An efficient key recovery attack on

Supersingular Isogeny Diffie-Hellman (j.w. Thomas Decru)

1

1. Supersingular Isogeny Diffie-Hellman (SIDH)

Jao, De Feo 2011: can we do Diffie-Hellman with subgroups and quotients?

2

4

6

7

9

8

1. Supersingular Isogeny Diffie-Hellman (SIDH)

Quick timeline:
> 1994 Shor: factoring and discrete logs are easy for quantum computers,
> 1997 Couveignes: isogeny-based key exchange from class group actions on ordinary elliptic curves (rejected and circulated among some experts),
> 2006 Rostovtsev-Stolbunov: rediscover and improve this construction and suggest post-quantum security,
> 2006 Charles-Goren-Lauter: hash function from supersingular isogeny graphs,
> 2010 Childs-Jao-Soukharev: quantum attack on the Couveignes-Rostovtsev-Stolbunov protocol with runtime $L(1 / 2)$,
>2011 Jao-De Feo: respond with SIDH, $<$ best attack at time of proposal:
$O\left(p^{1 / 4}\right)$ classical and $O\left(p^{1 / 6}\right)$ quantum (Tani) \qquad claw-finding

10

1. Supersingular Isogeny Diffie-Hellman (SIDH)

Quick timeline
> 2016: SIDH-based system SIKE submitted to NIST standardization process,
> 2017: Petit shows how to exploit auxiliary points for unbalanced $2^{e}, 3^{f}$ - improved in 2021 by de Quehen et al.,

- no impact on SIKE,
> 2020: NIST selects SIKE as an "alternate" round-3 candidate,
> 2022: NIST announces winners and moves SIKE to an extra $4^{\text {th }}$ round,
> 2022: our work breaks all security levels of SIKE in $<1 / 2$ day, asymptotically and heuristically:
modulo precomputable ; polytime if starting curve has known endomorphism ring, factorizations - time $L(1 / 2+\varepsilon)$ if not (observation by De Feo, Wesolowski),
$>$ 2022: Robert establishes unconditional polynomial runtime.

2. Recovering Bob's secret key (easiest and most efficient case) $7 / 19$
$>$ Recall: given $\underbrace{E, E / B, \varphi_{B}\left(P_{A}\right), \varphi_{B}\left(Q_{A}\right)}_{\downarrow}$, find φ_{B}. $\quad E^{\prime}$ allows us to consider subgroup $\left\langle\left(P_{A}, \varphi_{B}\left(P_{A}\right)\right),\left(Q_{A}, \varphi_{B}\left(Q_{A}\right)\right)\right\rangle \subseteq E \times E / B$
$>$ This subgroup is isomorphic to $\frac{\mathbf{Z}}{2^{2} \mathbf{Z}} \times \frac{\mathbf{Z}}{2^{{ }^{\mathrm{C}} \mathbf{Z}}}$.
$>$ What happens if we quotient it out via an isogeny? We want to do this within the category of principally polarized abelian surfaces.
'Historical' note: seeds for this approach lie in a two-year old idea due to Thomas for the construction of a certain cryptographic functionality from isogenies, so destruction was never the intention!

12
Recovering Bob's secret key (easiest and most efficient case)
allows us to consider subgroup $\left\langle\left(P_{A}, \varphi_{B}\left(P_{A}\right)\right),\left(Q_{A}, \varphi_{B}\left(Q_{A}\right)\right)\right\rangle \subseteq E \times E / B$

$$
\stackrel{!!}{P_{A^{\prime}}^{\prime}}
$$

$>$ This subgroup is isomorphic to $\frac{\mathbf{Z}}{2^{e} \mathbf{Z}} \times \frac{\mathbf{Z}}{2^{e} \mathbf{Z}}$.
> What happens if we quotient it out via an isogeny? We want to do this within the category of principally polarized abelian surfaces.
 the modified subgroup $\left\langle\left(P_{A}, x P_{A}^{\prime}\right),\left(Q_{A}, x Q_{A}^{\prime}\right)\right\rangle$ is maximally isotropic (Proof: $e_{2^{e}}\left(P_{A}, Q_{A}\right) \cdot e_{2^{e}}\left(x P_{A}^{\prime}, x Q_{A}^{\prime}\right)=e_{2^{e}}\left(P_{A}, Q_{A}\right) \cdot e_{2^{e}}\left(P_{A}, Q_{A}\right)^{x^{2} 3^{f}}=1$.)

13
However, in very exceptional situations (heuristic probability is $O(1 / p)$):

subgroup is called 'reducible'
$(2,2)$
ـ
Resulting $\left(2^{e}, 2^{e}\right)$-isogeny decomposes into $e(2,2)$-isogenies. Typical case:

2. Recovering Bob's secret key

15

2. Recovering Bob's secret key

Leads to the following candidate-method for unveiling Bob's secret walk:

19

3. Constructing the auxiliary isogeny γ

At iteration i : want to construct an isogeny

We know:
$>$ a path $\tau: E \rightarrow E_{i}^{?}$.
> that $E: y^{2}=x^{3}+x$ comes equipped with $\mathbf{i}: E \rightarrow E:(x, y) \mapsto(-x, \mathbf{i} y)$
Hope: $c=2^{e}-3^{f-i}=u^{2}+v^{2}=(u+\mathbf{i} v)(u-\mathbf{i} v)$ for certain integers u, v.
21

3. Constructing the auxiliary isogeny γ

Hope: $c=2^{e}-3^{f-i}=u^{2}+v^{2}=(u+\mathbf{i} v)(u-\mathbf{i} v)$ for certain integers u, v.

- Cost of deciding existence of u, v and finding them:
- factoring c
- Euclid's algorithm over Z[i] (special case of Cornacchia)
> Note: only depends on system parameters, not on concrete SIDH instance.
> If c does not admit decomposition: create more leeway by
- reducing $e\left(2^{e}\right.$-torsion info implies 2^{e-j}-torsion info),
- increasing $f-i$ (extend Bob's secret walk if useful).
> In practice:
- need to guess first degree -3^{i} component so that $2^{e}>3^{f-i}$,
- from that point onwards: can guess one degree- 3 component at a time
$>$ Altogether, attack runs heuristically in time $L(1 / 4)$, modulo precomputation.

2. Recovering Bob’s secret key

Leads to the following candidate-method for unveiling Bob's secret walk:

20

3. Constructing the auxiliary isogeny γ

At iteration i : want to construct an isogeny

We know:
$>$ a path $\tau: E \rightarrow E_{i}$.
$>$ that $E: y^{2}=x^{3}+x$ comes equipped with $\mathbf{i}: E \rightarrow E:(x, y) \mapsto(-x, \mathbf{i} y)$
Hope: $c=2^{e}-3^{f-i}=u^{2}+v^{2}=(u+\mathbf{i} v)(u-\mathbf{i} v)$ for certain integers u, v.
22
3. Constructing the auxiliary isogeny γ

What about other starting curves than $E: y^{2}=x^{3}+x$?
Known endomorphism ring:
> SIKE uses $E: y^{2}=x^{3}+6 x^{2}+x$ which carries endomorphism 2i: same works
> more general: approach works if $\operatorname{End}(E)$ contains small-norm endomorphism
> totally general: walk to appropriate curve with small-norm endomorphism
ζ selecting best curve leads to heuristic polynomial time (mod factoring)
Unknownendomorphismring:
> auxiliary isogeny can always be constructed if $c=2^{e}-3^{f-i}$ is smooth
> create more leeway by considering $c=d 2^{e-j}-d^{\prime} 3^{f-i}$
guess action on d-torsion $\quad \longrightarrow$ extend Bob's walk rely on smaller torsion info

24

25

4. Checking reducibility Glimpse at Richelot: Write $H_{i}: y^{2}=f(x)$.	
Our (2,2)-subgroup $\left\{\left[\left(\alpha_{1}, 0\right)-\left(\beta_{1}, 0\right)\right],\left[\left(\alpha_{2}, 0\right)-\left(\beta_{2}, 0\right)\right],\left[\left(\alpha_{3}, 0\right)-\left(\beta_{3}, 0\right)\right], 0\right\}$ yields factorization$f(x)=\left(g_{12} x^{2}+g_{11} x+g_{10}\right) \cdot\left(g_{22} x^{2}+g_{21} x+g_{20}\right) \cdot\left(g_{32} x^{2}+g_{31} x+g_{30}\right)$	
॥	
$G_{1}(x)$	
$\delta=\operatorname{det}\left(\begin{array}{lll} g_{12} & g_{11} & g_{10} \\ g_{22} & g_{21} & g_{20} \\ g_{32} & g_{31} & g_{30} \end{array}\right)$	
Then $H_{i+1}: y^{2}=G_{1}^{\prime}(x) \cdot G_{2}^{\prime}(x) \cdot G_{3}^{\prime}(x)$.	

27
6. Improvements and updates

1) Direct evaluationapproach due to Oudompheng, Petit, Wesolowski (see also Maino-Martindale): possible to save many (2,2)-isogenies by completing the diagram

Now $\hat{\varphi}_{B}$ factors as
$\hat{\varphi}_{B}: E^{\prime} \longrightarrow C \times E^{\prime} \xrightarrow{\left(\begin{array}{cc}\hat{\gamma} & \hat{\varphi}_{B} \\ \gamma^{\prime} & -\varphi_{B}^{\prime}\end{array}\right)} E \times C^{\prime} \longrightarrow E$
Indeed:
degree $c=2^{e}-3^{f}$

4. Checking reducibility

> Glimpse at Richelot:
Write $H_{i}: y^{2}=f(x)$.

Our (2,2)-subgroup $\left\{\left[\left(\alpha_{1}, 0\right)-\left(\beta_{1}, 0\right)\right],\left[\left(\alpha_{2}, 0\right)-\left(\beta_{2}, 0\right)\right],\left[\left(\alpha_{3}, 0\right)-\left(\beta_{3}, 0\right)\right], 0\right\}$ yields factorization

$$
f(x)=\left(g_{12} x^{2}+g_{11} x+g_{10}\right) \cdot\left(g_{22} x^{2}+g_{21} x+g_{20}\right) \cdot\left(g_{32} x^{2}+g_{31} x+g_{30}\right)
$$

$$
\stackrel{\|}{G_{1}(x)}
$$

$$
G_{2}(x)
$$

$G_{3}(x)$

$$
\delta=\operatorname{det}\left(\begin{array}{lll}
g_{12} & g_{11} & g_{10} \\
g_{22} & g_{21} & g_{20} \\
g_{32} & g_{31} & g_{30}
\end{array}\right) \quad G_{i}^{\prime}(x)=\frac{1}{\delta}\left(\frac{d G_{j}}{d x} G_{k}-G_{j} \frac{d G_{k}}{d x}\right)
$$

$$
\text { Then } H_{i+1}: y^{2}=G_{1}^{\prime}(x) \cdot G_{2}^{\prime}(x) \cdot G_{3}^{\prime}(x) . \quad \text { for }(i, j, k)=(1,2,3),(2,3,1),(3,1,2)
$$

26

5. Implementation

We have implemented the attack in Magma. Current run recovers Bob's key for
> SIKE level 1 in about 10 minutes,
$>$ SIKE level 2 in about 20 minutes,
$>$ SIKE level 3 in about 1 hour,
$>$ SIKE level 5 in about 3 hours.
Further speed-up through SageMath implementation effort including several algorithmic improvement by Oudompheng, Panny, Pope, ... (see later) \longrightarrow Magma?

Generalization to other torsion? No theoretical obstructions but more cumbersome:
> attacking Alice's key requires computing chains of (3,3)-isogenies: explicit formulae due to Bruin, Flynn, Testa,
$>$ for arbitrary smooth torsion (e.g. as used in B-SIDH): resort to AVIsogenies package by Bisson, Cosset, Robert

28

30

6. Improvements and updates

1) Direct evaluationapproach due to Oudompheng, Petit, Wesolowski (see also Maino-Martindale): possible to save many (2,2)-isogenies by completing the diagram

Now:
$>$ evaluate $\hat{\varphi}_{B}$ on basis $\{X, Y\}$ of $E^{\prime}\left[3^{f}\right]$,
$>$ determine ker $\hat{\varphi}_{B}$ by solving $\hat{\varphi}_{B}(x X+y Y)=x \hat{\varphi}_{B}(X)+y \widehat{\varphi}_{B}(Y)=\infty$,
$>\operatorname{recover} B=\hat{\varphi}_{B}\left(\operatorname{ker} \hat{\varphi}_{B}\right)$
degree $c=2^{e}-3^{f}$

31

6. Improvements and updates

5) Beautiful trick by Robert reduces this further to unconditional polynomial runtime. Idea: write $c=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2} \longleftarrow$ Lagrange's four-square theorem Explicit check:

$$
M=\left(\begin{array}{rrrr}
a_{1} & -a_{2} & -a_{3} & -a_{4} \\
a_{2} & a_{1} & -a_{4} & a_{3} \\
a_{3} & a_{4} & a_{1} & -a_{2} \\
a_{4} & -a_{3} & a_{2} & a_{1}
\end{array}\right) \quad \text { satisfies } \quad M^{t} \cdot M=M \cdot M^{t}=c I .
$$

Now

$$
F=\left(\begin{array}{cc}
M & \hat{\varphi}_{B} \\
-\varphi_{B} & M^{t}
\end{array}\right) \in \operatorname{End}\left(E^{4} \times E^{\prime 4}\right) \quad \text { with dual } \quad \hat{F}=\left(\begin{array}{cc}
M^{t} & -\hat{\varphi}_{B} \\
\varphi_{B} & M
\end{array}\right)
$$

satisfies $\hat{F} F=F \hat{F}=\left(c+3^{f}\right) I=2^{e} I$, so $\operatorname{ker} F \subseteq\left(E^{4} \times E^{\prime 4}\right)\left[2^{e}\right]$ can be computed from torsion-point info. So we can directly evaluate φ_{B} as before.

33
6. Improvements and updates
2) Using this and various other speed-ups: SageMath implementation by Pope et al. has dramatically reduced the attack runtimes. E.g., SIKE level 1 now falls in 22 seconds.
3) Wesolowski described a direct way of constructing a degree- c isogeny using
knowledge of the endomorphism ring, without assuming special form of c and
without the need for factorization; leads to polynomial time only assuming GRH.
4) Re: smoothness: using standard heuristics it is easy to obtain $L(1 / 2)$-smooth

$$
c=d 2^{e-j}-d^{\prime} 3^{f-i}
$$

with $c, d^{\prime} \in L(1 / 2)$. So the algorithm (as does Maino-Martindale's) breaks SIDH with unknown endomorphism ring in $L(1 / 2+\varepsilon)$. Pointed out by De Feo and Wesolowski.

32

6. Improvements and updates

5) Beautiful trick by Robert reduces this further to unconditional polynomial runtime. Idea: write $c=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2} \longleftarrow$ Lagrange's four-square theorem Explicit check:

$$
M=\left(\begin{array}{rrrr}
a_{1} & -a_{2} & -a_{3} & -a_{4} \\
a_{2} & a_{1} & -a_{4} & a_{3} \\
a_{3} & a_{4} & a_{1} & -a_{2} \\
a_{4} & -a_{3} & a_{2} & a_{1}
\end{array}\right) \quad \text { satisfies } \quad M^{t} \cdot M=M \cdot M^{t}=c I .
$$

Now

$$
F=\left(\begin{array}{cc}
M & \hat{\varphi}_{B} \\
M^{t}
\end{array}\right) \in \operatorname{End}\left(E^{4} \times E^{\prime 4}\right) \text { with dual } \hat{F}=\left(\begin{array}{cc}
M^{t} & -\hat{\varphi}_{B} \\
\varphi_{B} & M
\end{array}\right)
$$

$$
\text { satisfies } \hat{F F}=\hat{F F}=\left(c+3^{f}\right) I=2^{e} I \text {, so ker } F \subseteq\left(E^{4} \times E^{\prime 4}\right)\left[2^{e}\right] \text { can be computed }
$$

$$
\text { from torsion-point info. So we can directly evaluate } \varphi_{B} \text { as before. }
$$

34

Questions?

Thanks for listening

