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L-functions

L-functions are fundamental objects in number theory

• Generalize the Riemann zeta function.

• Associated with various objects in number theory.

• Can study families of L-functions at once.
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L-functions

L-functions have certain properties

• Dirichlet series

L(s) =
∑
n≥1

ann
−s where anm = anam if gcd(n,m) = 1

Enough to know apn to deduce the rest, where p is a prime number.

• Functional equation

Λ(s) := Ns/2ΓL(s) · L(s) = εΛ((1 + w)− s),

where:
• ΓL(s) are defined in terms of Γ-function.

• d is roughly the number of these Γ-factors

• ε ∈ {z ∈ C : |z |= 1} is the root number (for our examples today ε = ±1)

• N is the conductor of L(s),

• w ∈ N is the (motivic) weight of L(s).
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L-functions: What do they know? Do they know things? Let’s find out!

L-functions can arise from many sources, and we have a database of them:

www.lmfdb.org: The L-functions and Modular Forms Database

They contain arithmetic information about their number theoretic sources:

• Class number formula for a number field K :

lim
s→1

(s − 1)L(K , s) =
2r1 · (2π)r2 · RegK ·hK

wK ·
√
|DK |

• Birch and Swinnerton-Dyer conjecture for an elliptic curve E :

L(E , s) vanishes to order r := rankE and

L(r)(E , 1)

r !
=

#Sha(E ) · ΩE · RegE ·
∏

p cp

(#Etor)2
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L-functions: What do they know? Do they know things? Let’s find out?

Can we harvest this arithmetic information about their sources from an approximation?

L(s) =
∑
n≥1

ann
−s

Question

How many an does one need to extract this information?

Need an for n ≤ O(Nd/2), for a fixed family of degree d L-functions.

Can one do with less?

Several groups have investigated this question with partial success!
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Murmurations
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Murmurations

“Unexpected, oscillating pattern observed in the statistical analysis of large families of

elliptic curves.”

Heuristically:

• Pattern in averages of ap’s based on rank.

• Explicit formula based on trace formulas.

• Some success predicting rank using ML.

Similar results with:

• Dirichlet characters

• Modular forms

• Maass forms

Can we learn the order of vanishing on a set of L-functions of differing sources?
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What are we even doing?

Motivating quote from David Lowry-Duda’s blog:

Aside: model success or failure wouldn’t say something conclusive about BSD

or related conjectures. But in practice, ML can act like a one-sided oracle: if

model performance on a particular set of features is very high, this indicates

that the arithmetic information is contained within those set of features. If

mathematicians don’t understand why or how, then at least this can point to

a place where we can look for more.
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Old School Cool: Mestre-Nagao Sums

Motivating heuristic: Mestre-Nagao sums

S(B) =
1

logB

∑
p<B

ap(E ) log p

p

• Have been used as a heuristic to predict the rank of elliptic curves

• Further, in “Murmurations of Mestre-Nagao sums”, the authors examine an

oscillatory behavior in these sums similar to murmurations
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Agnostic Murmurations

In our MML 2024 workshop experiments, we saw that L-functions are somewhat

agnostic of the source.

The dataset from LMFDB contains:

• 248,359 rational L-functions with root analytic conductor at most 4.

• 186,114 primitive L-functions.

• for each L-function all ap for primes p ≤ 1000

• https://zenodo.org/records/14774042
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What does the data look like?
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We looked at about 250k rational L-functions of small arithmetic complexity
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Data Normalizations

For each rational L-function L(s) =
∑

n≥1 ann
−s our dataset includes the 168 ap for p

a primes less than 1000.

We use two normalizations:

Murmurations:

ãp =
ap

p(w−1)/2

Machine Learning:

ap =
ap

dpw/2
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Agnostic Murmurations
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What ML algorithms to use?

• Principal Component Analysis (cite ??)

• Neural Nets (cite ??)

• Linear Discriminant Analysis
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We did some principal component analysis
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We did some principal component analysis
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We did some principal component analysis

Cumulative explained variance for PCA 18



Neural Nets: Training order of vanishing via ap’s
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Neural Nets: Training order of vanishing via PCA

Indeed, training just with the first principle component retains much accuracy.

20



Neural Nets: Training order of vanishing via PCA

Indeed, training just with the first principle component retains much accuracy.

20



Neural Nets: Even just two components does a lot!

Data(sub)set PCA 2 comps. accuracy ap accuracy

ECNF 0.9122 0.9537

BMF 0.9148 0.9548

HMF 0.9054 0.9504

G2Q 0.9113 0.9571
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We looked at LDA
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We looked at LDA - correctly classified
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We looked at LDA - incorrectly classified
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LDA on individual types

Dataset Training obs. Validation obs. Accuracy Explained Variance Counts

PRAT⋆ 140 924 35 232 0.959 0.982 0 53 344

1 90 327

2 29 648

3 2 837

BMF 65 442 16 361 0.958 0.979 0 28 280

1 44 773

2 8 724

3 26

ECNF 90 791 22 698 0.956 0.983 0 42 558

1 61 243

2 9 661

3 27

G2Q 50 224 12 556 0.971 0.997 0 10 827

1 29 155

2 19 988

3 2 810

HMF 25 571 6 393 0.963 0.988 0 14 443

1 16 582

2 938

3 1

Table 1: LDA results for predicting vanishing order in PRAT⋆ and various subsets.
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Upshot

• Rational L-functions as a dataset seem to be agnostic to their source, when

normalized accordingly.

• Techniques employed for specific classes of L-function should generalize.

• First principle component strongly contributes to training accuracy.

• Neural Nets perform surprisingly well on the the PCA components.

• Linear discriminant analysis gives good predictors for the order of vanishing.

• The data set is quite skewed, so all this should be taken with a grain of salt.

How do these tools perform for non-rational L-functions? See the next talk!

How well does one type of L-function learn on another?
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Agnostic Murmurations: Transfer Learning

How well does one type of L-function generalize?

What happens when we train on one type, but test on another?

Now we restrict to:

• Primitive

• Order of vanishing 0 and 1

• Motivic weight 1

Which gives:

• All CMF’s are ECQ’s

• All CMF’s have degree 2

• Everything else has degree 4
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We looked at about 150k rational L-functions of small arithmetic complexity

5763
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Here’s the weird interesting L-function in the intersection ECNF, HMF, BMF, and

G2C: https://beta.lmfdb.org/L/4/2e13/1.1/c1e2/0/0
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We looked at about 150k rational L-functions of small arithmetic complexity

5763
CMF

30705
27072714

39862

ECNF

8

41

170

BMF HMF ∩ BMF HMF

HMF

G2C

Our training and testing sets come from the four disjoint sets, that we’ll refer to as

BMF, HMF, G2C, and CMF.
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Non-agnostic murmurations?
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Neural Nets: Transfer learning
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LDA Transfer learning on different sets of L-functions

32



How many coefficients do we actually need?
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Individual Primes

• BMF’s do poorly - why?

• What primes do the two dips occur at? 167 and 887

• In our original dataset, we were missing two labels - just labels, not L-functions!

Two L-functions were labeled as ECNF when they should have been labeled as both

ECNF and BMF:

• L-function 4-643e2-1.1-c1e2-0-0

• L-function 4-1879e2-1.1-c1e2-0-0

34
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Sparse columns in BMFs

There are four sparse columns in the BMF dataset (and none in the others):

• 167 - one nonzero at 4-643e2-1.1-c1e2-0-0

• 479 - one nonzero at 4-643e2-1.1-c1e2-0-0

• 503 - all zeros

• 887 - one nonzero 4-1879e2-1.1-c1e2-0-0

Note: in the old BMF dataset, the columns for the primes 167, 479, 503, and 887

were all zeros. No other subset has any columns that are all zeros!
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Take out the sparse primes:
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Take out the weird L-functions
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Take out the weird L-functions:

• Neither in training set
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L-functions from elliptic curves over number fields

All our L-functions are rational of the form L =
∑

n≥1 ann
−s , however, we can say

more about those coming from ECNFs.

Let E/K be an elliptic curve defined over a number field K with ring of integers OK ,

then

L(E/K , s) =
∑
n<OK

anNK/Q(n)
−s

For quadratic fields, ap depends on how p splits in K :

• pOK = p1p2, then ap = ap1 + ap2

• pOK = p, then ap = 0

• pOK = p2, then ap = ap
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You see the zeros in the distribution of a997’s

• CMF

• G2Q

• BMF

• HMF
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BMF Number Fields

LMFDB Number Field Count 167 479 503 887

2.0.4.1 40275 Inert Inert Inert Inert

2.0.3.1 42808 Inert Inert Inert Inert

2.0.8.1 36907 Inert Inert Inert Inert

2.0.7.1 28322 Inert Inert Inert Inert

2.0.11.1 30608 Inert Inert Inert Inert

2.0.643.1 1 Split Split Split Inert

2.0.1879.1 1 Inert Inert Inert Split

These are the smallest primes that are inert for all number fields in this set.
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So many questions!

• Why is one of the originally mis-labled L-functions weird and the other only

slightly weird?

• Why is there a slight dip at 167 but no dip at 479?

• Why does the one value at 887 tank the training set?

• Is there anything weird about 4-1879e2-1.1-c1e2-0-0?

• Is this all an artifact of LDA?

• What would happen with a more complete/larger BMF dataset?
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SVM
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LDA and outliers

• There is no weirdness for other types of machine learning such as linear support

vector machines (good) or decision trees (bad)

• LDA is fragile against outliers, but this is still striking!

• Transfer learning does remarkably well on the different rational L-functions
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Future Directions

• Raise analytic rank/root analytic conductor

• Could we just get a few more BMFs?

• Can we learn the origin of an L-function?

• Can we predict in advance what the outliers are?

• Is LDA fragile against incorrect values?

• Study in the context of Mestre-Nagao sums

45



References

• Machine learning rational L-functions J. Bieri, G. Butbaia, E. Costa, A. Deines,

K. Lee, D. Lowry-Duda, T. Oliver, T. Veenstra, and Y. Qi.

arxiv.org:2502.10360

• Murmurations of Mestre-Nagao sums Z. Bujanović, Matija Kazalicki, and L.
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Thank you!

Special thanks to the Mathematics and Machine Learning Program at Harvard

University’s Center of Mathematical Sciences and Applications where this research

project started!

Any questions?
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Teaser:

Can you transfer learn on non-rational L-functions?

Maybe an’s are better? See next week!
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