factor of $\mathrm{Nm}\left(j_{E}-j_{-D}\right)$?

As in Euclid's proof, we have a finite list p_{1}, \ldots, p_{n} of primes to avoid, here the primes of bad reduction and the supersingular primes we already know. We avoid them by choosing D so that each p_{i} does split in $\mathbf{Q}(\sqrt{-D})$.

As in the Euclid variation for $p \equiv-1 \bmod 4$, we ensure that at least one prime factor of $\operatorname{Nm}\left(j_{E}-j_{-D}\right)$ does not split in $\mathrm{Q}(\sqrt{-D})$ by arranging that the numerator of $\mathrm{Nm}\left(j_{E}-j_{-D}\right)$ does not have $\chi_{-D}=+1$.

As in Euclid's proof, we have a finite list p_{1}, \ldots, p_{n} of primes to avoid, here the primes of bad reduction and the supersingular primes we already know. We avoid them by choosing D so that each p_{i} does split in $\mathbf{Q}(\sqrt{-D})$.

As in the Euclid variation for $p \equiv-1 \bmod 4$, we ensure that at least one prime factor of $\mathrm{Nm}\left(j_{E}-j_{-D}\right)$ does not split in $\mathbf{Q}(\sqrt{-D})$ by arranging that the numerator of $\mathrm{Nm}\left(j_{E}-j_{-D}\right)$ does not have $\chi_{-D}=+1$.

Fortunately, for each odd prime factor l of D the minimal polynomial P_{-D} of j_{-D} is either a square or $X-1728$ times a square mod l. The unpaired factor $X-1728$ arises iff $D=l$ or $D=4 l$. [This is shown using arguments similar to the upper bound on factors of $\mathrm{Nm}\left(j_{-D}-j_{-D^{\prime}}\right)$.] Example: $P_{-23}(X) \equiv(X-1728)(X+4)^{2} \bmod 23$.

It remains to control the sign of $P_{-D}\left(j_{E}\right)$. For $j_{E} \in \mathbf{Q}$ we use $P_{-l} P_{-4 l}$, which has one large positive root $j(\sqrt{-l})$ and one large negative root $j\left(\frac{1}{2}(1+\sqrt{-l})\right.$. Dirichlet's theorem provide infinitely many $l \equiv-1$ mod 4 such that each $\chi_{-l}\left(p_{i}\right)=+1$. A sufficiently large one makes $P_{-l}\left(j_{E}\right) P_{-4 l}\left(j_{E}\right)<0$, and we're soon done.

It remains to control the sign of $P_{-D}\left(j_{E}\right)$. For $j_{E} \in \mathbf{Q}$ we use $P_{-l} P_{-4 l}$, which has one large positive root $j(\sqrt{-l})$ and one large negative root $j\left(\frac{1}{2}(1+\sqrt{-l})\right)$. Dirichlet's theorem provide infinitely many $l \equiv-1 \bmod 4$ such that each $\chi_{-l}\left(p_{i}\right)=+1$. A sufficiently large one makes $P_{-l}\left(j_{E}\right) P_{-4 l}\left(j_{E}\right)<0$, and we're soon done.

Mazur asked: what about other number fields?

It remains to control the sign of $P_{-D}\left(j_{E}\right)$. For $j_{E} \in \mathbf{Q}$ we use $P_{-l} P_{-4 l}$, which has one large positive root $j(\sqrt{-l})$ and one large negative root $j\left(\frac{1}{2}(1+\sqrt{-l})\right.$. Dirichlet's theorem provide infinitely many $l \equiv-1 \bmod 4$ such that each $\chi_{-l}\left(p_{i}\right)=+1$. A sufficiently large one makes $P_{-l}\left(j_{E}\right) P_{-4 l}\left(j_{E}\right)<0$, and we're soon done.

Mazur asked: what about other number fields?
So I've done all E / Q but only one number field ...

It remains to control the sign of $P_{-D}\left(j_{E}\right)$. For $j_{E} \in \mathbf{Q}$ we use $P_{-l} P_{-4 l}$, which has one large positive root $j(\sqrt{-l})$ and one large negative root $j\left(\frac{1}{2}(1+\sqrt{-l})\right.$. Dirichlet's theorem provide infinitely many $l \equiv-1 \bmod 4$ such that each $\chi_{-l}\left(p_{i}\right)=+1$. A sufficiently large one makes $P_{-l}\left(j_{E}\right) P_{-4 l}\left(j_{E}\right)<0$, and we're soon done.

Mazur asked: what about other number fields?

So I've done all E / Q but only one number field ...
If $\left[\mathbf{Q}\left(j_{E}\right): \mathbf{Q}\right]$ is odd, so j_{E} has an odd number of real conjugates, the same argument works. If the number is even but positive, we need one more trick: instead of $P_{-l} P_{-4 l}$, use $P_{l_{1}} P_{l_{2}}$, which has one large root and one that depends on l_{1} / l_{2}. By Dirichlet we can choose l_{1} / l_{2} within ϵ. We adjust the ratio so exactly one factor of $\operatorname{Nm}\left(j_{E}-j_{-D}\right)$ is negative, and proceed as before.

Distribution of supersingular primes

Also as with Euclid, the proof is constructive, and gives effective lower bounds on $N_{0}(x, E)$, but these bounds grow very slowly - much worse even than the $\log \log x$ from Euclid. Even under GRH (more precisely, ERH for quadratic characters) the best lower bounds we have are $N_{0}(x, E) \gg \log \log x$ for all x and $N_{0}\left(x_{n}, E\right) \gg \log _{n}$ for an infinite sequence of x_{n}.

Curiously, this approach also gives an upper bound: we get $N_{0}(x, E)<_{E} x^{3 / 4}$ unconditionally for all non-CM curves E.
... and if j_{E} has no real conjugates?

For many totally complex j_{E} we can still prove infinitely many supersingular primes using $P_{-l}\left(j_{E}\right)$: all that's needed is a suitable factor of the numeratorof $j_{E}-1728$. But there are some E for which $N_{0}(x, E)$ should grow much more slowly, because we can prove $N_{0}(x, E, 1)=O(1)$ so $N_{0}(x, E, 2)$ is our only hope.
... and if j_{E} has no real conjugates?

For many totally complex j_{E} we can still prove infinitely many supersingular primes using $P_{-l}\left(j_{E}\right)$: all that's needed is a suitable factor of the numeratorof $j_{E}-1728$. But there are some E for which $N_{0}(x, E)$ should grow much more slowly, because we can prove $N_{0}(x, E, 1)=O(1)$ so $N_{0}(x, E, 2)$ is our only hope.

Say that $j \in \mathbf{Q}(i)$ and E has a torsion group of order 4; for example, $E: y^{2}=x^{3}+(2 i-4) x^{2}+4 x$, so $j_{E}=2^{14} /(i-4)$, and $(x, y)=(2,2 i+2)$ is a 4-torsion point. If rational prime p is $\mathfrak{p p}$ in $\mathbf{Q}(i)$ then $p+1 \equiv 2 \bmod 4$, so neither $E \bmod \mathfrak{p}$ nor $E \bmod \overline{\mathfrak{p}}$ can be supersingular. So any supersingular p must be $-1 \bmod 4$; computation shows no such $p<10^{6}$. Likewise for $E / \mathrm{Q}(\sqrt{-3})$ with a 3-torsion point, "etc."

But there are still many cases where $C_{E}>0$ but we have no proof of $N_{0}(x, E) \rightarrow \infty$.

3. Further variations

To apply this technique in other contexts, we need:
A moduli space, such as the j-line $\times(1)$;
An infinite family of subvarieties of codimension one, generalizing $P_{-D}=0$;

And some luck in being able to arrange for $\chi(\ldots) \neq+1$.

3. Further variations

To apply this technique in other contexts, we need:
A moduli space, such as the j-line $\times(1)$;
An infinite family of subvarieties of codimension one, generalizing $P_{-D}=0$;

And some luck in being able to arrange for $\chi(\ldots) \neq+1$.
More 1-dim. examples: some complex points on $X_{0}(p) / w$ (David Jao, 2003); rational points on some Shimura curves (Marat Sadykov, 2004). New ingredient: Hecke's angular equidistribution theorem.

3. Further variations

To apply this technique in other contexts, we need:
A moduli space, such as the j-line $\times(1)$;
An infinite family of subvarieties of codimension one, generalizing $P_{-D}=0$;

And some luck in being able to arrange for $\chi(\ldots) \neq+1$.
More 1-dim. examples: some complex points on $X_{0}(p) / w$ (David Jao, 2003); rational points on some Shimura curves (Marat Sadykov, 2004). New ingredient: Hecke's angular equidistribution theorem.

Also, examples of Drinfeld modules with no supersingular reductions (even for $f>1$; Bjorn Poonen, 1997).

3. Further variations

To apply this technique in other contexts, we need:
A moduli space, such as the j-line $\times(1)$;
An infinite family of subvarieties of codimension one, generalizing $P_{-D}=0$;

And some luck in being able to arrange for $\chi(\ldots) \neq+1$.
More 1-dim. examples: some complex points on $X_{0}(p) / w$ (David Jao, 2003); rational points on some Shimura curves (Marat Sadykov, 2004). New ingredient: Hecke's angular equidistribution theorem.

Also, examples of Drinfeld modules with no supersingular reductions (even for $f>1$; Bjorn Poonen, 1997).

Higher dimensions? Maybe stay tuned for the rest of VaNTAGe X...

THEEND

