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Overview

• Mordell(–Weil) & Mazur; Questions about rank

• Heuristics for and against boundedness of rank

• Uniform Mordell–Weil vs. uniform Mordell–Faltings

• The quest for high rank:

algebraic identities and algebraic geometry

• Another route to 21 (and 13 with 2-torsion, etc.)
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Mordell(–Weil) & Mazur

Theorem (Mordell c.1920): For any elliptic curve E/Q, the
group E(Q) is finitely generated.

[Weil 1928: Ditto A(K) for any ab. var. A and number field K.
Thus “Mordell–Weil theorem”, and “Mordell–Weil group” for
E(Q) or A(K).]

Therefore E(Q) ∼= E(Q)tors⊕Zr, for some finite abelian group
E(Q)tors and integer r ≥ 0, the rank of E (over Q).

Question: Which finitely generated groups arise?
Equivalently: Which pairs (E(Q)tors, r) are possible?

Theorem (Mazur 1977): The torsion group of any E/Q is
either Z/NZ (some N ≤ 12 with N 6= 11) or (Z/2Z)⊕(Z/2NZ)
(some N ∈ {1,2,3,4}).

It was already known that each of these 15 groups arises for
infinitely many curves E/Q.
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Questions about rank

So: Given each of the 15 possible torsion groups G, which

ranks r are possible?

In particular, is r bounded?

If unbounded, how far must we look to find a rank r curve?

If bounded, what’s the maximal r, and the limsup (i.e., the

largest r that arises infinitely often)?

Similar questions for other families of curves, e.g. Dy2 = x3−x
(“congruent number” curves = quad. twists of y2 = x3 − x)?

Quadratic twists of other E0/Q? “Taxicab curves” = twisted

Fermat cubics x3 + y3 = T? Quartic twists y2 = x3 + a4x

(the general j = 1728 curve; special case of torsion Z/2Z)?

“Mordell curves” y2 = x3 + a6 (sextic twists, general j = 0)?
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Heuristics for and against boundedness of rank

Those questions are all still wide open.

There has been considerable discussion about these questions,

including purely intuitive/speculative guesses as well as heuris-

tics based on analogy or data. Unfortunately even the more

principled guesses don’t all point in the same direction!

Thanks to B. Poonen for recounting some of these approaches

(such as the function-field analogue, where r is unbounded

[Šafarevič-Tate, Ulmer], and the observations of rank records

as a function of time) in his Sep. 1 VaNTAGe talk.

I’ll briefly add three more to this list: the ranks of tabulated

curves (Antwerp/Tingley, Cremona, LMFDB); arithmetic and

analytic bounds on NE; an unpublished(?) counting heuristic.
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Tabulations suggest large rank is rare . . .

The first table of (modular) elliptic curves (MFIV, Antwerp

1976, computed by Tingley et al.) listed all curves with con-

ductor NE ≤ 200. There are 749 such E, in 281 isogeny classes

[per LMFDB]. All have rank 0 or 1 (in 206+75 classes)!

The searches have now reached all NE ≤ 500,000, and ranks as

large as 4 do arise, but slowly; e.g. LMFDB reports 3,064,705

curves but only 8899 of rank 3 and just one has rank 4 (con-

ductor 234446, which also features two of the rank-3 curves).
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. . . but this is to be expected.

Mestre (1986) obtained lower bounds on the conductor of an

elliptic curve E/Q of rank r, assuming BSD + GRH for L(E, s),

by regarding the functional equation

Λ(E, s) := (2π)−sΓ(s)L(E, s) = ±N1−s
E Λ(E,2− s)

as a formula for the conductor NE. (This adapted a technique

introduced by Odlyzko (1975) to bound the discriminant of

a number field of degree r1 + 2r2.) For example, r ≥ 0 ⇒
NE > 10, and r ≥ 1 ⇒ NE > 36. That’s sharp, since NE = 11

and NE = 37 actually happen! For r ≥ 2 the bound is not as

sharp but still exceeds 200 (rank 2 first happens for a curve of

conductor 389).

In general Mestre shows r � logNE, so the smallest conductor

of a rank-r curve must grow at least exponentially in r.
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Nontrivial torsion even forces r = o(logNE).

Once Etors is nontrivial, NE must grow at least as exp(Cr log r).

For example, 2-torsion says E : y2 = x3 + a2x
2 + a4x. Assume

a2, a4 ∈ Z. Then x is square × S-unit where S = {p|a4}.
But x mod squares gives image of (x, y) in E(Q)/φ̂(E′(Q))

where E′ : Y 2 = X3 − 2a2X
2 + (a2

2 − 4a4)X is the 2-isogenous

curve. Repeating the argument for E′ bounds the size of

E(Q)/φ̂φE(Q) = E(Q)/2E(Q), which is 2r+1. So, N must

be a product of at least r primes, etc.

Similarly for other torsion orders, using descent via the relevant

isogeny. (NB there’s no such bound for curves without torsion;

e.g. the smallest known conductor of a curve of rank 11 is the

prime 18031737725935636520843 [NDE-Watkins 2004]. For

y2 = x3 +a6 high rank may signal large 2- and 3-torsion in the

class groups of Q(a
1/3
6 ) and Q(a

1/2
6 ) respectively.)
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Point counting suggests lots of rank-2 curves!?

The rank of E also controls the growth of rational points of

height ≤ H, i.e. with x = m/n with |m|, |n| ≤ H: the number

of such points is asymptotically proportional to (logH)r/2 (the

constant is Vr|Etors|/R1/2, where R = regulator; NB there’s a

factor R/|Etors|2 in BSD).

But if E : y2 = x3 + a2x
2 + a4x + a6 then x = m/n works iff

m3n+ a2m
2n2 + a4mn

3 + a6n
4 is square, which should happen

“with probability” ∼ C max(|m|, |n|)−2, because a random large

N is square with probability about 1
4|N |

−1/2. Summing this

over coprime (m,n) in |m|, |n| ≤ H gives a multiple of logH.

[Yes, n must be a square, but it’s still logH growth.]

So, do we expect that r = 2 on average? Or mostly 0’s and

1’s but enough curves of rank ≥ 3 to make up the shortfall?

Or is m3n+ a2m
2n2 + a4mn

3 + a6n
4 somehow a bit less likely

to be a square than a random number of that size? . . .
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Uniform Mordell–Weil vs. uniform Mordell–Faltings

∆! A misleading analogy:

E/Q of genus 1:

Mordell(–Weil): ∀E ∃r <∞: rank at most r

Uniform Mordell–Weil conjecture: ∃r <∞ : ∀E, rank at most r

C/Q of genus g > 1:

(Mordell–)Faltings: ∀C ∃B <∞ : |C(Q)| ≤ B
Uniform Mordell–Faltings conj.: ∃Bg <∞ : ∀C, |C(Q)| ≤ B

It’s true that there’s a lot of overlap between the two ques-

tions when it comes to record-hunting techniques (and record

hunters), for both the “max” and “limsup” questions. But . . .
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While both conjectures are open, for Mordell–Faltings all the

evidence points in one direction, that uniform boundedness is

true. There’s even a theorem (Caporaso–Harris–Mazur 1997)

that the existence of Bg is a consequence of the Bombieri–Lang

conjectures on rational points on varieties of general type.

CHM start by proving that for each g > 1 there is B′g and finitely

many varieties of general type that together parametrize all

genus-g curves C together with a B′g-tuple of points on C.

Then B–L supplies an algebraic dependence, “etc.” by in-

duction on dimension. That B′g can even be made effective,

though alas Bg and even the upper bound on lim supC |C(Q)|
is ineffective.

There can be no such path to uniform MW, because Er is

never of general type; indeed once E has positive rank there

can be no algebraic condition on r-tuples of rational points.

10



While both conjectures are open, for Mordell–Faltings all the

evidence points in one direction, that uniform boundedness is

true. There’s even a theorem (Caporaso–Harris–Mazur 1997)

that the existence of Bg is a consequence of the Bombieri–Lang

conjectures on rational points on varieties of general type.

CHM start by proving that for each g > 1 there is B′g and finitely

many varieties of general type that together parametrize all

genus-g curves C together with a B′g-tuple of points on C.

Then B–L supplies an algebraic dependence, “etc.” by in-

duction on dimension. That B′g can even be made effective,

though alas Bg and even the upper bound on lim supC |C(Q)|
is ineffective.

There can be no such path to uniform MW, because Er is

never of general type; indeed once E has positive rank there

can be no algebraic condition on r-tuples of rational points.

10



While both conjectures are open, for Mordell–Faltings all the

evidence points in one direction, that uniform boundedness is

true. There’s even a theorem (Caporaso–Harris–Mazur 1997)

that the existence of Bg is a consequence of the Bombieri–Lang

conjectures on rational points on varieties of general type.

CHM start by proving that for each g > 1 there is B′g and finitely

many varieties of general type that together parametrize all

genus-g curves C together with a B′g-tuple of points on C.

Then B–L supplies an algebraic dependence, “etc.” by in-

duction on dimension. That B′g can even be made effective,

though alas Bg and even the upper bound on lim supC |C(Q)|
is ineffective.

There can be no such path to uniform MW, because Er is

never of general type; indeed once E has positive rank there

can be no algebraic condition on r-tuples of rational points.

10



The quest for high rank

It’s easy to get E with a (usually) non-torsion point P1: just

fix P1 = (x1, y1) and A, and solve y2 = x3 +Ax+B for B.

Two points: fix P1 = (x1, y1) and P2 = (x2, y2), and solve

simult.lin.eqs. y2
i = x3

i +Axi +B (i = 1,2) for A,B.

Three points: y2 = x3 + a2x
2 + a4x+ a6.

Five points: y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Six: a0y
2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6.
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Quest for high rank, cont’d

Nine points: Plane cubic through nine “random” points in P2(Q)

But that’s the last case where we can fully describe all (r+1)-

tuples (E;P1, . . . , Pr): this variety is rational iff r ≤ 9. [For

r = 10 the point counts mod p include −τ(p), where τ(p) =

Ramanujan function = qp coefficient of ∆ = q
∏∞
n=1(1−qn)24 !]

But our quiver is not empty yet: it is enough to find some

infinite family of (E;P1, . . . , Pr).

For example, Néron (1954) found a way to locate P1, . . . , P9

that yields independent P10, P11.
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Specialization theorems

How do we know that the Pi are independent?

Well, they might not be. But they’re generically independent:

there’s no nontrivial relation
∑
i aiPi = 0 that holds identically.

(Can be checked in various ways, including the canonical height

pairing.)

Over a number field F , it follows by a specialization theo-

rem that “most” choices yield E/F with independent rational

points Pi (and that we get infinitely many different E this way).

Néron: exceptional set is “thin”; Silverman (1983), using

heights: in one-dimensional family, exceptional set is finite.
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For example, if we find a nonconstant E/Q(t) with torsion

group G and independent points P1, . . . , Pr, we have infinitely

many Et/Q with torsion group (at least) G and r independent

points Pi(t). So, the rank limsup is at least r.

Moreover, we can search for t such that Et has even more

rational points; and search for base changes t ∈ Q(u) such

that Et has even more rational points over Q(u), increasing

our lower bound on the rank limsup.

That’s now the standard overall strategy for finding rank records.

NB: Likewise for Mordell-Faltings, and the specialization thm.

is much easier. But by CHM the Bombieri-Lang conj. implies

∃Bg : any nonconstant C/Q(t) of genus g has |C(Q(t))| ≤ Bg.

For elliptic curves this, too, is an open question even under

standard conjectures.
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That’s now the standard overall strategy for finding rank records.

NB: Likewise for Mordell-Faltings, and the specialization thm.

is much easier. But by CHM the Bombieri-Lang conj. implies

∃Bg : any nonconstant C/Q(t) of genus g has |C(Q(t))| ≤ Bg.

For elliptic curves this, too, is an open question even under

standard conjectures.
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Algebraic identities and algebraic geometry

Now a nonconstant curve E/Q(t) with independent points

P1, . . . , Pr can be viewed as both:

• A collection of r identities in rational functions xi(t), yi(t)

(i = 1, . . . , r) and A(t), B(t): yi(t)
2 = xi(t)

3 +A(t)xi(t) +B(t),

and

• (The generic fiber of) an elliptic fibration E → P1
t with r

independent sections si : P1
t → E.

Likewise for E with nontrivial torsion group G (changing y2 =

x3 +Ax+B to y2 = x3 +Ax2 +Bx, y2 +Axy+By = x3, “etc.”

for G = Z/2Z, Z/3Z etc.), or curves over other fields such as

Q(t1, . . . , tn).
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Standard picture/cartoon of an elliptic surface:
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The geometric approach also lets us use the algebraic geom-

etry of surfaces (intersection theory, moduli, etc.).

Néron’s approach is geometric, closely related to geometry of

rational elliptic surfaces y2 = x3 +A(t)x+B(t) with degA = 4,

degB = 6 (via P2 blown up at 8 of the 9 points).

Later constructions, with r as large as 14 (Mestre), empha-

sized the algebraic approach (often with clever exploitation of

symmetry).

Recent records for small G (namely |G| ≤ 4) use the geometry

of elliptic K3 surfaces, with with degA = 8, degB = 12.

E.g. for trivial G we get r = 17 on a K3 surface, r = 18 on

a quadratic base change, and r = 19 for an infinite family

parametrized by an elliptic curve of positive rank (compositum

of two quadratic base changes).
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Néron’s approach is geometric, closely related to geometry of

rational elliptic surfaces y2 = x3 +A(t)x+B(t) with degA = 4,

degB = 6 (via P2 blown up at 8 of the 9 points).

Later constructions, with r as large as 14 (Mestre), empha-

sized the algebraic approach (often with clever exploitation of

symmetry).

Recent records for small G (namely |G| ≤ 4) use the geometry

of elliptic K3 surfaces, with with degA = 8, degB = 12.

E.g. for trivial G we get r = 17 on a K3 surface, r = 18 on

a quadratic base change, and r = 19 for an infinite family

parametrized by an elliptic curve of positive rank (compositum

of two quadratic base changes).

16



Another route to rank 21
(and 13,9,9 with G = Z/2Z, Z/3Z, (Z/2Z)⊕ (Z/2Z), etc.)

Curiously the K3 route almost reproduces the heuristic of

Park–Poonen–Voight–Wood for each of Mazur’s fifteen G’s

except those that don’t fit on an elliptic K3, namely Z/NZ for

N = 9,10,12 and (Z/2Z)⊕ (Z/8Z).

Rather than try to develop the K3 picture towards the end of

the lecture, let’s just count parameters in identities; remark-

ably for K3 surfaces over C these dimension heuristics become

theorems (“K3 Torelli”)!
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Start from y2 = x3 + A(t)x + B(t) with A,B of degree 8,12.

That’s 9+13 coefficients for A and B, but scaling A,B by λ4, λ6

yields an equivalent surface, as do projective linear transforma-

tions of t (since A,B are really homogeneous polynomials in

the projective coords. (t0 : t1) on P1). So, 22 − 3 − 1 = 18

parameters.

Suppose Pi has x(t), y(t) = polynomials of degree 4,6. (More

general rational functions make the analysis more complicated

but the final count is the same). That’s 5+7 more coefficients,

and y2 = x3 + Ax + B is 13 conditions, so we expect each Pi
to impose 13− (5 + 7) = 1 condition on our 18 parameters.

Thus we expect to be able to do this 18 times, so there should

be elliptic K3’s of rank as large as 18, but no more. (True

over C; over Q, not quite, but it does work over some other

number fields.)
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So, H2 choices of t of height ≤ H, each giving r ≥ 18 with

discriminant H24. About half of these should have sign −1, so

r ≥ 19 which matches PPVW.

To reach r = 20, find x(t) of degree 4 s.t. x3 + Ax + B is

almost square, i.e. Q2Q
2
5. This does not cost a parameter.

Then make Q2(t) = s2; that’s a quadratic base change to a

genus-0 curve, and we still have H such t of height ≤ H.

Do this a second time to reach r = 21, parametrized by an

elliptic curve so logρ/2H examples up to height H.

Likewise for the 10 nontrivial torsion groups that fit on a K3;

e.g. y2 = x3 +Ax2 +Bx (with 2-torsion) has 4 + 8 coefficients

instead of 8 + 12 so we end up with r = 10 on the K3 surface

and r = 13 using the sign and biquadratic base change. In a

few cases (such as Z/4Z, with r = 7) this works over Q!
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Caveats

• These curves don’t actually look like what PPVW predicts:

instead of r generators of height ∼ H2/r it’s r − 1 of height

∼ logH and a huge final generator of height H2±o(1).

• Over Q we end up just under the PPVW heuristic except for

torsion groups 2 × 2, 4, 7, 8, 2 × 6. (E.g. |∆| = 163 is too

small for |G| ≤ 3.)

• Going beyond K3 doesn’t help directly, but the parameter-

count heuristics might fail, allowing higher r. (Recall Shioda’s

rank-68 surface; even over Q there are examples for torsion

8 and 2 × 6 (Dujella–Peral 2012) with rank 1 more than the

PPVW prediction.
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