(CM) Torsion on Elliptic Curves over Number Fields

Pete L. Clark

(CM) Torsion on Elliptic Curves over Number Fields

Pete L. Clark

Department of Mathematics The University of Georgia

June 22, 2021

$\mathcal{T}(d)$ and $\mathcal{T}(d)$

(CM) Torsion on Elliptic Curves over Number Fields

For $E_{/F}$ an elliptic curve defined over a number field, the torsion subgroup E(F)[tors] is **finite** (e.g. by Mordell-Weil) and **computable**. What are the possibilities?

For $d \in \mathbb{Z}^+$, put...

 $\mathcal{T}(d) \coloneqq \{ \text{iso. classes of } E(F)[\text{tors}] \mid [F : \mathbb{Q}] = d \},$

 $T(d) := \sup\{\#E(F)[\operatorname{tors}] \mid [F : \mathbb{Q}] = d\}.$

Is it obvious that $\mathcal{T}(d)$ and $\mathcal{T}(d)$ are finite? Not at all, but...

Theorem (Merel, 1996)

 $T(d) < \infty$ for all $d \in \mathbb{Z}^+$. Thus $\mathcal{T}(d)$ is a finite set for all d.

What is known about $\mathcal{T}(d)$

(CM) Torsion on Elliptic Curves over Number Fields

Pete L. Clark

Theorem

- a) (Mazur, 1978) Computes $\mathcal{T}(1)$. Get: T(1) = 16.
- b) (Kamienny, Kenku, Momose 1988, 1992) Compute T(2).
 Get T(2) = 24.
- c) (Derickx-Etropolski-van Hoeij-Morrow-Zureick-Brown 2020) Compute T(3). Get T(3) = 28.

So....maybe look for upper bounds on T(d)??

Merel's work is **effective**: gives an explicit upper bound on T(d), improved by Oesterlé and Parent. But... These bounds are (worse than) exponential. This seems far from the truth.

Don't you know ANYTHING else about T(d)??

(CM) Torsion on Elliptic Curves over Number Fields

Pete L. Clark

$$T_{\mathbb{Q}}(d) \coloneqq$$
 like $T(d)$ but for $E_{/F}$ with $j(E) \in \mathbb{Q}$.

Theorem (C-Pollack 17)

For all $\epsilon > 0$, we have $T_{\mathbb{Q}}(d) = O_{\epsilon}(d^{5/2+\epsilon})$.

This result suggests (maybe) that T(d) should grow at most polynomially in d. This is wide open.

What about lower bounds on T(d)?

Theorem (Breuer 2010)

We have $\limsup_d \frac{T(d)}{d \log \log d} > 0$.

We do not know whether $\limsup_{d} \frac{T(d)}{d \log \log d}$ is finite: i.e., it may be that T(d) is **never** larger than a constant times $d \log \log d$.

Introducing CM

(CM) Torsion on Elliptic Curves over Number Fields

Pete L. Clark

There are two kinds of elliptic curves $E_{/F}$, CM and not-CM. This depends only on $E_{/\mathbb{C}}$ (n'importe quelle $\iota : F \hookrightarrow \mathbb{C}$).

 $E(\mathbb{C}) \cong_{\mathbb{C}-\text{Lie group}} \mathbb{C}/\Lambda,$

with Λ a full lattice in $\mathbb C.$ Then

$$\operatorname{End}(E) = [\Lambda : \Lambda] := \{z \in \mathbb{C} \mid z\Lambda \subset \Lambda\}.$$

So $\mathbb{Z} \subset \text{End}(E)$. Usually equality holds: not CM. Otherwise End $(E) = \mathcal{O}$ is an order in an imaginary quadratic field K: CM. (Since $[\mathcal{O} : \mathcal{O}] = \mathcal{O}$, every imaginary quadratic order \mathcal{O} arises.)

Reorientation towards the CM case

(CM) Torsion on Elliptic Curves over Number Fields

Pete L. Clark

Now we introduce

 $T_{CM}(d) := \text{like } T(d) \text{ but restricted to } E_{/F} \text{ with CM}$ $T_{\neg CM}(d) := \text{like } T(d) \text{ but restricted to } E_{/F} \text{ without CM}.$

Clearly $T(d) = \max(T_{CM}(d), T_{\neg CM}(d))$. Which is it??

$$egin{aligned} & T_{\mathsf{CM}}(1) = 6 < 16 = T_{\neg \,\mathsf{CM}}(1) \ & T_{\mathsf{CM}}(2) = 12 < 24 = T_{\neg \,\mathsf{CM}}(2) \ & T_{\mathsf{CM}}(3) = 14 < 28 = T_{\neg \,\mathsf{CM}}(3) \end{aligned}$$

Not exactly definitive!

Philosophy of the CM case

(CM) Torsion on Elliptic Curves over Number Fields

Pete L. Clark

• The CM case is (apparently or provably) **extremal** in some ways and **exceptional** in others. If you are in interested in the general case, you may need to **sieve out** the CM case to study it properly.

Theorem (C-Genao-Pollack-Saia 2020)

All but finitely many of the modular curves $X_0(N)$, $X_1(N)$, $X_1(M, N)$ have sporadic CM points.

So the "upper order" of $T_{CM}(d)$ is $d \log \log d$.

Comparing Upper and Lower Orders

(CM) Torsion on Elliptic Curves over Number Fields

Pete L. Clark

Theorem (Better Breuer 2010)

$$\limsup_{d} \frac{T_{\mathsf{CM}}(d)}{d\log\log d} > 0, \ \limsup_{d} \frac{T_{\neg\,\mathsf{CM}}(d)}{\sqrt{d\log\log d}} > 0.$$

Whether the latter lim sup is finite is **wide open**: if so, then for infinitely many d we have $T(d) = T_{CM}(d) > T_{\neg CM}(d)$.

The lower order works a bit differently: can show that

$$\liminf_{d} \frac{T_{\neg \mathsf{CM}}(d)}{\sqrt{d}} > 0$$

and combining with Bourdon-C-Pollack 2017, it follows that

$$\{d\in\mathbb{Z}^+\mid T(d)=T_{\neg\,\mathsf{CM}}(d)>T_{\mathsf{CM}}(d)\}$$

has density 1 in \mathbb{Z}^+ .

Computing $\mathcal{T}_{CM}(d)$ for all d

(CM) Torsion on Elliptic Curves over Number Fields

Pete L. Clark

Next up: want to compute $\mathcal{T}_{CM}(d)$ for any given d. This is now almost solved. It is essentially the same problem as computing degrees of Δ -CM points on $X_1(M, N)$, the modular curve that (roughly) parameterizes $\mathbb{Z}/M\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z} \hookrightarrow E(F)$ [tors].

An imaginary quadratic order \mathcal{O} is uniquely determined by its **discriminant** $\Delta = [\mathcal{O}_{\mathcal{K}} : \mathcal{O}]^2 \Delta_{\mathcal{K}}$, which can be any negative integer that is 0 or 1 modulo 4.

Let $P_{\Delta}(t) \in \mathbb{Z}[t]$ the **Hilbert class polynomial**: the monic poly whose roots in \mathbb{C} are *j*-invariants of Δ -CM elliptic curves. This is irreducible over \mathbb{Q} (and over K) of degree

$$h_{\Delta} \coloneqq \# \operatorname{Pic} \mathcal{O}.$$

Arithmetic Geometry Ensues

(CM) Torsion on Elliptic Curves over Number Fields

Pete L. Clark

Since
$$Y(1)_{/\mathbb{Q}} = \mathbb{A}^1_{/\mathbb{Q}}$$
,
 $P_\Delta \in \mathbb{Q}[t] \leftrightarrow J_\Delta \in Y(1) \subset X(1)$,

a closed point of degree h_{Δ} . Have towers of modular curves

The Splitting Problem

(CM) Torsion on Elliptic Curves over Number Fields

Pete L. Clark

Q: How does J_{Δ} split in $X_0(N)$, $X_1(N)$ and so forth? This is (literally!) the ANT1 problem of how prime ideals split in extensions of Dedekind domains. We want to know: (i) ramification " e_i 's", (ii) number of places "g", (iii) degree of each place " f_i 's", (iv) residue field $\mathbb{Q}(P)$ of the place P.

All of these maps ramify only over $j = 0, 1728, \infty$. $j = 0 \leftrightarrow \Delta = -3, j = 1728 \leftrightarrow \Delta = -4$; exclude them.

The X(N) Case

(CM) Torsion on Elliptic Curves over Number Fields

Pete L. Clark

Theorem (Bourdon-C 2020)

Let $P \in X(N)$ lie over $J_{\Delta} \in X(1)$.

a) Suppose $N \ge 3$ or Δ is odd. Then

$$\mathbb{Q}(P) = K(J_{N^2\Delta})K^{(N)},$$

so $\mathbb{Q}(P) \supset K$. Also $[\mathbb{Q}(P) : \mathbb{Q}] = 2h_{\Delta} \# (\mathcal{O}/N\mathcal{O})^{\times}$.

b) If N = 2 and $\Delta < -4$ is even, then $\mathbb{Q}(P) \cong \mathbb{Q}(J_{4\Delta})$, so $\mathbb{Q}(P)$ does not contain K.

So the answer to the splitting problem in the (easiest!) case of X(N) is a generalization of the **First Main Theorem of CM**.

Invisible Volcanoes

(CM) Torsion on Elliptic Curves over Number Fields

Pete L. Clark

In recent work on **isogeny volcanoes** I've solved the splitting problem for $X_0(N)$ and $X_0(2, 2N)$ when $\Delta_K \neq -3, -4$.

Every field $\mathbb{Q}(P)$ for $P \in X_0(N)$ or $X_0(2, 2N)$ lying over J_{Δ} is of the form $\mathbb{Q}(J_{n^2\Delta})$ or $K(J_{n^2\Delta})$ for some $n \mid N$.

The same methods can treat $X_0(M, N)$ in any case of interest. But the answers get intricate: complete information for $X_0(p^a)$ is recorded in **95 tables**.

For $M \ge 3$, prior work of Bourdon-Clark applies to give slightly less precise results...these are sufficient to compute $\mathcal{T}_{CM}(d)$.

From $X_0(M, N)$ to $X_1(M, N)$

(CM) Torsion on Elliptic Curves over Number Fields

Classifying rational points on $X_0(N)$ is much harder than classifying rational points on $X_1(N)$. "Isogeny Mordell" is wide open.

In this respect the CM case is like Bizarroworld:

Theorem (C-, building on Bourdon-C 2020)

Let $\Delta < -4$. Then $\pi : X_1(M, N) \to X_0(M, N)$ is inert over every Δ -CM point $P \in X_0(M, N)$.

Thus on $X_0(M, N)$ we can determine the number of Δ -CM points and their residue *fields*, which yields on $X_1(M, N)$ the number of Δ -CM points and their *degrees*, which is enough to compute $\mathcal{T}_{CM}(d)$.

What Remains To be Done

(CM) Torsion on Elliptic Curves over Number Fields

Pete L. Clark

I. Solve splitting problem for $\mathbb{Q}(\sqrt{-1})$, $\mathbb{Q}(\sqrt{-3})$ -CM points. **II.** Actually apply this work to compute $\mathcal{T}_{CM}(d)$ for various *d*'s. **III.** Find **infinite** families of *d* on which $\mathcal{T}_{CM}(d)$ can be computed uniformly. Examples of uniformity:

Theorem (Bourdon-C-Stankewicz 2017)

For all primes $p \ge 7$, we have $\mathcal{T}_{CM}(p) =$

 $\mathcal{T}_{\mathsf{CM}}(1) = \{\bullet, \ \mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/3\mathbb{Z}, \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/6\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \}.$

Theorem (Bourdon-Pollack 2017)

Determination of $\mathcal{T}_{CM}(d)$ for all odd d.

Theorem (Chaos 2020 Masters Thesis)

Determines $T_{CM}(2p)$ for all odd primes p. Depends on whether 2p + 1, 4p + 1, 6p + 1 are prime.