Integral points on elliptic curves
Elliptic curve $/ \mathbb{Q} \quad E: y^{2}=x^{3}+A x+B, \quad A, B \in \mathbb{Z}$
Assume $p^{4} \mid A \Rightarrow p^{6} \notin B \quad$ (quasi minimal)
$\Delta(E)=-16\left(4 A^{2}+27 B^{3}\right) \neq 0$
Integral points $E(\mathbb{Z})=\left\{(x, y) \in \mathbb{Z}^{2}: y^{2}=x^{3}+A x+B\right\}$
Theorem (Mordell) \#E(Z) is finite
Conjecture (lang) $\# E(\mathbb{Z})$ can be bounded above only in terms of $r=\operatorname{rank} E(\mathbb{Q})$
 (Spiro ratio)
Average / density results
Order by height $H(E)=\max \left(4|A|^{3}, 27 B^{2}\right)$
Theorem (Alpoge)(1) 100% of, curves satisfy \#E(Z) $<3^{n}$
(2) $\overline{A v}(\# E(\mathbb{Z}))=\limsup _{N \rightarrow \infty} \frac{1}{\#\{H(E) \leq N\}} \sum_{H \in(\in) \in N} \# E(\mathbb{Z})<66$

Idea Average pointwise bound (1) then apply $\overline{\operatorname{Av}}\left(5^{r}\right) \leqslant \operatorname{Av}(5-S e(m e r)=6 \quad$ (Bhargava-Shankar)
conjecture (1) 100% of curves $\# E(Z)=0$
(2) $A v \# E(\mathbb{Z})=0$

Note (2) $\Rightarrow 12$
Expect the conj. to hold for any "reasonable family after removing any "trivial" points

Related open question: Estimate $\quad\{E|Q:|\Delta(E)| \leqslant N\}=0(N)$ Equivalent to counting integral points $y^{2}=x^{3}-1728 \Delta,|\Delta| \leqslant N$ Heurbtius (Brumer - McGuiness) $\sim C N^{5 / 6}$

Restricting to quadratic twits families
Fix $E: y^{2}=x^{3}+A x+B$, consider $E_{d}: y^{2}=x^{3}+A d^{2} x+B d^{3}$
Order by size of $d \in \mathbb{Z}, d>0$ sqfree
Define the non-twwial integral points $E^{*}(\mathbb{Z}):=\{(x, y) \in E(\mathbb{Z}): y \neq 0\}$
Example $E_{d}: y^{2}=x^{3}-d^{2} x, \quad(0,0),(\pm d, 0) \in E_{d}(\mathbb{Z})$
Conjecture Fix E, (D) 100% of E_{d} satisfy \# $E^{*}(\mathbb{Z})=0$
(2) $\operatorname{Av}\left(\# E_{d}^{*}(\mathbb{Z})\right)=\lim _{N \rightarrow \infty} \frac{1}{\#[d \leq N \text { softie }\}} \sum_{\substack{d \leq N \\ \text { squire }}} \# E_{d}^{*}(\mathbb{Z})=0$

Theorem (Matscke-Mudigonda) Suppose $x^{3}+A x+B$ is reducible/仅 then $a b c$ conjecture implies a version of (1)
Theorem (C.) Let $E_{d}: y^{2}=x^{3}-d^{2} x . \sum_{\substack{ \\\text { sqfiree }}} \# E_{d}^{*}(\mathbb{Z}) \ll N(\log N)^{-\frac{1}{8}+\varepsilon}$
so $A v\left(\# E_{d}^{*}(\mathbb{Z})\right)=0$
Proof for $E_{d}: y^{2}=x^{3}-d^{2} x$
Theorem (Heath-Brown) $\mathrm{Av}\left(\mathrm{Sel}_{2}\left(\mathrm{Ed}_{d}\right)^{k}\right) \sim C_{k}$ Combine with known cases of Lang's conjecture

$$
\# E(\mathbb{Z}) \ll C^{r}
$$

Since rank $\leqslant 2$-selmer rank, $\quad C^{r} \leqslant\left(\operatorname{Sel}_{2}\left(E_{d}\right)\right)^{k}$ as long as k is large enough.
Then $\overline{A_{v}}\left(\# E(\mathbb{Z})^{k}\right)$ are all bounded interms of k Mordell correspondence

$$
\{(E,(x, y)):(x, y) \in E(\mathbb{Z})\} \longleftrightarrow\left\{\begin{array}{l}
f(X, Y)=X^{4}+6 c x^{2} Y^{2}+8 d X Y^{3}+e y^{7} \\
c, d, e \in \mathbb{Z}, \quad e=c^{2} \bmod 4 \\
\Delta(f)=2^{8} \Delta(E)
\end{array}\right\}
$$

$\left(\begin{array}{c}S L_{2}(\mathbb{Z}) \text { - equivalence of integral binary quartic forms } \\ \text { classes } \\ \text { that represents } 1\end{array}\right) ~$
Δ-reducing Lemma Suppose $(x, y) \in E_{d}(\mathbb{Z})$, take f to be the quartic form in the image of (x, y)
Let p be a prime $|p| d, ~ p x 6 x$.
Then $\exists k \in \mathbb{Z}$ such that
$F(X, Y)=\frac{1}{p^{3}} f(p(p+k Y, Y)$ is a int. binary quartic
with - $\Delta(F)=\frac{\Delta\left(P^{f}\right)}{p^{6}} \in \mathbb{Z}$, and $\left.\left(\Delta \mathbb{E}_{d}\right)=(2 d)^{6}\right)$

- represents p

Main ideas

$$
\approx \exp \left((\log d)^{\varepsilon}\right)
$$

* Reduce Δ by some large P, then we are left with $o(N)$ quartic forms. For 100% of E_{d}, we can find p of good size for every $(x, y) \in E_{d}^{*}(\mathbb{Z})$ by Heath-Brown.
* Each Δ-reduced form can only be the image of very few integral points.
Thue's inequality $0<|F(x, y)|<h$ have very few solutions as long as h is small relative to Δ.

Cubic twists
Theorem (c.) Fix $k \neq 0,1$ squarefree.
$\begin{array}{r}\text { Let } E_{d}: y^{2}=x^{3}+k d^{2} \\ \text { Then } \#\left\{1 \leqslant d \leqslant N: \quad E_{d}(z)=\phi\right\}\end{array}<_{k} N(\log N)^{-\frac{1}{2}+\varepsilon}$

