Iwasawa Theory for Class Group Schemes
in characteristic P VaNTAGe, 2023
k - finite field of char $p>0$
X / k curve (smooth, proj. geom conn'd)

$$
\begin{aligned}
C I_{x} & =\frac{\{\text { degree } 0 \text { divisors on } x\}}{\{\text { principal divisors }\}}=J_{x}(k) \\
& =\text { finite, abelian group. }
\end{aligned}
$$

Iwasawa theory: How do class groups grow in \mathbb{Z}_{l} - towers of curves?
Def: l prime. $A \mathbb{Z}_{l}$-tower over X is: $\left\{X_{n}\right\}_{n \geqslant 0}, \quad X_{n} \rightarrow X_{0}=X$ branched Galois cover of curves with grap $\mathbb{Z} / p^{n} \mathbb{Z}$, un ram'd outside $S \subseteq X(k)$, totally rand over S.
CFT: No such towers if $\ell \neq p$ or $S=\phi$.

$$
\begin{gathered}
\left\{\begin{array}{c}
\left\{\mathbb{Z}_{p} \text { - to weds } / X\right. \\
\text { ram'd over } S \neq \phi
\end{array}\right\} \leftrightarrow\{\rho: \pi_{1}^{\text {et }}(\underbrace{\left.X_{\bar{k}}-S\right)}_{\text {Affine! }} \rightarrow \mathbb{Z}_{p}\} \\
\pi_{1}^{e ́ t}(\text { Affine })_{\uparrow}^{(p)}=\text { free prop on cantably } \\
\text { max }^{(n)} \text { prop qt. infinite gens! }
\end{gathered}
$$

Thm (Gold-Kiselevsky'84; Mazur-Wiles'86)
Let $\left\{x_{n}\right\}$ be a \mathbb{Z}_{p}-tower. Then

$$
\begin{gathered}
\left|C_{X_{n}}[p]\right|=p^{M p^{n}+r} \quad \text { for some } M, r \in \mathbb{Z} \\
\left.C\right|_{X_{n}}[p]=J_{X_{n}}[p](k)=k \text {-points of } \\
J_{X_{n}}[p]:=\operatorname{Ker}\left(p: J_{X_{n}} \rightarrow J_{X_{n}}\right)
\end{gathered}
$$

finite gray scheme
Algebraic group!
Any finite gp. scheme G / k decomposes

$$
G=G^{e ́ t} \times G^{0}
$$

$G(k)=G^{\text {et }}(k)$ totally misses G^{0} !
Ex: Any \mathbb{Z}_{p}-tower $\left\{X_{n}\right\}$ with $X_{0}=\mathbb{P}^{\prime}$ and $S=\{\infty\}$ has $\left.C\right|_{x_{n}}[p]=0$, all n, yet $J_{x_{n}}[p]$ has dimension $g_{n}=$ genus x_{n} and $\quad g_{n} \geqslant c p^{2 n}$, some $c>0$.
Refined Iwasawa Theory: How do the group schemes $J_{x_{n}}[p]$ grow in \mathbb{Z}_{p}-towers of curves? No analogue for number fields!

Basic tool: Dieudonné Theory

Th (Ida) X / k curve.

$$
\begin{aligned}
& 0 \leftarrow J_{x}[F] \stackrel{v}{\longleftrightarrow} J_{x}^{(P}[p] \leftarrow J_{x}^{(P)}[v] \leftarrow 0 \\
& \xi D(-) \\
& \begin{array}{c}
0 \rightarrow H^{0}\left(\Omega_{x}^{\prime}\right) \rightarrow \underset{d R}{\prime}(X) \otimes k \rightarrow \underset{k c}{H_{k}^{\prime}} \rightarrow \underset{V \equiv 0}{H_{R}^{\prime}\left(\theta_{x}\right) \otimes R_{d}^{\prime}} \rightarrow 0
\end{array} \\
& F=\text { Frobenius, } \quad V=0 \\
& V=\text { Cartier }=F^{v}
\end{aligned}
$$

$R[V]$ - module str. of $H^{0}\left(\Omega_{x}^{\prime}\right)$
determines $J_{x}[F], J_{x}[V]$
How does the $k[v]$-module $M_{n}=H^{0}\left(\Omega_{x_{n}}^{\prime}\right)$ grow in $a \mathbb{Z}_{p}$-tower $\left\{x_{n}\right\}$ of curves?
$\operatorname{dim}_{k} M_{n}=g_{n}$. By Riemann-Hurwitz:

$$
2 g_{n}-2=p^{n}\left(2 g_{0}-2\right)+\sum_{Q \in S} \sum_{i=1}^{n} \varphi\left(p^{i}\right) s_{i}(Q)
$$

eth upper ${ }^{\uparrow}$ ram break

Rem: All ramification is wild! \Rightarrow $\frac{S_{n+1}(Q)}{S_{n}(Q)} \geqslant P$ and con be unbounded!
$\Rightarrow g_{n} \geqslant c p^{2 n}, c>0$ and can grow arbitrarily fast!
Def: $A \mathbb{Z}_{p}$-tower $\left\{x_{n}\right\}$ has stable monodromy if $S_{n}(Q)=d_{Q} \cdot P^{n-1}+c_{Q}$ for all $Q, n \gg 0$.
As $k[v]$-mods: $M_{n}=M_{n}^{b i j} \oplus M_{n}^{n i l}$ and $M_{n}^{b i j} \otimes \bar{R} \simeq\left(\frac{k[v]}{(V-1)}\right)^{\oplus S_{n}}$ with

$$
s_{n}=p^{n}\left(s_{0}+|s|-1\right)-|s|+1
$$

by the Deuring-shafarevich formula.
since V nipotent on $M_{n}^{n i l}$, the integers

$$
a_{n}^{(r)}=\operatorname{dim}_{k} \operatorname{ker}\left(V^{r}: M_{n} \rightarrow M_{n}\right)
$$

completely determine $M_{n}^{n i l}$.
The numbers $a_{n}^{(1)}$ are mysterious, and is no analogue of RHorDS for them!

Ex $p=13, \quad x_{1} \rightarrow x_{0}=\mathbb{P}^{\prime}$ given by $y^{p}-y=f$ with $S=\{\infty\}$ and $d_{1}(\infty)=7$

f	$a_{1}^{(1)}$	g_{1}	s_{1}
$t^{-7}+2 t^{-6}-6 t^{-5}$	21	36	0
$t^{-7}+t^{-2}+t^{-1}$	23		
$t^{-7}-5 t^{-2}$	24	v	v
$t^{-7}+t^{-1}$	27	$R H$	$D S$
t^{-7}	36		

Rem: \mathbb{Z}_{p}-towers $\left\{x_{n}\right\}$ can be made "explicit": $\quad K_{n}=$ function field of X_{n}

$$
\begin{aligned}
& K_{n}=k\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right), \quad\left(Y_{1}^{P}, Y_{2}, \cdots\right)-\left(Y_{1}, y_{2}, \ldots\right)=w \in W\left(K_{0}\right) \\
& \text { if } w=\left(w, w_{n} \ldots\right) \text { has } w_{n}=0 \text { for } n \gg 0 \text {. Witt ring }
\end{aligned}
$$

If $w=\left(w_{1}, w_{2}, \ldots\right)$ has $w_{n}=0$ for $n \gg 0$, then $\left\{X_{n}\right\}$ has stable monodrony.
Based on extensive computations in MAGMA:
Conjecture (Booher-C): Assume $\left\{X_{n}\right\}$ has stable monodromy: $S_{Q}(n)=d_{Q} P^{n-1}+C_{Q}, n>70$. Then

$$
a_{n}^{(r)}=\frac{r}{r+\frac{p+1}{p-1}} \cdot \frac{\sum_{Q \in S} d_{Q}}{2(p+1)} \cdot p^{2 n}+O\left(p^{n}\right) \text { as } n \rightarrow \infty
$$

Def: A basic tower is one given by

$$
\left(y_{1}^{p}, y_{2}^{p}, \ldots\right)-\left(y_{1}, y_{2}, \ldots\right)=\sum_{i=1}^{d}\left[a_{i} t^{-i}\right]_{\hat{\imath}}
$$

$a_{i} \in k, \quad a_{i}=0$ if $2 \mid p, \quad a_{d} \neq 0$.
These are monodromy stable, with $X_{0}=\mathbb{P}, S=\{x 0\}$.
Th m (Booher, Kramer -Miller, Upton, C):
Conjecture is the for basic towers.
Rem For basic towers, Booher-C conjectwe:

$$
a_{n}^{(r)}=\frac{r}{r+\frac{p+1}{p-1}} \cdot \frac{d}{2(p+1)} \cdot p^{2 n}+\lambda n+c(n)
$$

for some $\lambda \in \mathbb{Q}$ and periodic $c: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Q}$.
Sketch of proof: Fix $\left\{x_{n}\right\}, \pi: x_{n} \rightarrow x_{m}$ $d_{n}=n^{\text {th }}$ upper ram. break $@ \Delta$. For $D=$ divisor on x_{n},

$$
M_{n}(D):=H^{0}\left(\Omega_{x_{n}}^{1}(D)\right), \quad M_{n}=M_{n}(0)
$$

Let $M={\underset{\sim}{n, \pi_{*}}}_{\lim _{n}} M_{n}$, a $\Lambda=k \llbracket T \rrbracket$-module via $T=\gamma-1, \quad \operatorname{Gal}\left(K_{\infty} / k_{0}\right)=\langle\gamma\rangle$.

Magic of char p :

$$
\begin{aligned}
& T^{p^{m}}=(\gamma-1)^{p^{m}}=\gamma^{\rho^{m}}-1, \quad \operatorname{Gal}\left(K_{\infty} / K_{m}\right)=\left\langle\gamma^{p^{m}}\right\rangle \\
& \pi^{*} \pi_{*}=\sum_{i=1}^{p^{m} m} \gamma p^{p_{i}}=\frac{\gamma \gamma^{p^{n} \cdot p^{n-m}}-1}{\gamma^{\gamma^{m}}-1}=\frac{(\gamma-1)^{p^{m}}}{(\gamma-1)^{p^{m}}}=T^{p^{n}-p^{m}} \\
& \pi_{*} \pi^{*}=\operatorname{deg}(\pi)=p^{n-m}=0
\end{aligned}
$$

(1) M is a countable product of copies of Λ. Let $Q=\operatorname{Frac}(\Lambda)=k((T))$. We can make $M \otimes Q$ into a Q-Banach space by declaring $M=$ unit ball.
(2) $V: M \rightarrow M$ is completely continuous. crucially uses monodromy stable hyp.
\Rightarrow Fredholm determinant
$L(s)=\operatorname{det}\left(1-\left.s V\right|_{M}\right) \in \Lambda[s]$ is defined

$$
\begin{aligned}
& \text { (3) }\left\{x_{n}\right\} \leftrightarrow \rho: \pi_{1}^{d_{t}}\left(\mathbb{P}^{\prime}-\infty\right) \rightarrow \mathbb{Z}_{p}=\Gamma \hookrightarrow \Lambda^{x} \\
& L(S)=L(p, s):=\prod_{\gamma \in\left|\mathbb{A}^{\prime}\right|} \frac{1}{\left(1-\rho(\text { Forb } v) S^{\operatorname{deg} v}\right)}
\end{aligned}
$$

via crystalline interpretation of L - $f n s$.
(4) V Ə has:

- Hodge polygon HP encoding SNF of V
- Newton polygon $N P=N P_{T}(L(S))$

Work of Upton + Kramer -Miller using (3):

* NP $\geqslant H P$, and touch periodically
(5) Explicit calculation of NP, using (3), then use (4) to infer info about HIP.

Further Directions
(1) Study $H_{d R}^{\prime}\left(X_{n}\right) \leftrightarrow J_{X_{n}}[p]$
(2) Study $H_{\text {drys }}^{\prime}\left(X_{n}\right) \longleftrightarrow J_{X_{n}}\left[p^{\infty}\right]$
(3) Prove conjecture in general
(4) weaken monodromy-stable hypothesis
(5) Γ-towers of curves, $\Gamma=p$-adic Lie gp.

