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Two questions in nonabelian Chabauty

1 How do we prove that X (Qp)U is finite?

2 How do we compute X (Qp)U?

In this talk I want to explain computational approaches to these
questions, and advertise exciting questions in computational number
theory related to mixed motives and algebraic cycles.

These subjects are ripe for computational experimentation!
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The Chabauty–Coleman method

The Chabauty–Coleman method gives an approach to determining the
rational points of X using the Jacobian J of X . We have a commutative
diagram

X (Q) → J(Q)
↓ ↓

X (Qp) → J(Qp)

We have J(Qp) ≈ Zg
p . If r < g , then the topological closure J(Q) of J(Q)

in J(Qp) is ≈ Zr ′
p where r ′ ≤ r .
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How does Chabauty–Coleman work?

Suppose someone gives you a hyperelliptic curve. How do you apply the
Chabauty–Coleman method?

Carry out a 2-descent to verify r < g .

Find a set of divisors of degree zero generating a finite index subgroup
of J(Q).

Some p-adic computations and Mordell–Weil sieving.

In this talk I want to talk about generalising the first two steps in the
context of nonabelian Chabauty (the last step is better understood).
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Motivation: the Chabauty–Coleman–Kim method

Let X be a smooth projective geometrically irreducible curve of genus
g > 1 over Q. The Chabauty–Coleman–Kim method produces a nested
sequence

X (Qp) ⊃ X (Qp)1 ⊃ X (Qp)2 . . . ⊃ X (Q)

such that X (Qp)1 is the usual Chabauty–Coleman set. This generalisation
is obtained by “getting rid of the Jacobian”.

Theorem (Kim)

X (Qp)2 is finite whenever

rkJ(Q) <
1

2
(3g − 2)(g + 1)− rkH1

f (GQ,∧2VpJ).

where Vp(J) := Tp(J)⊗Qp.

In general, finiteness of X (Qp)n is implied by bounding the dimension of
H1
f of certain summands of VpJ

⊗i , for 1 ≤ i ≤ n.

Rational points and algebraic cycles March 12, 2025 7 / 43



Definition: ‘Full-fat’ versus ‘diet’ Quadratic Chabauty

Recall that if rkJ(Q) < g + ρ(J)− 1, then one can prove finiteness of
X (Qp)2, and can sometimes compute X (Qp)2 using p-adic heights.

In this talk I will mostly be interested in describing X (Qp)2 when
ρ(J) = 1.

I will henceforth distinguish between ‘full-fat quadratic Chabauty’
(which works with the whole of X (Qp)2) and ‘diet quadratic
Chabauty’ which just use the part coming from p-adic heights.

Although it is widely believed that diet quadratic Chabauty is better
for you, some experts dispute this.
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The Chabauty–Kim method in the best of all possible
worlds

More generally, the Bloch–Kato conjectures give a precise prediction on an
n (not necessarily optimal) such that X (Qp)n is finite.

n Bloch–Kato =⇒ X (Qp)n finite when

1 r < g
2 r < g2 + ρ(J)− 1

3 r < 4g3+3g2−4g−3
3 + ρ(J)

4 r < 6g4+4g3−6g2−4g
3 + ρ(J)

5 r < 48g5+30g4−40g3−30g2−8g
15 + ρ(J)

Here ρ(J) := rkNS(J(Q)). Note that X (Qp)2 is finite (unconditionally)
when r < g + ρ(J)− 1. For example, for genus 2 curves we expect
X (Qp)3 is finite whenever r < 12, X (Qp)4 is finite whenever r < 33, and
X (Qp)5 is finite whenever r < 105.
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Part 1: how do we bound Bloch–Kato Selmer groups?

Given a continuous finite dimensional Qp -representation V of Gal(Q|Q),
define

H1
f (GQ,V ) := ∩vKer(H1(GQv ,V )→ H1(GQv ,V )/H1

f (GQv ,V ))

where the intersection is over all primes v , and

H1
f (GQv ,V ) :=

{
Ker(H1(GQv ,V )→ H1(GQv ,V ⊗ Bcris)), v = p.

Ker(H1(GQv ,V )→ H1(Iv ,V )), v 6= p.

To verify this expectation in examples, we need explicit methods for BK
Selmer groups.
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Descent for Selmer groups of hyperelliptic curves

(Cassels, Schaefer, Bruin, Poonen–Schaefer, Stoll, . . . )
Let X/K be a hyperelliptic curve given by a polynomial f of odd degree,
where K is a field of characteristic different from 2. For simplicity, suppose
f is irreducible and α ∈ K sep is a root.
Then we have an isomorphism

H1(K , J[2]) ' Ker(K (α)× ⊗ F2
Nm−→ K× ⊗ F2).

Under this isomorphism, for z ,w ∈ (X −W )(K ) (where W ⊂ X is the set
of Weierstrass points), the 2-Kummer homomorphism is given by the
“(x − t) map”

z − w 7→ (x(z)− α)/(x(w)− α) ∈ Ker(K (α)× ⊗ F2
Nm−→ K× ⊗ F2).

These results were extended to the case of even degree polynomials (and
more generally to cyclic covers of P1) by Poonen and Schaefer.
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Results

Theorem (D.)

Let X be the curve y2 − y = x5 − x . Then rkJ(Q) = 3,
dimH1

f (GQ,∧2V2(J)/Q2(1)) = 2 and

X (Q) =


∞, (0, 1), (14 ,

15
32), (2, 6), (3,−15), (1, 1), (30,−4929),

(−1, 1), (1, 0), (30, 4930), (3, 16), (14 ,
17
32), (2,−5),

(0, 0), (−1, 0), (−15
16 ,−

185
1024), (−15

16 ,
1209
1024)


Theorem (D.)

Of the 7, 224 rank 2 genus 2 curves with a rational Weierstrass point in
the LMFDB, at least 3,323 satisfy #X (Q2)2 <∞.
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Two-descent for BK Selmer groups

Given a lattice T in a nice Qp Galois representation V , one might try to
bound the rank of H1

f (GQ,V ) by defining a Zp-module

H1
f (GQ,T ) ⊂ H1(GQ,S ,T )

such that H1
f (GQ,T )⊗Qp ' H1

f (GQ,V ), and an Fp subspace
H1
f (GQ,T ⊗ Fp) ⊂ H1

f (GQ,S ,T ⊗ Fp) giving a commutative diagram

H1
f (GQ,T )⊗ Fp ↪→ H1

f (GQ,T ⊗ Fp)
↓ ↓

H1(GQ,S ,T )⊗ Fp ↪→ H1(GQ,S ,T ⊗ Fp)

such that the top horizontal map is injective.
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Two-descent for BK Selmer groups

In our case of interest, we give an upper bound on the dimension of
H1
f (GQ,∧2V2(J)) by finding a subspace

H1
f (GQ,∧2J[2]) ⊂ H1(GQ,∧2J[2]), such that

dimF2 H
1
f (GQ,∧2J[2]) ≥ dimH1

f (GQ,∧2V2(J)).

A natural choice of lattice in ∧2V2(J) is ∧2T2(J). Its mod 2 quotient is
isomorphic to ∧2J[2]. Local conditions at primes of bad reduction are easy
to understand if the reduction is stable. Understanding ‘crystalline’
conditions at 2 is not.
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The field theoretic description of H1(K ,∧2J[2])

To ease notation, suppose Gal(K ) acts 2-transitively on the roots of f . Let
α, β ∈ K sep be distinct roots. Assume for simplicity that
[K (α, β) : K (α + β)] = 2.

Lemma

Let J be the Jacobian of a hyperelliptic curve defined by an odd degree
polynomial f . We have an isomorphism

H1(K ,∧2J[2]) ' Ker(K (α + β)× ⊗ F2
Nm−→ K (α)× ⊗ F2)

here Nm is the composite of the map K (α + β)× ⊗ F2 → K (α, β)× ⊗ F2

and the norm map from K (α, β)× ⊗ F2 to K (α)× ⊗ F2.

There is also a ‘nonabelian (x − T ) map’ describing the elements of
K (α + β)× ⊗ F2 you get from rational points.
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Berry’s work: even degree

If X does not have a rational Weierstrass point, the description of
H1(K , J[2]) in terms of f is much more complicated (see
Poonen–Schaefer).

Ker(K (α)× ⊗ F2
Nm−→ K× ⊗ F2) is closely related to J̃[2], where J̃ is

an extension of J by a torus (which is split by the field of definition of
the points at infinity).

Recently, Lee Berry showed that one can get useful bounds on the
dimension of H1

f (Q,∧2V2J) by trying to working with H1(K ,∧2J̃[2]).

 proofs of finiteness of X (Q2)2 for hyperelliptic curves of genus 2
and 3 without a rational Weierstrass points when r ≥ g .
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Berry’s work: ordinary curves are nice

If X has ordinary reduction at p, then

H1
g (Qp,∧2VpJ) = Ker(H1(Qp,∧2VpJ)

π∗−→ H1(Qp,∧2VpJFp)).

If X is a hyperelliptic curve with good ordinary reduction at 2, then it has
a smooth model

y2 + h1(x)y = h2(x)

where h1 ∈ Z2[x ] is of degree g + 1, with separable reduction mod 2.
Berry shows that the map π∗ can be described in terms of fields defined in
terms of roots of h1.

Theorem (Berry, 2025)

Of the 1,138 genus 2 curves with Mordell-Weil rank
2, good ordinary reduction at 2 and exactly one
rational Weierstrass point on the LMFDB, at least
574 satisfy #X (Q2)2 <∞.
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Examples (Berry)

Theorem (Berry)

The genus 2, rank 3 curve
X : y2 + (x2 + x + 1)y = x5 − x4 + 2x3 + 6x2 + 2x satisfies #X (Q2)2 is
finite.

Theorem (Berry, 2025)

The genus 3 curve

X : y2 + (x4 + x + 1)y = −4x6 − 7x5 + 4x4 + 14x3 + 5x2 − 2x

satisfies #X (Q2)2 <∞.

In the last example, the Mordell–Weil group of the Jacobian has rank 3 or
4, and the curve does not have a rational Weierstrass point.
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Part 2: How do we compute X (Qp)2?

Now suppose #X (Q2)2 <∞. How do we find it?

Recall what happens in ‘diet’ quadratic Chabauty, for integral points
on a hyperelliptic curve (Balakrishnan–Besser–Müller):

X (Zp) ⊂ {hp(z) =
∑

aij(

∫ z

∞
ωi )(

∫ z

ωj) + c}

where the aij are essentially detemined by the p-adic height pairing.

In full-fat quadratic Chabauty, the story is essentially the same, but
the p-adic height pairing is replaced by a generalised height pairing.

In the case of y2 − y = x5 − x , we can determine this pairing (and
hence X (Q)) by evaluating on rational points.

Is this enough in general?
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Why are proofs of the Mordell conjecture ineffective?

Given a curve X , suppose X has tons of rational points.

If you have a ridiculously large number, they have to have all kinds of
relations between one another, which eventually leads to a
contradiction (e.g. violating Vojta’s inequality).

This means that if, after searching, you find that you have the largest
possible ‘legal’ number of rational points, you’ve effectively computed
all of them!

But usually you won’t find that many, so you have no way of verifying
that you’ve found them all.

Example: Chabauty–Coleman. If rkJ(Q) = r , and you have r + 1
points in X (Q) ‘in general position’, you get an equation for X (Qp)1.
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Why ((diet) quadratic) Chabauty is (typically) effective

Chabauty–Coleman, when it applies, ‘usually’ does successfully
determine the rational points.

The reason is that, crucially, you don’t need to find points in X (Q)
which generate (a finite index subgroup of) J(Q). You just need to
find them in J(Q) (i.e. in (Div0(X ))(Q)).

To determine X (Qp)U in the context of usual diet quadratic
Chabauty, this largely amounts to computing the p-adic height
pairing, i.e. computing the Qp-valued matrix hp(Pi ,Pj) for (Pi ) a
basis for a finite index subgroup of J(Q).

Example: y2 = −35x6 + 310x5− 675x4 + 750x3− 450x2 + 140x − 15
(Balakrishnan-D.-Müller-Tuitman-Vonk).
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What about full fat quadratic Chabauty, or more general
nonabelian Chabauty?

Conjectures imply that when rkJ(Q) = r , if you have about
r log(r)/ log(g) points ‘in general position’ you get some kind of equation
for X (Qp)n.

Remark: This is quite a lot!

What if we work over number fields (i.e. evalute on Div(X )(Q))?

Unclear, e.g. if you do this for the p-adic height on a hyperelliptic
curve, this factors through

Div(X )(Q)→ Sym2J(Q)GQ∑
niPi 7→

∑
ni (Pi −∞)2

which has a target of infinite rank (I think?).
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What is a nonabelian cohomology variety?

Here is a nice way to think about nonabelian cohomology varieties.
Consider a collection V0, . . . ,Vn of representations of a group G . Define:

M(G ;V0, . . . ,Vn) to be the set of isomorphism classes of
representations W , with a descending G -stable filtration Wi

U(V0, . . . ,Vn) to be the group of block lower triangular matrices in
GL(V0 ⊕ . . .⊕ Vn).

Lemma

M(G ;V0, . . . ,Vn) ' H1(G ,U(V0, . . . ,Vn)).

Any unipotent group maps into a group of the form U(V0, . . . ,Vn), so you
can always map a nonabelian cohomology variety into something like this
(analogy: mapping a reductive group G into GLn to think of G -bundles on
a variety as vector bundles).
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Example: n = 1 and 2

U(V0,V1) = Hom(V0,V1) = V ∗0 ⊗ V1

M(G ;V0,V1) ' H1(G ,V ∗0 ⊗ V1) ' Ext1(G ,V0,V1).

The case n = 2 is more interesting. What do representations with graded
pieces V0,V1,V2 look like? Write such a representation as

ρ =

 ρV0 0 0
c1 ρV1 0
c3 c2 ρV2

 .

Then c1 and c2 define elements of H1(G ,V ∗0 ⊗ V1) and H1(G ,V ∗1 ⊗ V2).
The obstruction to lifting (c1, c2) to such a mixed extension is
c1 ∪ c2 ∈ H2(G ,V ∗0 ⊗ V2). Given any two such lifts, c3 − c ′3 gives an
element of H1(G ,V ∗0 ⊗ V2).
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Example: n = 2

In summary: we have an exact sequence of pointed sets

H1(G ,V ∗0 ⊗ V2)→ M(G ;V0,V1,V2)(= H1(G ,U(V0,V1,V2)))

→ H1(G ,V ∗0 ⊗ V1)× H1(G ,V ∗1 ⊗ V2)
∪−→ H2(G ,V ∗0 ⊗ V2).

Our case of interest is V0 = Qp,V1 = V := VpJ and V2 = VpJ
⊗2.

At all primes (away from p) we have
M(GQ`

;Qp,V ,V
⊗2) ' H1(GQ`

,V⊗2), so given a global mixed
extension, we get an element of ⊕`∈SH1(Q`,V

⊗2).

Its image in ⊕`∈SH1(Q`,V
⊗2)/H1(GQ,S ,V

⊗2) only depends on its
image (c1, c2) in H1(Q,V )× Ext1Q(V ,V⊗2) is bilinear and is denoted
h(c1, c2).

Does this define a pairing? How do we compute it?
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An equivalent formulation: where are all the mixed
motives?

Where do the mixed representations we seek come from?
Geometrically, Galois representations with different weights arise from
the étale cohomology of open (non-proper) varieties.

In fact, there’s a beautiful formula due to Beilinson that explains how
to construct the open varieties whose étale cohomology gives the
Galois representations coming from fundamental groups.

To implement full-fat QC, we need to find the algebraic cycles whose
existence is predicted by hard ‘motivic’ conjectures.

Theorem (D.)

The Beilinson–Bloch conjectures imply that the generalised height defines
a pairing

CH2(X 3)0×CH2(X )0 → colimS ⊕`∈S H1
g (Q`,V

⊗2)/H1(Gal(QS |Q),V⊗2).
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The motivic version of diet quadratic Chabauty

Edixhoven and Lido observed that there is a
motivic avatar of H1(G ,U(V0,V1,V2)) when
(V0,V1,V2) = (Qp,VpJ,Qp(1)).

Namely, the Poincare torsor P is a Gm-torsor
over J∨ × J obtained. Indeed U(V0,V1,V2) is
the unipotent fundamental group of P.

A more naive version of this is used in existing practical
implementations: we compute the p-adic height pairing by finding
pairs of divisors with disjoint support.

Remark: the fact that the motivic avatar is a scheme is very special
(Deligne–Griffiths–Morgan–Sullivan).
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‘Motivating’ case: the unit equation

If (V0,V1,V2) = (Qp,Qp(1),Qp(2)). The motivic analogue of the
right-hand side of the diagram is the map

K× × K× → KM
2 (K ) := (K×⊗2)/〈x ⊗ (1− x) : x ∈ K× − {1}〉.

Define B̃ to be the set of triples (x , y ,
∑

ni [zi ]) in K× × K× × Z[K× − 1]
such that

x ⊗ y =
∑

nizi ⊗ (1− zi )

modulo the equivalence relation

(x , y ,
∑

ni [zi ]) ∼ (x ′, y ′,
∑

n′i [z
′
i ])

if
∑

ni [zi ]−
∑

n′iz
′
i lies in the subspace of Z[K ] generated by

[a] + [b] + [
1− a

1− ab
] + [1− ab] + [

1− b

1− ab
].

Rational points and algebraic cycles March 12, 2025 29 / 43



‘Motivating’ case: the unit equation

We get a short exact sequence of pointed sets

1→ B2(K )→ B̃ → K× × K× → 1,

where B2(K ) is the Bloch group of K , which maps to the short exact
sequence for H1(G ,U2). This can be thought of as an archetypal example
of generalising the Poincaré torsor to something non-representable.
This tells use we can compute the equations for X (Zp)2
(X = P1 − {0, 1,∞}) by evaluating dilogarithms of rational points.
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Motivic analogue of H2(G ;V ⊗ V ): the Albanese kernel

This exists in a very general context but we restrict to the case of a
self-product of curves X × X .
The Chow group CH2(X 2) := Z 2(X 2)/ ∼ is the group of zero-cycles
modulo rational equivalence. We have a homomorphism
Z 2(X × X )→ Z 1(X )× Z 1(X ) given by∑

ni (Pi ,Qi ) 7→ (
∑

niPi ,
∑

niQi ).

This induces homomorphisms

CH2(X × X )→ CH1(X )× CH1(X )

CH2(X × X )0 → Pic0(X )× Pic0(X ).

The kernel of this homomorphism is called the Albanese kernel F 2(X 2).

Conjecture (Beilinson–Bloch)

If K is a number field, then F 2(X 2) is finite.
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Motivic avatar of the cup product: Somekawa K -group
product

We have a homomorphism F 2(X 2)→ H2(K ,H2
ét(XK ,Zp(2))), and a

homomorphism
∪ : Jac(X )× Jac(X )→ F 2(X 2)

given by (
∑

niPi ,
∑

mjQj) 7→
∑

nimj(Pi ,Qj).
We have a commutative diagram

Jac(X )2 → F 2(X 2)
↓ ↓

H1(K ,H1
ét(XK ,Zp(1)))2

∪−→ H2(K ,H2
ét(XK ,Zp(2)))
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Motivic avatar of H1(K ,TpJ
⊗2): CH2(X 2, 1)

Recall that for a surface S , we may define CH2(S , 1) to be the
cohomology of the complex

K 2
M(K (S))→ ⊕C∈X (1)K (C )× → Z 2(S)

where the maps are the tame symbols

〈f1, f2〉 7→ (div(f1), f2|div(f1))− (div(f2), f1|div(f2))

and ∑
ni (Ci , fi ) 7→

∑
nidiv(fi ) ∈ Z 2(S).

We have an etale regulator map

CH2(S , 1)→ H1(K ,H2
ét(SK ,Zp(2)))

given by sending
∑

ni (Ci , fi ) to an appropriate subquotient of
H2

ét(SK − ∪Ci ,Zp(2)).

Rational points and algebraic cycles March 12, 2025 33 / 43



Lifting the kernel

If (c1, c2) are in the kernel of

H1(K ,TpJ)2 → H2(K ,TpJ
⊗2),

then there is a mixed extension with graded pieces Zp,TpJ and TpJ
⊗2

lifting the extensions c1 and c2. What is the motivic analogue? Define S̃
to be the set of triples (D1,D2,

∑
ni (Ci , fi )) up to equivalence, where

D1,D2 ∈ Div0(X ) cup to zero in F 2(X 2).∑
div(fi ) = D1 � D2 in Z 2(X 2).

two triples (D1,D2,
∑

ni (Ci , fi )) and (D ′1,D
′
2,
∑

n′i (C
′
i , f
′
i )) are

equivalent if they have the same image in CH1(X )20, and∑
ni (Ci , fi )−

∑
n′i (C

′
i , f
′
i ) lies in the image of KM

2 (K (X 2)).
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Lifting the kernel

Lemma

We have a commutative diagram of pointed sets with exact rows

CH2(X 2, 1) → S̃ → Jac(X )2 → F 2(X 2)
↓ ↓

H1(K ,TpJ
⊗2) → H1(K ,U) → H1(K ,TpJ)2

∪−→ H2(K ,TpJ
⊗2)

where U = U(Zp,TpJ,TpJ
⊗2), the map S̃ → H1(K ,U) is given by

sending (D1,D2,
∑

(Ci , fi )) to an appropriate subquotient of
H2

ét(XK − ∪Ci ∪ D1 × X ,Zp(2)).

Remark: the idea of combining F 2(X 2), unipotent fundamental groups
and rational points is not new! (Esnault–Wittenberg).
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Not quite it

Is this a motivic analogue of our Selmer scheme? In general, not quite.
The issue is that the extensions of TpJ by TpJ

⊗2 coming from rational
points on curves are typically not in the image of the map

“⊗ TpJ
′′ : Ext1(Zp,TpJ)→ Ext1(TpJ,TpJ

⊗2).

The obstruction is old friend of the seminar series the Ceresa cycle! So in
general the correct definition is more elaborate, and gives a short exact
sequence

CH2(X 2, 1)→ S̃ → CH1(X )0 × CH2(X 3)0
∪−→ F 2(X 2).

Here S̃ consists of triples (D,Z ,
∑

(Ci , fi )) in Div0(X )× Z 2(X 3)
×⊕C∈X (1) K (C )× satisfying some properties, up to some equivalence
relation.
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The punchline

In down to earth terms, for a hyperelliptic curve X with a rational
Weierstrass point ∞, this means that given

∑
ni (Pi ,Qi ) in Z 2(X 2), if we

can find curves Cj on X 2 and divisors Dj on Cj such that

Dj lies in the image of Z 1(X )× Z 1(X )
under the projection maps πi : C → X ,∑

ni (Pi ,Qi ) =
∑

j Dj in Z 2(X 2),

then we can compute∑
nih(Pi −∞,Qi −∞).

In particular, Beilinson–Bloch implies the existence of an algorithm, but
not the existence of a good one, to compute the generalised height! How
do we computationally verify torsion-ness of zero-cycles in X 2

(Murre–Ramakrishnan, Gazaki, Love)
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The punchline

In down to earth terms, for a hyperelliptic curve X with a rational
Weierstrass point ∞, this means that given

∑
ni (Pi ,Qi ) in Z 2(X 2), if we

can find curves Cj on X 2 and divisors Dj on Cj such that

Dj lies in the image of Z 1(X )× Z 1(X )
under the projection maps πi : C → X ,∑

ni (Pi ,Qi ) =
∑

j Dj in Z 2(X 2),

then we can compute∑
nih(Pi −∞,Qi −∞).

In particular, Beilinson–Bloch implies the existence of an algorithm, but
not the existence of a good one, to compute the generalised height! How
do we computationally verify torsion-ness of zero-cycles in X 2

(Murre–Ramakrishnan, Gazaki, Love)
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An example

For hyperelliptic curves, the following trick often seems to work: look for
bihyperelliptic curves with extra symmetries. For example, consider the
curve

X : y2 = f (x) := 4x5 + 8x4 + 16x3 + 12x2 + 8x + 1.

( or 21653.a.21653.1 to its friends). This has Mordell–Weil rank 2, and 5
rational points

{∞, (0,±1), (1,±7)}

Hence rational points allow us to compute h((0, 1)−∞, (0, 1)−∞) and
h((1, 7)−∞, (1, 7)−∞). How can we compute the generalised height

h((0, 1)−∞, (1, 7)−∞)?
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An example

Consider the (normalisation of) the curve

C : y2 = f (x − 1/2), z2 = f (−1/2− x)

inside X × X . On C we have the principal divisor

5(

√
−3

2
, 1, 1) + 5(

√
−3

2
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√
−3

2
, 1, 1) + 5(−

√
−3

2
,−1,−1)

+ (

√
−7

2
, 1, 1) + (

√
−7

2
,−1,−1) + (−

√
−7

2
, 1, 1) + (−

√
−3

2
,−1,−1)

− (

√
−31

2
,−14− 3

√
−31,−14 + 3

√
−31)

− (

√
−31

2
,−14− 3

√
−31,−14 + 3

√
−31)

− (

√
−31

2
, 14 + 3

√
−31, 14− 3

√
−31)− (

√
−31

2
, 14 + 3

√
−31, 14− 3

√
−31)

− 4∞+ − 4∞−.
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An example

We have

Tr((ζ3, 1)−∞) ∼ −1

4
((1, 7)−∞)− 1

2
((0, 1)−∞)

Tr((
−1 +

√
−7

2
, 1)−∞) ∼ −1

4
((1, 7)−∞) +

1

2
((0, 1)−∞)

Tr((
−1 +

√
−31

2
, 14 + 3

√
−31)−∞) ∼ 3((0, 1)−∞)

Hence using algebraic cycles we have successfully determined the pairing!
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Questions

How to implement this? Should we be using the Jacobian instead of
X × X? Or the Kummer variety?

The ‘Tate–Shafarevich’ obstruction to computing the dimension of
H1
f (Q,∧2VpJ) should come from p-torsion in F 2(J). How can we

compute this?

Beilinson’s conjecture implies that we could define a ‘circle-valued’
generalised height in the style of Mazur–Tate:

CH1(X )0 × CH2(X 3)0 → Ext1R−MHS(R,∧2H1(X ,R))/CH2(J, 1)

∼ (R/Z)
g(g+1)

2
−ρ(J).

What is the significance of the numbers you get from this??
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Thanks!
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