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1. Supersingular Isogeny Diffie-Hellman (SIDH)

Jao, De Feo 2011: can we do Diffie-Hellman with subgroups and quotients?

Q E € {abelian groups} ﬁ
chooses

chooses
ACE BCE
E/A
E/B
? ?
. common secret: .
(E/BY/9p(A) = E/(A+B) = (E/A)/pa(B)

1. Supersingular Isogeny Diffie-Hellman (SIDH)

Jao, De Feo 2011: can we do Diffie-Hellman with subgroups and quotients?

Q E € {abelian groups} ﬁ
chooses

1. Supersingular Isogeny Diffie-Hellman (SIDH)
Jao, De Feo 2011: can get around this by using ‘auxiliary points’!
Q E € {abelian groups} ﬁ

Py,Q4,Pp, Q05 €EE o h

chooses b € Z

choosesa € Z
lets A = (P, + aQ,) lets B =(Pz +bQp) | Note: Alice can compute
@p(A) = p({Ps +al4))

chooses
AcCE BCE
k EJA, puiE — E/A l Problem! This reveals

/A, paiE S E/A ] 4= kero, \_ E/A, 94(Pe), 04(Q8)
E/B, ¢5:E—E/B J J B = ker g E/B, @p(Pa), 5(Qa) as (ga(Pa) +a95(Q))

? ? (and likewise for Bob).

. common secret: . common secret:

(E/B)/¢s(A) = E/(A+B) = (E/A)/¢i(B) (E/B)/@p(A) = E/(A+B) = (E/A)/pa(B)
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1. Supersingular Isogeny Diffie-Hellman (SIDH)

Jao, De Feo 2011: concrete proposal (simplified); choose pri

Q E:y*=x%+x € {supersingular ell. curves over F,2}
E[2°] = (P4, Q) E[3f]=<PR/QR>

ensures that torsion is defined over F,2

1. Supersingular Isogeny Diffie-Hellman (SIDH)

Jao, De Feo 2011: concrete proposal (simplified); choose prime p = 2°3/ — 1

Q E:y*=x*+x € {supersingular ell. curves over F,2} ﬁ

E[2°] = (P4, Qa), E[3f]=(PEﬂQE> ¢ D
choosesa € Z chooses b € Z
lets A = (P4 + aQ,) € E[2°] lets B = (P + bQs) S E[37]
computes E/A, 94(Ps), 94(Qs) computes
0a:E—~E/A o5 E~E/B
as a composition of X as a composition of
2-isogenies E/B, ¢5(Pa), ¢5(Q4) 3-isogenies

common secret: j-invariant of
E/BY/os(A) = E/(A+B) = (E/A)/paB)
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1. Supersingular Isogeny Diffie-Hellman (SIDH)

Alice’s isogeny ¢4: E — E /A can be viewed as a secret walk
in the supersingular 2-isogeny graph over F,,.

/—— Ramanujan graph, so:
— i rapid mixing (Pizer 1990)
Key recovery amounts to:

Finding an instance of

@4 (or equiv. A)
when being given
E, E/A, ¢a(P), 9a(Qs)

1. Supersingular Isogeny Diffie-Hellman (SIDH)

Bob’s isogeny ¢p: E — E /B can be viewed as a secret walk
in the supersingular 3-isogeny graph over F,,.
Ramanujan graph, so:

T e - rapid mixing (Pizer 1990)

Keyrecovery amounts to:
Finding an instance of
@p (or equiv. B)
when being given
E, E/B, ¢(Pa), ¢5(Qa)

1. Supersingular Isogeny Diffie-Hellman (SIDH)
Bob’s isogeny ¢p: E > E /B can be viewed as a secret walk
in the supersingular 3-isogeny graph over F,,.

/— Ramanujan graph, so:
rapid mixing (Pizer 1990)

Key recovery amounts to:
Finding an instance of
¢p (or equiv. B)

when being given

E, E/B(g Py, </)R(QA)>

P - . / point images make for an
el S A 4 atypical isogeny problem

1. Supersingular Isogeny Diffie-Hellman (SIDH)

Quick timeline:
» 1994 Shor: factoring and discrete logs are easy for quantum computers,

» 1997 Couveignes: isogeny-based key exchange from class group actions on
ordinary elliptic curves (rejected and circulated among some experts),

» 2006 Rostovtsev-Stolbunov: rediscover and improve this construction and
suggest post-quantum security,

v

2006 Charles-Goren-Lauter: hash function from supersingular isogeny graphs,

2010 Childs-Jao-Soukharev: quantum attack on the
Couveignes-Rostovtsev-Stolbunov protocol with runtime L(1/2),

» 2011 Jao-De Feo: respond with SIDH, —_

A4

best attack at time of proposal:
claw-finding
0(p/*) classical and O (p*/®) quantum (Tani) ./
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1. Supersingular Isogeny Diffie-Hellman (SIDH)
Quick timeline:
» 2016: SIDH-based system SIKE submitted to NIST standardization process,

» 2017: Petit shows how to exploit auxiliary points for unbalanced 2°, 3/
= improved in 2021 by de Quehen etal.,,
= no impact on SIKE,
» 2020: NIST selects SIKE as an “alternate” round-3 candidate,
> 2022: NIST announces winners and moves SIKE to an extra 4% round,
» 2022: our work breaksall security levels of SIKE in < 1/, day,
asymptotically and heuristically:

modulo precomputable * polytime if starting curve has known endomorphism ring,
factorizations — time L(%/, + €) if not (observation by De Feo, Wesolowski),

» 2022: Robert establishes unconditional polynomial runtime.

2. Recovering Bob’s secret key (easiest and most efficient case)
> Recall: given E,E/B, @5 (Py), p5(Q4), find ¢p. E'
i
allows us to consider subgroup ((P4, 9 (P4)), (04, 95(Q4))) S E X E/B
I I

Py’ Q4 (PR

. L . z z
» This subgroup is isomorphic to 202 X 357
» What happens if we quotient it out via an isogeny?

We want to do this within the category of
principally polarized abelian surfaces.

‘Historical’ note: seeds for this approach lie in a two-year old idea due to Thomas
for the construction of a certain cryptographic functionality from isogenies, so
destruction was never the intention!
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2. Recovering Bob’s secret key (easiest and most efficient case)
» Recall: given E,E /B, ¢ (Ps), p5(Q4), find ¢p. E'
o7V ARTBLCA, o

‘ Il
allows us to consider subgroup (P4, 95 (Pa)), (04, 95(Q4))) S E X E/B
1l 1l

Py’ Q' *(PrRy

) . . z z
— X
» This subgroup is isomorphic to 702 X 2e7

» What happens if we quotient it out via an isogeny?
We want to do this within the category of
principally polarized abelian surfaces.

e.g, imagine we can find x such that x?3/ = —1 mod 2%, then
the modified subgroup (P4, xPy), (04, xQ})) is maximally isotropic

(Proof: e,e(Pa, Qa) - €2¢(XP4, xQ) = €3¢ (Pa, Q) - €26 (P4, Q)%™ = 1)

2. Recovering Bob’s secret key (easiest and most efficient case)
> Recall: given E,E /B, ¢3(Py), 5(Q4), find ¢p. E'
27V AL YBLYA, -

) I
allows us to consider subgroup ((PA,q)B(PA)), (QA,q)B(QA))) CEXE/B
I J!

Py’ Q' (PR

z z
> i isi i — X
This subgroup is isomorphic to 7z X 3e7

» What happens if we quotient it out via an isogeny?
We want to do this within the category of
principally polarized abelian surfaces.

e.g, imagine we can find x such that x?3/ = —1 mod 24, then
the modified subgroup ((P4, xP,), (Q4,xQ})) is maximally isotropic
(. calleda “(2°,2¢)-subgroup”
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2. Recovering Bob's secret key
Resulting (2¢, 2¢)-isogeny decomposes into e (2,2)-isogenies. Typical case:

(2,2) (2,2) (2,2)

However, in very exceptional situations (heuristic probability is 0(1/p)):

(2,2) 2,2) 2,2)

subgroup is called

2. Recovering Bob'’s secret key

Characterization of reducible subgroups (Kani 1997):

Definition:

An isogeny diamond configuration of order N is a triplet (1, G;, G,) with
» ¢ : E > E'isogeny,
» G1,G, S Kkery,
» degi = #Gy - #G,, N =#G, +#G,, G, NG, = {0}.

Theorem (slightly informal) roughly means that
An (N, N)-subgroup of E x E’ is reducible iff it “comes P xi(P x
from” an isogeny diamond configuration of order N. ~~ (( p( ))' (Q' lP(Q)))

for E[N] = (P,Q) and

‘reducible’ appropriate x € Z
15 16
. [10/19] . [11/19]
2. Recovering Bob's secret key 2. Recovering Bob'’s secret key
Back to Bob’s secret isogeny Leads to the following candidate-method for unveiling Bob’s secret walk:
» Force it into an isogeny diamond of order 2°: Vs degree 3/ secret 3-isogenies composing to ¢
itis (g5 ° 7, ker 7,y (B)) 95 : -
E B E. P1 5 P2 5, P3 E, (2 Pr-1 By (73 B
degreec =2° -3/ — v, Py Py = ¢5(Pa) 17 27 Ph=qp(Pa)
(assume positive) Qa Q4 = ¢p(Qa) Qs S p1 e Q4 = 95(Qa)
c . I
Pc=y(Pa) isogeny y Eg' T eeeoes -
Qc=v(Qa) of degy Pi = ¢i1(P4)  if guess is correct, then:
e _3f-1 0f=0{(Q) > g ! via i f-1
» By Kani’s theorem, the subgroup ((P, 1), (Q¢c, Q1)) € C X E' is reducible 2-3 ! ! > Ey connected to " via isogeny of degree 3

> Keyidea:if P}, 0, were not the images of P,, 0, under a degree-3/ isogeny, then
with overwhelming probability this does notresult in a reducible subgroup!

c R > this isogeny maps P{ ~ P; and Q] ~ Q}
Pe i (P 17) so: build auxiliary isogeny y and check reducibility
Qc =v(Q1) of the subgroup ((P¢, P1), (Q¢, Q1)) € C X E'.
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2. Recovering Bob's secret key [12/19] 2. Recovering Bob's secret key (11729
Leads to the following candidate-method for unveiling Bob’s secret walk: Leads to the following candidate-method for unveiling Bob’s secret walk:
secret 3-isogenies composing to ¢y secret 3-isogenies composing to ¢y
, m - \ , : " - \
P @1 E, P2 E @3 5 4 Pr-1 Ef,l—"L" 5 5 91 K, 2 E 3 , 4 Pr-1 oy _‘PL B
Py % 77 Pi=p(P) Py % 7 Ph=p(Pa)
~ ? ke ’ ~ ? ‘- ’
Qa Nz Q4 = ¢5(Qa) Qa N2 o0 Q=9sQ)
_ B o . El-el . o
isogeny y isogeny y --
of degree Pz'z = (P%(éﬂl(PA)) of degree Pé: = ‘P%(wz (@:1(P2)))
2¢ —3/~2 Q2 = ¢2(¢1(Q)) 2¢—3/=3 Q3 = ¢3(92(91(Qa))
4 Cc
Pe =y(Pi:) Pe =y(P3':) and so on...
Qc =v(Q2) Qc =v(Q3)
19 20
3. Constructing the auxiliary isogeny y [12/19] 3. Constructing the auxiliary isogeny y
At iteration i: want to construct an isogeny At iteration i: want to construct an isogeny
E—— Ei_q1. E—— + ——E;;_
&= [u]+i[v] e=lu] +i[v] Fogot

isogeny 7
with ker ¥ = e(ker )

T \‘Ef
/— degree ¢ = 2° — 3/t
C

> that E : y? = x® + x comes equipped withi: E - E : (x,y) » (—x,iy)

We know:
> apatht:E - E}.

Hope: ¢ = 2¢ — 3/~t = 42 + v? = (u + iv)(u — iv) for certain integers u, v.

isogeny T
with ker ¥ = e(ker 1)

We know:
> apatht:E - E}.
> thatE : y% = x® + x comes equipped withi: E - E : (x,y) » (—x,1iy)

Hope: ¢ = 2¢ — 3/t = u? + v? = (u + iv)(u — iv) for certain integers u, v.

21
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3. Constructing the auxiliary isogeny y
Hope: ¢ = 2¢ — 3/~! = u? + v? = (u + iv)(u — iv) for certain integers u, v.

» Cost of deciding existence of u, v and finding them:
= factoringc,
= Euclid’s algorithm over Z[i] (special case of Cornacchia)

v

Note: only depends on system parameters, not on concrete SIDH instance.
» If c does not admit decomposition: create more leeway by

= reducing e (2¢-torsion info implies 2¢~/-torsion info),

= increasing f — i (extend Bob's secret walk if useful).

A4

In practice:
= need to guess first degree-3! component so that 2¢ > 3/,
= from that point onwards: can guess one degree-3 component at a time.

» Altogether, attack runs heuristically in time L(1/4), modulo precomputation.

3. Constructing the auxiliary isogeny y

What about other starting curves than £ : y2 = x3 + x ?

Known endomorphism ring:
> SIKE uses E : y? = x® + 6x? + x which carries endomorphism 2i: same works
» more general: approach works if End(E) contains small-norm endomorphism
> totally general: walk to appropriate curve with small-norm endomorphism
— selecting best curve leads to heuristic polynomial time (mod factoring)

Unknown endomorphism ring:
> auxiliary isogeny can always be constructed if c = 2¢ — 3/~ is smooth
> create more leeway by considering ¢ = d2¢7/ — d'3/~
guess action on d-torsion k__. extend Bob’s walk
rely on smaller torsion info

23
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4. Checking reducibility

(2.2)
)~

(2,2) (2,2) ]
division by 0
during Richelot

“gluing” formulae due to 2,2)
Howe, Leprévost, Poonen 2000

Richelot isogenies
(classical and very efficient)

4. Checking reducibility @2

P

» Glimpse at Richelot:

Write H; : y2 = f(x).

Our (2,2)-subgroup { [(ay,0) = (81, 0)], [(@2,0) — (B2, 0)], [(a3,0) — (B5,0)],0}
yields factorization

f(x) = (g12x* + g11X + g10) - (g22%® + garx + g20) - (g32%° + a1 X + ga0)
I I I

Gy (x) Ga(x) Gs(x)
(912 J11 gm)
6 =det{ g2z g21 YJa2o , _1 ag; _ dGy
g3z 931 G3o Gt = B (E 6= G dx

Then Huay 5 y% = G1(0) - G406) - G00). for (i,j, k) = (1,2,3),(2,3,1), (3,1,2)

25
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@2

T~

4. Checking reducibility
» Glimpse at Richelot:
Write H; : y? = f(x).

Our (2,2)-subgroup { [(ay,0) — (81,0)], [(a2,0) — (B2, 0)], [(as,0) — (B5,0)],0}
yields factorization

f®) = (g122% + g11% + g10) * (g22%* + 21X + g2o) - (ga2X* + ga1x + gso)

Il Il Il
Gy(x) G (%) G3(x)

912 911 Y10
& =det (gzz 921 920) " unless 8 = 0 inwhich case we land
932 931 Y30 on a product of elliptic curves

Then Hiyy : y? = G1(x) - G5(x) - G5 (x).

. Implementation

We have implemented the attack in Magma. Current run recovers Bob’s key for
» SIKE level 1 in about 10 minutes,
» SIKE level 2 in about 20 minutes,
> SIKE level 3 in about 1 hour,
» SIKE level 5 in about 3 hours.

Further speed-up through SageMath implementation effort including several
algorithmic improvement by Oudompheng, Panny, Pope, ... (see later) — Magma?

Generalization to other torsion? No theoretical obstructions but more cumbersome:
> attacking Alice’s key requires computing chains of (3,3)-isogenies: explicit
formulae due to Bruin, Flynn, Testa,
» for arbitrary smooth torsion (e.g. as used in B-SIDH): resort to AVIsogenies
package by Bisson, Cosset, Robert.

27

28

1) Direct evaluation approach due to Oudompheng, Petit, Wesolowski (see also
Maino-Martindale): possible to save many (2,2)-isogenies by completing the

6. Improvements and updates

diagram
Now @ factors as:
P
E E' PR
<V PB )
4 Y Y —¢B
Pg: E'——CxE' EXC —E
C—7—¢C Indeed: I
P ~ / ~
X o (0,X) & (@5(X), —95 (X)) = @p(X).

degree ¢ = 2¢ — 3/

6. Improvements and updates

degree c = 2¢ — 3/

1) Direct evaluation approach due to Oudompheng, Petit, Wesolowski (see also
Maino-Martindale): possible to save many (2,2)-isogenies by completing the
diagram

Now @p factors as:

Pp
E — E'

(}7 </33>
y Y Y —¢k

Pp: E'— CXE'

ExC —E

¢ 0 can be verified to:

= bean isogeny of principally polarized
abelian surfaces,
= have kernel

so we can simply evaluate ¢! —— { (3fPr —<PB}7(P)) : PEC[2¢] }

29

30




18/10/2022

1) Directevaluation approach due to Oudompheng, Petit, Wesolowski (see also
Maino-Martindale): possible to save many (2,2)-isogenies by completing the

6. Improvements and updates

diagram
E $s E' Now:
, > evaluate ¢ on basis { X,Y } of E'[3],
4 4 » determine ker ¢ by solving
c c Pp(xX +yY) =xPp(X) +yPp(¥) = o,
@5 » recover B = @p(ker ¢p)

degree ¢ = 2° — 3/

2) Using this and various other speed-ups: SageMath implementation by Pope et al.
has dramatically reduced the attack runtimes. E.g,, SIKE level 1 now falls in 22
seconds.

6. Improvements and updates

3) Wesolowski described a direct way of constructing a degree-c isogeny using
knowledge of the endomorphism ring, without assuming special form of ¢ and
without the need for factorization; leads to polynomial time only assuming GRH.

4) Re: smoothness: using standard heuristics it is easy to obtain L(1/,)-smooth
c=d2¢7) —q'3/

with ¢,d’ € L(*/3). So the algorithm (as does Maino-Martindale’s) breaks SIDH with

unknown endomorphism ring in L(1/, + €). Pointed out by De Feo and Wesolowski.
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5) Beautiful trick by Robert reduces this further to unconditional polynomial runtime.

6. Improvements and updates

Idea: write ¢ = a? + a3 + a% + a3 — Lagrange’s four-square theorem
Explicit check:

a; —Q; —az —Q4
a a;  —aq asz
az Qg a; —az
as —as az a

M= satisfies Mt-M =M -Mt =cl.

M ¢p . A (MY —¢
F= € End(E* X E'*) withdual F = B
(“PB M‘) (EED (‘PE M

satisfies FF = FF = (c + 3/)I = 2°I, soker F < (E* x E"*)[2°] can be computed
from torsion-point info. So we can directly evaluate @ as before.

5) Beautiful trick by Robert reduces this further to unconditional polynomial runtime.

6. Improvements and updates

Idea: write ¢ = a? + aZ + a3 + a§ — Lagrange’s four-square theorem
Explicit check:

a; —az —az —a4
a a;  —a4 az
az aq a; —az
as —az az a

. -
@W € End(E* x E') withdual F = (M “’B)
5 X

_ component-wise evaluation4
satisfies FF = FF = (c + 3/)I = 2¢I,soker F < (E* x E'*)[2¢] can be computed

from torsion-point info. So we can directly evaluate ¢ as before.

satisfies M'-M =M M' =cl.
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Questions?

Thanks for listening!
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