

1/19 1. Supersingular Isogeny Diffie-Hellman (SIDH) Jao, De Feo 2011: can we do Diffie-Hellman with subgroups and quotients? $E \in \{abelian groups\}$ chooses chooses **Problem!** This reveals E/A, $\varphi_A: E \to E/A$ $A = \ker \varphi_A$ E/B, $\varphi_B: E \to E/B$ $\mathbf{B} = \ker \varphi_B$? common secret: $(E/B)/\varphi_B(A) \cong$ $E/(A+B) \cong$ $(E/A)/\varphi_A(B)$

3

5

1. Supersingular Isogeny Diffie-Hellman (SIDH)

Bob's isogeny $\varphi_B : E \to E/B$ can be viewed as a secret walk in the supersingular 3-isogeny graph over \overline{F}_p .

Ramanujan graph, so: rapid mixing (Pizer 1990)

Key recovery amounts to: Finding an instance of φ_B (or equiv. B) when being given $E, E/B, \varphi_B(P_A), \varphi_B(Q_A)$

8

10

1. Supersingular Isogeny Diffie-Hellman (SIDH)

Bob's isogeny $\varphi_B: E \to E/B$ can be viewed as a secret walk in the supersingular 3-isogeny graph over $\overline{\mathbf{F}}_p$.

Ramanujan graph, so: rapid mixing (Pizer 1990)

Key recovery amounts to: Finding an instance of φ_B (or equiv. B) when being given $E, E/B (\varphi_B(P_A), \varphi_B(Q_A))$ point images make for an atypical isogeny problem

1. Supersingular Isogeny Diffie-Hellman (SIDH)

Quick timeline:

> 1994 Shor: factoring and discrete logs are easy for quantum computers,

> 1997 Couveignes: isogeny-based key exchange from class group actions on ordinary elliptic curves (rejected and circulated among some experts),

> 2006 Rostovtsev-Stolbunov: rediscover and improve this construction and suggest post-quantum security,

> 2006 Charles-Goren-Lauter: hash function from supersingular isogeny graphs,

> 2010 Childs-Jao-Soukharev: quantum attack on the Couveignes-Rostovtsev-Stolbunov protocol with runtime L(1/2),

> 2011 Jao-De Feo: respond with SIDH,

best attack at time of proposal: claw-finding

9

1. Supersingular Isogeny Diffie-Hellman (SIDH)

Quick timeline:

> 2016: SIDH-based system SIKE submitted to NIST standardization process,

> 2017: Petit shows how to exploit auxiliary points for unbalanced 2e, 3f

improved in 2021 by de Quehen et al.,

no impact on SIKE,

> 2020: NIST selects SIKE as an "alternate" round-3 candidate,

> 2022: NIST announces winners and moves SIKE to an extra 4th round,

> 2022: our work breaks all security levels of SIKE in < ¹/₂ day,
 asymptotically and heuristically:

modulo precomputable

polytime if starting curve has known endomorphism ring, time L(¹/₂ + ε) if not (observation by De Feo, Wesolowski),

> 2022: Robert establishes unconditional polynomial runtime.

7/19

 $(Q_A,Q'_A)_{\bullet}$

2. Recovering Bob's secret key (easiest and most efficient case)

7/19

 $(Q_A, Q'_A)_{\bullet}$

ightharpoonup Recall: given E, E/B, $\varphi_B(P_A)$, $\varphi_B(Q_A)$, find φ_B . allows us to consider subgroup $((P_A, \varphi_B(P_A)), (Q_A, \varphi_B(Q_A))) \subseteq E \times E/B$

 P_{Δ}

- ightharpoonup This subgroup is isomorphic to $\frac{\mathbf{z}}{2^e\mathbf{z}} \times \frac{\mathbf{z}}{2^e\mathbf{z}}$.
- What happens if we quotient it out via an isogeny? We want to do this within the category of principally polarized abelian surfaces

e.g., imagine we can find x such that $x^2 3^f \equiv -1 \mod 2^a$, then the modified subgroup $\langle (P_A,xP_A'),(Q_A,xQ_A')\rangle$ is maximally isotropic $(\mathsf{Proof} \colon e_{2^{\mathfrak{C}}}(P_{A},Q_{A}) \cdot e_{2^{\mathfrak{C}}}(xP'_{A},xQ'_{A}) = e_{2^{\mathfrak{C}}}(P_{A},Q_{A}) \cdot e_{2^{\mathfrak{C}}}(P_{A},Q_{A})^{x^{2}3^{f}} = 1.)$

2. Recovering Bob's secret key (easiest and most efficient case)

ightharpoonup Recall: given E, E/B, $\varphi_B(P_A)$, $\varphi_B(Q_A)$, find φ_B . allows us to consider subgroup $((P_A, \varphi_B(P_A)), (Q_A, \varphi_B(Q_A))) \subseteq E \times E/B$

- \succ This subgroup is isomorphic to $\frac{\mathbf{z}}{2^e\mathbf{z}} \times \frac{\mathbf{z}}{2^e\mathbf{z}}$.
- What happens if we quotient it out via an isogeny? We want to do this within the category of principally polarized abelian surfaces

e.g., imagine we can find x such that $x^2 3^f \equiv -1 \mod 2^a$, then the modified subgroup $\langle (P_A,xP_A'),(Q_A,xQ_A')\rangle$ is maximally isotropic

→ called a "(2^e, 2^e)-subgroup"

13

14

2. Recovering Bob's secret key

8/19

Resulting $(2^e, 2^e)$ -isogeny decomposes into e(2,2)-isogenies. Typical case:

However, in very exceptional situations (heuristic probability is O(1/p)):

2. Recovering Bob's secret key

9/19

Characterization of reducible subgroups (Kani 1997):

Definition:

An **isogeny diamond configuration of order** N is a triplet (ψ, G_1, G_2) with

- $\blacktriangleright \ \psi : E \to E'$ isogeny,
- $\succ G_1, G_2 \subseteq \ker \psi,$
- ightharpoonup deg $\psi = \#G_1 \cdot \#G_2$, $N = \#G_1 + \#G_2$, $G_1 \cap G_2 = \{0\}$.

Theorem (slightly informal)

An (N, N)-subgroup of $E \times E'$ is reducible iff it "comes from" an isogeny diamond configuration of order N.

roughly means that $\big\langle \big(P,x\psi(P)\big), \big(Q,x\psi(Q)\big)\big\rangle$ for $E[N] = \langle P, Q \rangle$ and

appropriate $x \in \mathbf{Z}$

11/19

15

16

18

2. Recovering Bob's secret key

10/19

Back to Bob's secret isogeny

 $\succ \ \, \text{Force it into an } \, \textbf{isogeny diamond of order} \, 2^e \colon \,$

- $\succ \ \, \text{By Kani's theorem, the subgroup} \; \langle (P_C,P_A'),(Q_C,Q_A')\rangle \subseteq C \times E' \, \text{is reducible}$
- **Key idea:** if P_A' , Q_A' were **not** the images of P_A , Q_A under a degree- 3^f isogeny, then with overwhelming probability this does **not** result in a reducible subgroup!

2. Recovering Bob's secret key

Leads to the following candidate-method for unveiling Bob's secret walk:

11/19

12/19

13/19

2. Recovering Bob's secret key

11/19

12/19

12/19

Leads to the following candidate-method for unveiling Bob's secret walk:

2. Recovering Bob's secret key

Leads to the following candidate-method for unveiling Bob's secret walk:

19

20

3. Constructing the auxiliary isogeny γ

At iteration i: want to construct an isogeny

We know:

ightharpoonup a path $\tau: E \to E_i^?$.

ightharpoonup that $E: y^2 = x^3 + x$ comes equipped with $\mathbf{i}: E \to E: (x,y) \mapsto (-x,\mathbf{i}y)$

Hope: $c = 2^e - 3^{f-i} = u^2 + v^2 = (u + iv)(u - iv)$ for certain integers u, v.

3. Constructing the auxiliary isogeny γ

At iteration i: want to construct an isogeny

We know:

ightharpoonup a path $\tau: E \to E_i^?$.

that $E: y^2 = x^3 + x$ comes equipped with $\mathbf{i}: E \to E: (x,y) \mapsto (-x,\mathbf{i}y)$

Hope: $c = 2^e - 3^{f-i} = u^2 + v^2 = (u + iv)(u - iv)$ for certain integers u, v.

21

22

3. Constructing the auxiliary isogeny γ

Hope: $c=2^e-3^{f-i}=u^2+v^2=(u+\mathbf{i}v)(u-\mathbf{i}v)$ for certain integers u,v.

- \triangleright Cost of deciding existence of u, v and finding them:
 - factoring c,
 - $\qquad \hbox{\bf Euclid's algorithm over } {\bf Z[i]} \ (\hbox{\bf special case of Cornacchia}) \\$
- > Note: only depends on system parameters, not on concrete SIDH instance.
- ➤ If c does not admit decomposition: create more leeway by
 - reducing e (2^e -torsion info implies 2^{e-j} -torsion info),
 - increasing f i (extend Bob's secret walk if useful).
- ➤ In practice:
 - need to guess first degree- 3^i component so that $2^e > 3^{f-i}$,
 - from that point onwards: can guess one degree-3 component at a time.
- \triangleright Altogether, attack runs heuristically in time L(1/4), modulo precomputation.

3. Constructing the auxiliary isogeny γ

What about other starting curves than $E: y^2 = x^3 + x$?

Known endomorphism ring:

- > SIKE uses $E: y^2 = x^3 + 6x^2 + x$ which carries endomorphism 2i: same works
- ➤ more general: approach works if End(*E*) contains small-norm endomorphism
- $\,\succ\,\,$ totally general: walk to appropriate curve with small-norm endomorphism selecting best curve leads to heuristic polynomial time (mod factoring)

Unknown endomorphism ring:

- ightharpoonup auxiliary isogeny can always be constructed if $c=2^e-3^{f-i}$ is smooth
- \triangleright create more leeway by considering $c = d2^{e-j} d'3^{f-i}$ guess action on d-torsion -→ extend Bob's walk rely on smaller torsion info

23

25

15/19 4. Checking reducibility ➤ Glimpse at Richelot: Write $H_i: y^2 = f(x)$. $\text{Our } (2,\!2) \text{-subgroup } \{ \, [(\alpha_1,0)-(\beta_1,0)], \, \, [(\alpha_2,0)-(\beta_2,0)], \, \, [(\alpha_3,0)-(\beta_3,0)] \, , 0 \, \}$ yields factorization $f(x) = (g_{12}x^2 + g_{11}x + g_{10}) \cdot (g_{22}x^2 + g_{21}x + g_{20}) \cdot (g_{32}x^2 + g_{31}x + g_{30})$ $G_3(x)$ $\delta = \det \begin{pmatrix} g_{12} & g_{11} & g_{10} \\ g_{22} & g_{21} & g_{20} \\ g_{32} & g_{31} & g_{30} \end{pmatrix}$ unless $\delta = 0$ in which case we land on a product of elliptic curves Then $H_{i+1}: y^2 = G_1'(x) \cdot G_2'(x) \cdot G_3'(x)$.

5. Implementation

16/19

We have implemented the attack in Magma. Current run recovers Bob's key for

- SIKE level 1 in about 10 minutes.
- SIKE level 2 in about 20 minutes,
- ➤ SIKE level 3 in about 1 hour,
- SIKE level 5 in about 3 hours.

Further speed-up through SageMath implementation effort including several algorithmic improvement by Oudompheng, Panny, Pope, ... (see later) -

Generalization to other torsion? No theoretical obstructions but more cumbersome:

- > attacking Alice's key requires computing chains of (3,3)-isogenies: explicit formulae due to Bruin, Flynn, Testa,
- for arbitrary smooth torsion (e.g. as used in B-SIDH): resort to AVIsogenies package by Bisson, Cosset, Robert.

27

28

26

17/19 6. Improvements and updates 1) Direct evaluation approach due to Oudompheng, Petit, Wesolowski (see also Maino-Martindale): possible to save many (2,2)-isogenies by completing the $X \mapsto (\infty, X) \mapsto (\hat{\varphi}_B(X), -\varphi'_B(X)) \mapsto \hat{\varphi}_B(X).$

17/19 6. Improvements and updates 1) Direct evaluation approach due to Oudompheng, Petit, Wesolowski (see also Maino-Martindale): possible to save many (2,2)-isogenies by completing the be an isogeny of principally polarized degree $c = 2^e - 3^f$ abelian surfaces, $\rightarrow \left\{ \left(3^f P, -\varphi_B \hat{\gamma}(P)\right) \colon P \in C[2^e] \right\}$ so we can simply **evaluate** $\hat{\varphi}_B$! —

29 30

6. Improvements and updates

17/19

19/19

1) Direct evaluation approach due to Oudompheng, Petit, Wesolowski (see also Maino-Martindale): possible to save many (2,2)-isogenies by completing the

- \triangleright evaluate $\hat{\varphi}_B$ on basis $\{X,Y\}$ of $E'[3^f]$,
 - \succ determine ker $\hat{\varphi}_B$ by solving
 - $\hat{\varphi}_B(xX + yY) = x\hat{\varphi}_B(X) + y\hat{\varphi}_B(Y) = \infty,$
 - \triangleright recover $B = \hat{\varphi}_B(\ker \hat{\varphi}_B)$

31

6. Improvements and updates

18/19

- 2) Using this and various other speed-ups: SageMath implementation by Pope et al. has dramatically reduced the attack runtimes. E.g., SIKE level 1 now falls in 22 seconds.
- 3) Wesolowski described a direct way of constructing a degree-c isogeny using knowledge of the endomorphism ring, without assuming special form of \boldsymbol{c} and without the need for factorization; leads to polynomial time only assuming GRH.
- 4) Re: **smoothness**: using standard heuristics it is easy to obtain L(1/2)-smooth $c=d2^{e-j}-d^{\prime}3^{f-i}$

with $c,d'\in L(^1\!/_2)$. So the algorithm (as does Maino-Martindale's) breaks SIDH with unknown endomorphism ring in $L(^1\!/_2+\varepsilon)$. Pointed out by De Feo and Wesolowski.

6. Improvements and updates

5) Beautiful trick by Robert reduces this further to unconditional polynomial runtime. Idea: write $c = a_1^2 + a_2^2 + a_3^2 + a_4^2$ Lagrange's four-square theorem

$$M = \begin{pmatrix} a_1 & -a_2 & -a_3 & -a_4 \\ a_2 & a_1 & -a_4 & a_3 \\ a_3 & a_4 & a_1 & -a_2 \\ a_4 & -a_3 & a_2 & a_1 \end{pmatrix} \quad \text{satisfies} \quad M^t \cdot M = M \cdot M^t = cI.$$

$$F = \begin{pmatrix} M & \hat{\varphi}_B \\ -\varphi_B & M^t \end{pmatrix} \in \operatorname{End}(E^4 \times E'^4) \quad \text{with dual} \quad \hat{F} = \begin{pmatrix} M^t & -\hat{\varphi}_B \\ \varphi_B & M \end{pmatrix}$$

satisfies $\hat{F}F = F\hat{F} = (c+3^f)I = 2^eI$, so ker $F \subseteq (E^4 \times E'^4)[2^e]$ can be computed from torsion-point info. So we can directly evaluate φ_B as before.

6. Improvements and updates

19/19

5) Beautiful trick by Robert reduces this further to unconditional polynomial runtime. Idea: write $c = a_1^2 + a_2^2 + a_3^2 + a_4^2$ Lagrange's four-square theorem

$$M = \begin{pmatrix} a_1 & -a_2 & -a_3 & -a_4 \\ a_2 & a_1 & -a_4 & a_3 \\ a_3 & a_4 & a_1 & -a_2 \\ a_4 & -a_2 & a_2 & a_1 \end{pmatrix} \quad \text{satisfies} \quad M^t \cdot M = M \cdot M^t = cI.$$

34

32

$$F = \begin{pmatrix} M & \hat{\varphi}_B \\ -\hat{\varphi}_D & M \end{pmatrix} \in \text{End}(E^4 \times E'^4) \text{ with dual } \hat{F} = \begin{pmatrix} M^t & -\hat{\varphi}_B \\ \varphi_B & M \end{pmatrix}$$

satisfies $\hat{F}F = F\hat{F} = (c+3^f)\hat{I} = 2^e\hat{I}$, so $\ker F \subseteq (E^4 \times E'^4)[2^e]$ can be computed from torsion-point info. So we can directly evaluate φ_B as before.

33

Questions?

Thanks for listening!