Iwasawa Theory for <u>Class Group Schemes</u> in <u>characteristic</u> p VaNTAGE, 2023 k - finite field of char p70 X/R Curve (smooth, proj. geom connd) CIX = ¿degree O divisors on X} ¿principal divisors? $= J_{\chi}(k)$ = finite, abelian group. Jacobian Iwasawa theory: How do class groups grow in Ze - towers of curves? Def: l prime. A Ze-tower over X is: $\{X_n\}_{n>0}, X_n \to X_0 = X$ branched Galois cover of curves with group $\mathbb{Z}_{pn\mathbb{Z}}$, unram'd outside S = X(k), totally ram'd over S. CFT: No such towers if lfp or S=\$ SZp-towers/X) (-) { p: π^{éf}(X_k-S)-)Z_p (ram'd over Stop) (k-Sp) Affine! Tt^{ét} (Affine) = free pro-p on countably max'l pro-p qt. infinite gens!

Thm (Gold-Kiselevsky '84; Mazur-Wiles '86) Let EXny be a Ip-tower. Then $|C|_{X_n} [p]| = p_m p^n + r$ for some $M, r \in \mathbb{Z}$ and all N > 70 $C[x_n[p] = J_{X_n}[p](k) = k - points of$ $J_{X_n} [p] := Ker(p: J_{X_n} \to J_{X_n})$ finite group scheme ^CAlgebraic group! Any finite gp. scheme G/k decomposes $G = G^{ef} \times G^{o}$ G(R) = G^{et}(R) <u>totally misses</u> G°! Ex: Any \mathbb{Z}_p - tower $\{X_n\}$ with $X_0 = \mathbb{P}^1$ and $S = \{ D_0 \}$ has $C|_{X_n}[p] = 0$, all n, yet $J_{X_n}[p]$ has dimension $g_n = g_{Pn} S_n X_n$ and $g_n > Cp^{2n}$, some C>0. Refined Iwasawa Theory: How do the group schemes JX, [p] grow in ILp-towers of curves? No analogue for number fields!

Basic tool: <u>Dieudonné</u> Theory Sfinite gp. sch/k? _= finite dim'l k-v.s. M + Killed by P) Gm DGI (FA=XFF, AV=VAP, FV=VF=0) Thm (Oda) X/k curre. $\mathcal{O} \leftarrow J_{X}[F] \leftarrow J_{X}^{(p)}[F] \leftarrow J_{X}^{(p)}[V] \leftarrow \mathcal{O}$ $\sum_{i=1}^{n} \mathbb{D}(-i)$ $\begin{array}{ccc} & & & \\ &$ R[V] - module str. of FI°(Ω_x) <u>determines</u> J_x[F], J_x[V] How does the REV]-module $M_{n} = H^{0}(\Omega_{\chi_{n}})$ grow in a Zp-tower $\xi X_{n} Y$ of curves? dim & Mn = gn. By Riemann - Hurwitz: $2g_{n}-2=p^{n}(2g_{0}-2)+\sum_{k=1}^{n}\sum_{i=1}^{n}CP(p^{2})S_{i}(Q)$ QES i=1 ith upper rom. break

Rem: All ramification is wild! \Rightarrow Sntiller) >, p and can be unbounded! $S_{n}(Q)$ =) g, >, cp²ⁿ, c>0 and can grow arbitrarily fast! Def: $A \mathbb{Z}_p$ -tower $\{X_n\}$ has stable monodromy if $S_n(Q) = d_Q \cdot p^{n-1} + c_Q$ for all Q, n > 20. As k[v]-mods: Mn = Mn & Mn and $M_n \bigotimes_{k} \overline{k} \simeq \left(\overline{k} [v]\right)^{\bigoplus S_n}$ with $S_{n} = p^{n}(S_{0} + |S| - 1) - |S| + 1$ by the Denning-Shafarevich formula. Since V nilpotent on M_n^{nil} , the integers $\alpha_{n}^{(\Gamma)} = \dim_{k} \ker \left(\bigvee^{\prime} : \mathcal{M}_{n} \longrightarrow \mathcal{M}_{n} \right)$ completely determine M^{nil} The numbers and are mysterious, and is no analogue of RH or DS for them!

Ex P=13, $X_1 \rightarrow X_0 = TP'$ given by $Y^{P-}Y = f$ with $S = \sum 0 2$ and $d_1(0) = 7$ $\alpha_{1}^{(1)}$ £ g, s, t7+2t6-6ts 21 36 0 $t^{7} + t^{2} + t^{-1}$ 23 $t^{-7} - 5t^{-2}$ 24 RH DS t-+ + t-1 27 t-7 36 Rem: Zp-towers {Xny can be made "explicit": Kn = function field of Xn
$$\begin{split} & [K_n = k(Y_1, Y_2, ..., Y_n), \quad (Y_1^p, Y_2^p, ...) - (Y_1, Y_2, ...) = w \in W(K_0) \\ & \text{in } W(K_0) \quad With ring \\ & \text{If } W = (W_1, W_2, ...) \quad \text{has } W_n = 0 \quad \text{far } n > 70, \\ & \text{then } \xi X_n Y \quad \text{has } \text{stable } \text{monodrumy}. \end{split}$$
Based on extensive computations in MAGMA: <u>Conjecture</u> (Booher-C): Assume {Xn' has stable monodromy: $S_Q(n) = d_Q p^{n-1} + C_Q$, n>70. $\begin{aligned} \alpha_n^{(r)} &= \frac{\Gamma}{r+\frac{p+1}{p-1}} \cdot \frac{\sum d_Q}{2(p+1)} \cdot \frac{p^{2n}}{p^{2n}} + O(p^n) \text{ as } n \to \infty \end{aligned}$ Then

Def: A basic tower is one given by
$(\gamma_{i}^{p}, \gamma_{2}^{p},) - (\gamma_{i}, \gamma_{2},) = \sum_{i=1}^{a} [a_{i} + i]$ i = i Teichmüller
aiek, ai = 0 if $2 p$, $a_d \neq 0$. These are monodromy stable, with $X_0 = IP$, $S = \{20\}$.
Thm (Booher, Kramer-Miller, Vpton, C): Conjecture is true for basic towers.
Rem For basic towers, Booher-C conjective:
$\alpha_{n}^{(r)} = \frac{r}{r + \frac{p+1}{p-1}} \cdot \frac{d}{2(p+1)} \cdot \frac{p^{2n}}{p^{2n}} + \lambda n + (cn)$
for some RER and periodic C: Z/mZ -> R.
Sketch of proof: Fix EXny, T: Xn->Xm
$d_n = n^{th} upper ram.$ break ω so. For $D = divisor on X_n$,
$\mathcal{M}_{n}(D) := H^{o}(\Omega_{X_{n}}^{I}(D)), \mathcal{M}_{n} = \mathcal{M}_{n}(O)$
Let $M = \lim_{x \to \pi_{*}} M_{n}$, $A = k[T] - module$
via $T = \gamma - 1$, $Gal(K \approx / K_{\delta}) = \langle \gamma \rangle$.

Magic of char. P: $T^{P''} = (\gamma - 1)^{P''} = \gamma^{P''} - 1, \quad \text{Gal}(\frac{K_{AO}}{K_{M}}) = \langle \gamma^{P''} \rangle$ $\pi \pi_{x} = \sum_{i=1}^{p^{n-m}} \mathcal{F}_{p^{m_{i}}}^{p^{m_{i}}} = \frac{\mathcal{F}_{p^{m}}^{p^{n-m}} - 1}{\mathcal{F}_{p^{m}}^{p^{n-m}} - 1} = (\mathcal{F}_{p^{m}})^{p^{n}} = \mathcal{F}_{p^{m}}^{p^{n-m}} - p^{m}$ $\pi_{\star}\pi^{\star} = \deg(\pi) = p^{n-m} = O$ (D) M is a countable product of copies of A. Let $Q = Frac(\Lambda) = k((T))$. We can make M& Q into a Q-Banach space by declaring M=unit ball. ☑ V: M → M is completely continuous. Crucially uses monodromy stable hyp. => Fredholm determinant L(s)=det(I-SV(M) & L[S] is defined $(3) \{X_n\} \leftrightarrow \varrho: \pi_i^{\acute{e}t} (p'-\infty) \rightarrow \mathbb{Z}_p = \Gamma \hookrightarrow \Lambda^{X}$ $L(S) = L(P,S) := \prod_{v \in [A']} (1 - p(Frob_v) S^{degv})$ interpretation of L-fns via crystalline

(9) VZM has: - Hodge polygon HP encoding SNF of V - Newton polygon NP= NPT (L(SI) Work of Upton + Kramer-Miller Using 3: * NP>HP, and touch periodically (5) Explicit calculation of NP, using (3), then use (5) to infer info about FIP. Eurther Directions (D Study H'dR (Xn) ~ JXn EP] Study H^lcrys(Xn) ← J_{Xn}[p[∞]] 3 Prove conjecture in general (D) weaken monodromy-stable hypothesi's (5) Γ -towers of curves, Γ =p-adic Liegp. Thank You!