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Bas Edixhoven

I learnt with great sadness of Bas passing on from Ronald van
Luijk. I had spoken to Bas a few months ago via Zoom and he
seemed his usual self to me. We had spoken after a long time,
although he did give a seminar at UCLA via Zoom during the
pandemic. His illness and eventual succumbing to it this
January, after a very short illness, came as a great shock. He
was not yet 60.



I knew of Bas since 1991, when I was a second year graduate
student at Caltech. I had gone to an AMS meeting on Serre’s
conjecture in San Francisco, and Bas spoke there on his very
recent proof of the weight part of Serre’s conjecture. Bas’s work
was very prominent at that AMS session which had many of the
leaders of the subject speaking in it like Gross, Ribet,... I
understood very little of the mathematics, but was dazzled by it
and the personalities of the mathematicians present. It left me
determined and inspired to understand the subject.



Bas gave a brilliant talk, and this was the first of his talks that I
enjoyed over the years. They were always enlightening and
taught me something every time. I wrote him around then to
send me his thesis on stable reduction of modular curves (and
his use of it to prove the then best known results about the
Manin constant) and he sent me his beautifully bound and deep
work which he never fully published I think.



The depth and sureness of his understanding of arithmetic
geometry impressed and thrilled me. He was ever willing to talk
about mathematics and other things and give a patient ear to
questions others asked. Unlike many researchers he was not
just focused on his own work but also wanted to help others to
do their best mathematics. The human side of him was
something that drew me to him, he had a rare quality of
empathy which came through in his conversations. His
contribution to the community from his taking care of
Compositio Mathematica for a number of years is of course
widely known and valued in the mathematical world.



Bas came to visit TIFR, Mumbai for a few weeks around 1996
or so. I worked there at the time and I greatly enjoyed his visit.
He gave scintillating lectures (perhaps on the Andre-Oort
conjecture and his proof of it for the product of modular curves).



I invited him over for a lunch at my parents’ flat in Bombay
which was right on the Arabian Sea (on Worli Seaface). I think
he enjoyed the visit and the warm, even slightly excessive and
grand, hospitality of an Indian home. Meeting my father then
seemed to have left an impression on Bas. (My father who led
a large accountancy firm in Bombay that he had built up from
scratch left an impression on most people he met. ) My father
asked Bas about my prospects in mathematics which seemed
very uncertain then. Bas liked reminding me of his visit to our
flat, and also recounting the story to anyone who knew me
when they met him!



I visited Bas in Rennes around 2000 or so (perhaps slightly
later) through an Indo-French program (I was still working at
TIFR then) and that’s where we wrote our one paper together.

It was a short note about finding a cohomological explanation
why mod p modular forms in weight 2 also occur in weight p + 1
(multiplication by the Hasse invariant).

This suggests that for integers N prime to p there is an injective
map

H1(Γ0(N),Fp)→ H1(Γ0(N), Symmp−1(F2
p))

which is puzzling as at the level of the locally constant
sheaves/coefficients, Fp and Symmp−1(F2

p) are distinct
irreducible representations of GL2(Fp).



We found that the explanation lies in considering maps induced
from X0(Np)→ X0(N) by the pth degeneracy map z → pz.
This gives a map H1(Γ0(N),Fp)→ H1(Γ0(Np),Fp).

A version of Shapiro’s lemma gives that:

H1(Γ0(Np),Fp) ' H1(Γ0(N),Fp[P1(Fp)]).

One further observes that as GL2(Fp)-modules

Fp[P1(Fp)] = Fp ⊕ Symmp−1(F2
p).



A version of Ihara’s lemma gives that the composition of maps

H1(Γ0(N),Fp)→ H1(Γ0(Np),Fp) ' H1(Γ0(N),Fp⊕Symmp−1(F2
p))

→ H1(Γ0(N), Symmp−1(F2
p))

where the last map is induced by projection, is injective.

Thus we get the desired injective map

H1(Γ0(N),Fp)→ H1(Γ0(N), Symmp−1(F2
p))



Computational aspects of the Langlands program

I now want to talk about Bas’s book “Computational aspects of
modular forms and Galois representations” ( how one can
compute in polynomial time the value of Ramanujan’s τ at a
prime) which was edited by Jean-Marc Couveignes and Bas
Edixhoven.



In the introduction he starts with the observation:
There is a deterministic algorithm, that on input positive
integers N, k ≥ 2, computes T(N, k): it gives a Z-basis and the
multiplication table for this basis, in running time polynomial in
N and k. Moreover, the Hecke operator Tn can be ex- pressed
in this Z-basis in deterministic polynomial time in N, k ,n.



Then he describes the main result of the book which improves
on the above result (for level N = 1).
Let us now state one of the main results in this book, Theorem
15.2.1: Assume that the generalised Riemann hypothesis
(GRH) holds. There exists a deterministic algorithm that on
input positive integers n and k, together with the factorisation of
n into prime factors, computes the element Tn of T(1, k) in
running time polynomial in k and log n.



Schoof’s algorithm and Galois representations associated to
modular forms reduces this to proving the following:

There is a deterministic algorithm that on input a positive
integer k, a finite field F, and a surjective ring morphism f from
T(1, k)→ F such that the associated Galois representation
ρf : GQ → GL2(F) is reducible or has image containing SL2(F),
computes ρf in time polynomial in k and #F.

Bas deduces as a consequence:
For p prime, Ramanujan’s τ(p) can be computed in time
polynomial in log p.



Bas’s hope and philosophy for computational
Langlands program

Bas goes on to say:
More generally, we hope that non-solvable global field
extensions whose existence and local properties are implied by
the Langlands program can be made accessible to computation
and so become even more useful members of the society of
mathematical objects. Explicit descriptions of these fields make
the study of global properties such as class groups and groups
of units possible. Certainly, if we only knew the maximal abelian
extension of Q as described by general class field theory, then
roots of unity would be very much welcomed.



I want to start from scratch and talk about Ramanujan’s
τ -function, and explain how Serre’s modularity conjecture is
used to justify a step in the proof of:
For p prime, Ramanujan’s τ(p) can be computed in time
polynomial in log p.
Here one is starting with the Ramanujan ∆ function, which is a
modular form, but yet needs Serre’s conjecture to verify the
algorithm to compute the Fourier coefficients of ∆ (which are
the τ(p)).



Modular forms of level one

We consider the space Mk = Mk (SL2(Z),C) of modular forms
of weight k for the group SL2(Z), or level one. These are
holomorphic functions f defined on the upper half plane
H = {z ∈ C : Im(z) > 0}, with the following properties:

They have a Fourier series expansion f (z) =
∑

n≥0 anqn

with q = e2πiz , and an ∈ C, that is absolutely convergent for
|q| < 1.
f (−1

z ) = zk f (z).



We deduce from this that

f (
az + b
cz + d

) = (cz + d)k f (z)

for all (
a b
c d

)
∈ SL2(Z).

We consider the subspace Sk = Sk (SL2(Z),C) of Mk cut out by
the condition that a0 = 0 (limy→+∞f (iy) = 0).
This is a co-dimension one subspace of Mk whenever Mk 6= 0.
We see easily that Mk = 0 unless k ≥ 0 is an even integer.
Further M2 is 0, and Mk 6= 0 for even k ≥ 4.



Eisenstein series

For any even integer k ≥ 4 one can write down a modular form
of weight k :

Gk (z) = −Bk/2k +
∑
n≥1

σk−1(n)qn = ζ(1−k)/2 +
∞∑

n=1

σk−1(n)qn.

Here Bk is the k th Bernoulli number

t
1− et =

∑
k

Bk tk/k !;

and σk−1(n) =
∑

d |n dk−1.



We define the normalized Eisenstein series of weight k and
level 1,

Ek (z) = −2k
Bk

Gk (z) = 1− 2k
Bk

∑
σk−1(n)qn.

In particular:
E4 = 240G4 = 1 + 240

∑∞
n=1 σ3(n)qn

E6 = −504G6 = 1− 504
∑∞

n=1 σ5(n)qn

The series E4 and E6 were denoted by Q and R by Ramanujan.
We have that Mk = C.Ek ⊕ Sk .



The algebra of modular forms

We can consider the algebraM = ⊕Mk (SL2(Z),C) of modular
forms of all weights and level 1. This is a graded algebra, and is
the polynomial algebra C[Q,R] where Q and R have weights 4
and 6 respectively. For example

E8 = Q2

E10 = QR

E12 =
441Q3 + 250R2

691

One may compute the dimensions of Mk as C vector spaces for
instance using the Riemann Roch theorem and the dimension
is roughly k/12.
Sk (SL2(Z)) = 0 for k < 12 and S12(SL2(Z)) is one dimensional,
and = C.∆ where ∆ is the famous Ramanujan ∆ function.



∆-function

The Ramanujan ∆ function is defined by

∆ =
Q3 − R2

1728
= qΠ∞n=1(1− qn)24 =

∞∑
n=1

τ(n)qn

with q = e2πiz .
It is up to scalars the unique cusp form of weight 12 on SL2(Z).
The Fourier coefficients τ(n) are the Ramanujan τ -function.
Ramanujan conjectured

1 τ(mn) = τ(m)τ(n) when m,n are coprime integers.
2 τ(pn+1) = τ(pn)τ(p)− p11τ(pn−1) for n ≥ 1
3 |τ(p)| ≤ 2p

11
2



Hecke operators

The first two statements were proved by Mordell soon after
Ramanujan conjectured them.
He defined operators Tn (later called Hecke operators!) on
Mk (SL2(Z)) and Sk (SL2(Z)) for each n ≥ 1 that commute with
each other and can be diagonalised. They satisfy the
multiplicativity properties:

Tmn = TmTn for (m,n) = 1
Tpn+1 = TpnTp − p11Tpn−1 for n ≥ 1



Further if f ∈ Sk is an eigenform for all the Tn then a1 6= 0 and if
we normalize it to be 1, then f |Tn = anf .
The Eisenstein series Gk are (Hecke) eigenforms for Tn with
eigenvalues σk−1(n).



The operators T` for ` primes are defined by

f |T` =
∑

n

an`qn + `k−1
∑

n

anq`n.

As ∆ is the unique cusp form of weight 12, it is an eigenform for
the Hecke operators T` for each prime `, where the action of T`
is given by:

∆(z)|T` = Στ(n`)qn + `11Στ(n)qn`.

The fact that ∆ is an eigenfunction means that

∆(z)|T` = τ(`)∆(z).

Thus we deduce the multiplicativity properties of τ(n) that were
conjectured by Ramanujan as a consequence of the properties
of the operators Tn.



L-function

Consider the L-function

L(∆, s) =
∞∑

n=1

τ(n)

ns

attached to the ∆-function. The multiplicativity properties of
τ(n) are equivalent to the Euler product expansion

L(∆, s) = Πp
1

1− τ(p)p−s + p11−2s .

Hecke proved that the completed L-function
Λ(∆, s) = (2π)−sΓ(s)L(∆, s) has the functional equation
Λ(12− s) = Λ(s) as a consequence of ∆(−1

z ) = z12∆(z).



The third property conjectured by Ramanujan turned out to be
much deeper and was proved by Deligne only in the early
1970’s.
Note that the “almost as good” bound τ(p) = O(p6) is easy
(deduced from the maximum modulus principle). Hardy was
slightly skeptical about the importance of the sharpening that
Ramanujan conjectured.
“We seem to have drifted into one of the backwaters of
mathematics.”
Hardy qualified this by saying that the problem “might have
some features which made it not unworthy of Ramanujan’s
attention”.
The conjecture, and its natural generalizations, has turned into
one of the central problems in the theory of authomorphic
forms.



Congruences for the τ -function

Ramanujan also discovered a remarkable congruence for τ(n):

τ(n) ≡ σ11(n) (mod 691).

Here it is relevant to note that 691 divides the numerator of B12
which is the numerator of the constant term of G12.



There were other similar congruences for ` = 2,3,5,7,23,691.
We call these the exceptional primes (for the Ramanujan
∆-function).
The congruence for ` = 23 is a little different from that for the
other exceptional primes. For p 6= 23:

τ(p) = 0 (mod 23) if ( p
23) = −1

τ(p) = 2 (mod 23) if p = u2 + 23v2

τ(p) = −1 (mod 23) otherwise.
The explanation for these congruences, given by
Swinnerton-Dyer and Serre, and the Ramanujan bound, proved
by Deligne, lay in the Galois representations attached to ∆.



Galois representations

Let GQ be the absolute Galois group of Q.
For each prime `, Deligne constructed a Galois representation

ρ∆,` : GQ → GL2(Z`),

that is irreducible for all `, and unramified outside `. Deligne
proved the existence of these representations shortly after they
were conjectured to exist by Serre in his article in Séminaire
Delange-Pisot-Poitou of 1967-68.
The representation is characterised for by the property that the
characteristic polynomial of ρ∆,`(Frobp) for all primes p 6= ` is
X 2 − τ(p)X + p11.



Work of Eichler and Shimura

Such representations attached to new forms of weight k ≥ 2
and level N had been constructed by Eichler and Shimura in
the 1950’s using the `-adic Tate module of Jacobians J1(N) of
modular curves X1(N)/Q. This is also the dual of the étale
cohomology group H1

et (X1(N),Z`).



Ramanujan’s conjectured bound on τ(p)

The sequence of numbers {τ(p)} now acquire a meaning as
traces of the representation ρ∆,`.
Even for ` = p one can interprete τ(p) as the trace of the
crystalline Frobenius acting on Dcris(ρ∆,p|Gp ) with Gp a
decomposition group at p in GQ.
Deligne realized the representations ρ∆,` inside the `-adic étale
cohomology

H1
et (P1(j),Symm10(Z2

` )),

interpreted τ(p) as the trace of Frobenius at p acting on this
cohomology group, and deduced the Ramanujan bound

|τ(p)| ≤ 2p
11
2

as a consequence of his proof of the Weil conjectures.



Serre in his article in DPP had shown how the existence of ρ∆,`

could help in understanding the congruences for τ(n).
Swinnerton-Dyer showed that the image of ρ∆,2 is a subgroup
of GL2(Z2) of index 3.225 which explained the congruence of
Lehmer:

τ(p) ≡ 1 + p11 + 8(41 + x)(p − x)2+x

modulo 211 with x = (−1)
p−1

2 .



Congruence mod 691

The congruence mod 691 is equivalent to the fact that
ρ̄∆,691 : GQ → GL2(F691) is of the form(

1 ∗
0 χ11

691

)
.



Congruence mod 23

The congruence in the case of ` = 23 is accounted for by the
fact that ρ̄∆,23 is an induced representation IndQ

Q(
√
−23)

(ψ)

where ψ is one of the two (conjugate) characters of GQ(
√
−23) of

order 3 into F∗529.



Images of ρ∆,`

Swinnerton-Dyer and Serre proved in that the representation
ρ∆,` has large image, i.e., ρ∆,`(GQ) contains SL2(Z`) for `
different from 2,3,5,7,23,691, and has open image in GL2(Z`)
for all `.
The key step was to prove that the mod ` image contains
SL2(F`) for these primes. Then one can use:

Lemma
For ` > 3, a closed subgroup of GL2(Z`) that contains SL2(F`)
in its reduction mod `, contains SL2(Z`).



Mod ` modular forms and Ramanujan’s Θ-operator

In proving their results about the mod ` images of the Galois
representations attached to the ∆-function, the main tool Serre
and Swinnerton-Dyer used was the study of congruences
between modular forms which has been an intense focus of
research ever since.
We consider the set of (`-integral) modular forms of weight k
and level one whose Fourier coefficients are `-integral and
denote the reduction by M̄k . We consider the sub algebra M̄ of
F`[[q]] which is the span of M̄k for all k . This is the space of
modular forms mod ` (of level one). We have an inclusion
M̄K → M̄k+`−1 given by multiplication by the Hasse invariant.
One of the basic results is that M̄ = F`[Q̄, R̄]/(A− 1) where
A(Q̄, R̄) = Ēp−1, the Hasse invariant.
This space has a Z/(`− 1)Z-grading M̄ = ⊕i∈Z/(p−1)ZM̄ i .
There is a weight filtration w(f ) for f ∈ M̄, defined as the least
weight k for which f ∈ M̄k if 6= 0 and w(0) = −∞.



One of the key operators on the space M̄ is the Ramanujan
theta operator Θ which on q expansions is given by q d

dq . One
of the key results in the analysis of Serre and Swinnerton-Dyer
is that w(Θ(f )) ≤ w(f ) + `+ 1 with inequality if and only if
`|w(f ) in which case w(Θ(f )) = w(f ) + 2. There is a
cohomological interpretaion of the corresponding map

Θ : H1(Γ0(N), Symmk (F`2))→ H1(Γ0(N), Symmk+`−1(F2
` )),

namely its given by multiplication by X `Y − XY `.



Example of a congruence

Consider the following formal manipulation:

∆(z) = qΠ(1− qn)24 = qΠ(1− qn)2Π(1− qn)22

≡ qΠ(1− qn)2Π(1− q11n)2 (mod 11)

and the latter is the q-expansion of the unique cusp form in
S2(Γ0(11)). This is the ` = 11 case of Serre’s
Hecke-equivariant isomorphism

S`+1(SL2(Z),F`) ' S2(Γ0(`),F`).



Image of ρ̄∆,`

The results Swinnerton-Dyer and Serre proved were:
ρ∆,` is absolutely irreducible and odd, i.e. complex
conjugation is not mapped to a scalar.
For ` 6= 2,3,5,7,691, the reduction ρ̄∆,` is absolutely
irreducible (which by a theorem of Carayol and Serre we
now know means that ρ∆,` has an unique integral model up
to isomorphism).
For ` = 23, ρ̄∆,23 factors through the Hilbert class field of
Q(
√
−23) (which is the splitting field of the polynomial

X 3 − X − 1), and has image isomorphic to S3.
The determinant of ρ∆,` is χ11

` where χ` is the `-adic
cyclotomic character.
For ` 6= 2,3,5,7,23,691, the image of ρ̄∆,` contains
SL2(F`).



This then implies the following theorem which essentially
proves that the congruences that had been found for the
Ramanujan τ function mod 2,3,5,7,23,691 were the only
ones.

Theorem
Given positive integers m,n and integers a,b, such that
(b,n) = 1, and with m not divisible by any of the exceptional
primes, there is set of primes {p} of positive density such that
τ(p) is a mod m and p is b mod n.

Thus a congruence on p (an abelian condition by the
Kronecker-Weber theorem) does not determine any
congruence on τ(p) outside moduli that are not coprime to the
exceptional primes.



If we denote by K∆,` the extension of Q through which ρ̄∆,`

factors then:
1 K∆,` is unramified outside `,∞.
2 We have an embedding

ι` : G∆,`(= Gal(K∆,`/Q)) ↪→ GL2(F`)

that (for ` 6= 2,3,5,7,691) gives an irreducible action of
G∆,` on F2

` .
3 If further ` 6= 23, then the image of G∆,` contains SL2(F`).
4 The determinant of the matrix ι`(c) is −1.
5 The semisimplification of the image of the inertia group at
`, I`, under ι`, is either:
(i) 1⊕ χ̄11

` with χ̄` the reduction of the cyclotomic character
χ`, or
(ii) ψ` ⊕ ψ11

` where ψ` is a fundamental character of level 2
of I`.



Lehmer’s Conjecture

(i) is equivalent, by results of Deligne and Fontaine, to asking
that ` does not divide τ(`). This is a generic condition and
holds true for all primes ` < 7,000,000 and ` 6= 2,3,5,7,2411 .
The only solutions up to 1010 to the equation τ(`) = 0 (mod `)
are ` = 2,3,5,7,2411, and 7,758,337,633.
Lehmer has conjectured that τ(`) 6= 0 for all `. One knows this
is true outside a density 0 set of primes. The congruences
satisfied by τ(`) show that the smallest value of ` for which
Lehmer’s conjecture might fail is large.



Serre’s modularity conjecture

A rough version of Serre’s conjecture would ask that any K/Q
that verifies (1), (2), (4) and (5) arises from the Ramanujan
∆-function, i.e., K = K∆,`. This was proved in joint work with
Jean-Pierre Wintenberger (thus in particular no such K exists
for ` = 2,3,5,7,691) and was the initial breakthrough in our
work on the conjecture.
If we drop (5), then the conjecture says that K arises from a
suitable newform of level 1 and of a weight which depends on
ι`(I`).
When we drop (1) then the conjecture predicts that K arises
from a newform of level N and weight k , with the numerical
invariants defined by Serre using the ramification data of K .



Numerical example

For ` = 11, if we have an irreducible odd representation
ρ : GQ → GL2(F11) unramified outside 11 and satisfying the
conditions on inertia at 11 as above, then Serre’s conjecture,
and the congruence recalled above, predicts that ρ arises from
the 11-torsion of the elliptic curve over Q of smallest conductor,
namely 11. This is the curve given by the equation

y2 + y = x3 − x2 − 10x − 20.

The Ramanujan ∆-function is significant in another way: it
gives rise to the smallest rank 2 motive M∆ over Q with good
reduction everywhere. Here size is measured by the Hodge
type which for M∆ is (11,0) and (0,11).



Bosman’s computation of ∆ mod `

The explicit computation of the K∆,`’s, or the subfield which
corresponds to the fixed fixed of the center of the Galois group,
for small primes ` in the book is done in Chapter 7: Polynomials
for projective representations of level one forms written by J.
Bosman. It is a step in computing explicitly the mod ` Galois
representations arising from ∆. There we find the following
result.

Corollary 3. Let ρ̃ : GQ → PGL2(F) be an irreducible projective
representation and let ρ be a lifting of ρ̃ of minimal Serre weight
k(ρ). Let K be the number field belonging to a point of P1(F). If
k ≥ 3 is such that v`(Disc(K/Q)) = k + `− 2 holds, then we
have k(ρ) = k .



Bosman relying on earlier work in the book and using the fact
that ∆ mod ` also arises from the mod ` space of modular
forms S2(Γ0(`), ω10

` ) writes down candidate polynomials P12,`
(for ` = 11,13,17,19) of degree `+ 1 whose splitting field K`/Q
he can verify has:

(i) Galois group PGL2(F`);
(ii) K` is unramified outside ` and is not totally real;
(iii) the subfield K of K`, of a Borel subgroup of PGL2(F`)
which corresponds to a point of P1(F`), satisfies
v`(Disc(K/Q)) = `+ 10.



Essentially one can verify only ramification properties of K` and
Bosman uses that to tie the field to ∆ mod ` as follows.
From the above he checks that K` arises from a Galois
representation ρ : GQ → GL2(F) with Serre invariants
k(ρ) = 12,N(ρ) = 1. Serre’s conjecture implies that ρ arises
from S12(SL2(Z),C) which is spanned by ∆. Thus the fixed field
of K∆,` under the center is K`!



Counting mod ` Galois representations

The number of semisimple mod ` Galois representations
ρ : GQ → GL2(F`) arising from modular forms of level one is
finite. Serre in his DPP article shows this by observing that any
such representation arises from

Wk = Mk+`−1(SL2(Z),F`)/Mk(SL2(Z),F`)

for some integer k ≥ 2. The dimensions of Wk are bounded
and roughly of size `/12. Thus the fields of definition of such
Galois representations are of bounded degree over F`. Then
the Hermite-Minkowski theorem implies that there are only
finitely many such Galois representations.



Finiteness of Galois representations

This combined with Serre’s conjecture yields the following
corollary.

Corollary. There are finitely many semisimple Galois
representations ρ : GQ → GL2(F`) that are unramified outside `
and odd.



Mass formula for mod ` Galois representations

How many such Galois representations are there?
The reducible ones are easy to count: they are of the form
χi
` ⊕ χ

j
` with 0 ≤ i , j ≤ `− 2, and i + j odd.

For ` ≤ 7, there are no such irreducible representations.
For ` = 11, there are exactly 10 such representations.
In general I conjecture that there are roughly `3/48 such
representations.



Heuristic

This number is arrived at by computing

(`− 1)Σ2≤k≤`+1 dim Sk (SL2(Z),F).

Recall that up to twisting by powers of the mod ` cyclotomic
character χ` (or up to applying powers of the Ramanujan
operator Θ), any Galois representation as above (or any level 1
mod ` Hecke eigensystem) arises from `-restricted weights
between 2 and `+ 1. This shows that the conjectured number
gives an upper bound. The best lower bound is `2/8.



The conjecture is premised on:
(i) there are few congruences mod ` between modular
forms of level 1 and equal weights in the “`-restricted”
range of weights ;
(ii) Most of the mod ` Galois representations
ρf : GQ → GL2(F) arising from modular forms f of level 1
and `-restricted weights are wildly ramified at `. Namely
most such f do not have a “companion form”.

There are interesting computations and theoretical results
proved about this by Tommaso Centeleghe.



End

Thank you for your attention!


