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Background: Faltings’ Theorem

Question

Given a polynomial f (x , y) ∈ Z[x , y ], can we find (x , y) ∈ Q2 such that
f (x , y) = 0? And if so, how many?

Such a polynomial defines a (smooth projective) algebraic curve X - which
has a geometric genus g

Theorem (Faltings ’83)

If g ≥ 2, the set X (Q)a of rational solutions is finite.

aTechnically this might differ from the set of solutions to f (x , y) = 0 by a
computable finite set.

In addition:

If g = 0, there are 0 or infinitely many solutions

If g = 1, there is an elliptic curve associated with X
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Effective Faltings

Problem (Effective Faltings)

When X (Q) is finite, find all solutions.

If we have a list of solutions, how do we know if our list is complete?

For some X (more details later), Chabauty-Coleman produces p-adic
analytic functions that vanish on the set of all solutions

Given a function, Newton’s method determines its finite number of
zeroes

Kim’s “non-abelian Chabauty’s method” is expected to do this for all
X

Refined Problem (Chabauty-Kim Theory)

Find p-adic analytic (Coleman) functions on X (Qp) that vanish on X (Q)
using non-abelian Chabauty.
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Example 1: S-Integral Points on P1 \ {0, 1,∞}

For a positive integer N, we may ask about P1 \ {0, 1,∞}(Z[1/N])

This is equivalent to asking for x , y ∈ Z[1/N]× such that x + y = 1.

Simplest case and testing ground for more general methods

For N = 2, we have the solutions x = 2,−1, 1/2

Theorem (Dan-Cohen, Wewers, 2013)

For p 6= 2, the following function vanishes on P1 \ {0, 1,∞}(Z[1/2]):

2Lip2(z)− logp(z)Lip1(z)

For p = 5, 7, this function has only 3 zeroes in P1 \ {0, 1,∞}(Zp)
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Example 2: Split Cartan Modular Curve of Level 13

The modular curve Xs(13) parametrizes elliptic curves E whose Galois
action on E [13] factors through a split Cartan subgroup

An homogeneous equation is given by

Y 4 + 5X 4 − 6X 2Y 2 + 6X 3Z + 26X 2YZ + 10XY 2Z − 10Y 3Z

−32X 2Z 2 − 40XYZ 2 + 24Y 2Z 2 + 32XZ 3 − 16YZ 3 = 0

There were seven known points, (1 : 1 : 1), (1 : 1 : 2), (0 : 0 : 1), (−3 :
3 : 2), (1 : 1 : 0), (0 : 2 : 1), (−1 : 1 : 0).

Non-abelian Chabauty (specifically Quadratic Chabauty) showed that
these were the only rational points:

Theorem (Balakrishnan, Dogra, Müller, Tuitman, Vonk)

#Xs(13)(Q) = 7
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Effectivity and Kim’s Conjecture

For each positive integer n, Kim’s method produces a a set ICK ,n of
p-adic analytic Coleman functions

Conjectures on Galois cohomology imply that ICK ,n has a nonzero
element for sufficiently large n

Such functions have finitely many zeroes, so a single nonzero function
gives finiteness!

Conjecture (Kim et al., 2014)

For sufficiently large n, the set of common zeroes of functions in ICK ,n is
precisely X (Q).

ICK ,1 corresponds to classical Chabauty’s method

The Quadratic Chabauty method of Balakrishnan et al computes part
of ICK ,2 in many cases

Work of C–Dan-Cohen–Wewers hopes to apply to ICK ,n for all n
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Classical Chabauty and Chabauty-Kim

Part II: Classical Chabauty and Chabauty-Kim
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Classical Chabauty’s Method

Mordell conjectured in 1922 that X (Q) is finite if X has genus g ≥ 2

First proof in some cases by Chabauty in 1940’s using the following
method:

Embed X into a abelian variety J and considers the diagram:

X (Q)

��

// X (Qp)

�� %%
J(Q) // J(Qp)

log // Lie(JQp)

J has an abelian group structure and dimension g = dim Lie(JQp)

The theorem of Mordell-Weil states that J(Q) is finitely generated

Let r denote the rank of J(Q) as a f.g. abelian group

When r < g , Chabauty shows that X (Qp) ∩ J(Q) ⊆ J(Qp) is finite
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Chabauty-Coleman

When r < g , there is a linear function f on Lie(JQp) vanishing on
J(Q)

Coleman defines a notion of p-adic integration; f is given by

P 7→ f (P) =

∫ P

b
ω

for some algebraic differential form ω on J

Pullback to X (Qp) is a nonzero function on X (Qp) that vanishes on
X (Q)

One computes ω by finding an explicit basis for J(Q)

Newton’s method finds the number of zeroes of f ; if we find that
many elements of X (Q), then we are done!

Two problems:
1 Sometimes r < g
2 Even if r < g , the function from Chabauty-Coleman might have zeroes

outside X (Q)
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Towards non-abelian Chabauty

Non-abelian Chabauty applies even with r ≥ g .
There is an embedding J(Q)→ Sel(J/Q, p∞) into a Selmer group
(“essentially” isomorphism by BSD conjecture)
Sel(J/Q, p∞) may be defined as a Galois cohomology group

H1
f (GQ;H ét

1 (XQ;Qp))

Idea: Replace first homology H ét
1 (X ;Qp) with a non-abelian quotient

Un of the fundamental group of X (U1 = H ét
1 (X ;Qp))

Kim’s diagram becomes:

X (Q) −−−−→ X (Qp)y yjn

H1
f (Gal(Q/Q),Un) −−−−→

locn
Un/F

0

ICK ,n defined using this diagram the pullbacks under jn of functions
vanishing on the image of locn
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Quadratic Chabauty and ICERM Project

Part III: Quadratic Chabauty and ICERM Project
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Quadratic Chabauty

Let X be a hyperbolic curve with Jacobian J

The p-adic height pairing is a Q-quadratic function:

h : J(Q)→ Qp

The p-adic height decomposes as a sum of local heights

hv : J(Qv )→ Qp

for each place v of Q.

For v = p, hv is given by a certain component of j2
For v of potentially good reduction (not p), hv is trivial

For v not p general, the image of hv is finite

Recall log : J(Qp)→ Lie(JQp)

If r = g , we may write

J(Q)⊗Qp
∼= Lie(JQp)

and view h as a Qp-quadratic function on Lie(JQp).
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Quadratic Chabauty (cont.)

By computing h on a basis of J(Q), we may write a quadratic map1

Q on Lie(JQp) explicitly, so that

h(z) = Q(log(z))

for z ∈ J(Q)

If X has potentially good reduction everywhere, we may solve for
X (Q) in X (Qp) via the equation

Q(log z) = hp(z)

for z ∈ X (Qp)

If X has permanent bad reduction, we must compute the finite
images of hv : J(Qv )→ Qp

1More precisely, Q(log z) = B(log z ,E log z + c), for an endomorphism E of J,
c ∈ Lie(JQp ), and a bilinear form B.
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Shimura Curves and Atkin-Lehner Quotients

Shimura curves and their Atkin-Lehner quotients provide a good
source of curves with permanent bad reduction

For an integer D, we consider the Shimura curve XD . This is the
moduli space of abelian surfaces with action by the indefinite
quaternion algebra of discriminant D

If ` | D, then XD and its Atkin-Lehner quotient have totally
degenerate reduction at `

This means that its semistable reduction is a union of copies of P1

Furthermore, BSD implies that the Atkin-Lehner quotients have r = g

Corwin Kim and Faltings VLC 2013 16 / 18



ICERM Project

In our project, we use the `-adic geometry of curves with totally
degenerate reduction to compute the local p-adic height at `
Joint with:

Oana Adascalitei (BU)

Jennifer Balakrishnan (BU)

Netan Dogra (Kings College)

Sachi Hashimoto (BU)

Benjamin Matschke (BU)

Ciaram Schembri (Dartmouth)

Jan Vonk (IAS)

Tian Wang (UIC)
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Thank You!
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