On the discriminant of random polynomials

 @VaNTAGeSeminarLior Bary-Soroker, October 17

$\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\operatorname{disc}\left(\sum_{i=0}^{n} \pm X^{i}\right)=\square\right)=0$?

The two open problems of this talk

- For simplicity, I restrict generality to two central special cases
- Let a_{0}, a_{1}, \ldots be independent random variables taking values in uniformly in $[-L, L] \cap \mathbb{Z}=\{-L,-L+1, \ldots, L\}$
- Our random polynomial is $f=f_{n, L}=X^{n}+\sum_{i=0}^{n} a_{i} X^{i}$
- Put $P_{n, L}=\operatorname{Prob}(\operatorname{disc} f=\square \neq 0)$
- Question 1: How fast $P_{n, L}$ goes to zero as $L \rightarrow \infty$?
- Question 2: Does $P_{n, L} \rightarrow 0$ as $n \rightarrow \infty$? (e.g., $L=1$)

Motivation

Roots of polynomials with ± 1 coefficients of degree ≤ 24 |Sam Derbyshire

The van-der Waerden conjecture

The large box model

$$
\begin{gathered}
f=f_{n, L}=X^{n}+\sum_{i=0}^{n} a_{i} X^{i} \\
P_{n, L}=\operatorname{Prob}(\operatorname{discf}=\square \neq 0)
\end{gathered}
$$

- Hilbert, van-der Waerden: $\lim _{L \rightarrow \infty} \operatorname{Prob}\left(G_{f}=S_{n}\right)=1$
- Van-der Waerden conjecture (1930s):
$\operatorname{Prob}\left(G_{f} \neq S_{n}\right)=\operatorname{Prob}\left(G_{f}=S_{n-1}\right)=O_{n}\left(L^{-1}\right), \quad L \rightarrow \infty$
- Knobloch, Gallagher, Zywina, Dietmann, Chow-Dietmann, Anderson-Gafni-Oliver-Lowry-Duda-Shakan-Zhang
- Bhargava's theorem (2021):
$\operatorname{Prob}\left(G_{f} \neq S_{n}\right)=\operatorname{Prob}\left(G_{f}=A_{n}\right.$ or $\left.S_{n-1}\right)+O_{n}\left(L^{-2}\right)=O_{n}\left(L^{-1}\right)$
- The main breakthrough of Bhargava: $P_{n, L}=O_{n}\left(L^{-1}\right)$

How small is $P_{n, L}$, large box model naive heuristic
 $f=f_{\text {LL }}=X^{n}+\sum_{i=0}^{n} a_{i} x^{i}$ $P_{n, L}=$ Prob (discf $\left.=\square \neq 0\right)$

- $\operatorname{disc} f$ is a polynomial is a_{i} of degree $2 n-1$
- Hence $\operatorname{disc} f \approx L^{2 n-2}$
- discf behaves like a random number
- Probability that a random n is a square is $n^{-1 / 2}$
- Hence $P_{n, L} \approx L^{1-n}$
- Wrong heuristic - too small
- Explanation: discf has many symmetries so it is not like random numbers

How small is $P_{n, L}$, large box model Lower bounds

- $n=0(\bmod 4), f+f^{\prime}=g^{2} \Rightarrow \operatorname{disc} f=\square$
- LBS-Ben-Porath-Matei: $P_{n, L} \geq \operatorname{Prob}\left(G_{f}=A_{n}\right) \gg L^{-n / 4+\epsilon}$
- LBS-Ben-Porath-Matei: If n is even, then $P_{n, L} \gg L^{-n / 2-1 / 2+\epsilon}$
- In the latter, the Galois group is never A_{n}, it preserves a partition to pairs; i.e., a subgroup of $\left(C_{2} 2 S_{n / 2}\right) \cap A_{n}$
. We identify a power law: so we will study $-\frac{\log P_{n, L}}{\log L}$
- Naive Conjecture: $P_{n, L} \asymp \operatorname{Prob}\left(G_{f}=A_{n}\right)$

Question 1: How fast $P_{n, L}$ goes to zero as $L \rightarrow \infty$?
Conjecture: $\lim _{L \rightarrow \infty} \frac{\log \operatorname{Prob}\left(G_{f}=A_{n}\right)}{\log L}=-\frac{n}{2}$

Numerics by Noam Pirani and Ohad Avneri, last data point: $L=10^{3}, \approx 10^{11}$ random polynomials, 30 instances of A_{4}

Odlyzko-Poonen conjecture

 Restricted coefficients model$$
\begin{gathered}
f=f_{n, L}=X^{n}+\sum_{i=0}^{n} a_{i} X^{i} \\
P_{n, L}=\operatorname{Prob}(\text { discf }=\square \neq 0)
\end{gathered}
$$

- Odlyzko-Poonen Conjecture, 1993: $\lim _{n \rightarrow \infty} \operatorname{Prob}(f$ is irreducible $\mid f(0) \neq 0)=1$
- Easy: $\operatorname{Prob}(f$ is irreducible $\mid f(0) \neq 0) \gg \frac{1}{n}$
- Konyagin, 1999: $\operatorname{Prob}(f$ is irreducible $\mid f(0) \neq 0) \gg \frac{1}{\log n}$
- LBS-Kozma, LBS-Kozma-Koukoulopoulos: $\lim _{n \rightarrow \infty} \operatorname{Prob}(f$ is irreducible $\mid f(0) \neq 0)=1$ if $L \geq 17$
- Breuillard-Varju: $\lim _{n \rightarrow \infty} \operatorname{Prob}(f$ is irreducible $\mid f(0) \neq 0)=1$ under GRH
- LBS-Kozma: $\lim \operatorname{Prob}(f$ is irreducible $\mid f(0) \neq 0)=1$ implies

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(G_{f}^{n \rightarrow \infty}=A_{n} \text { or } S_{n}\right)=1
$$

Question 2: Does $P_{n, L} \rightarrow 0$ as $n \rightarrow \infty$?

Positive answer would imply

$\lim _{n \rightarrow \infty} \operatorname{Prob}\left(G_{f}=S_{n}\right)=1$ $n \rightarrow \infty$

What is known?

Finite Fields
 Uniform polynomials

- Stickelberger, Swan: $\mu_{q}\left(f_{q}\right)=(-1)^{\operatorname{deg} f_{q}}\left(\frac{\operatorname{disc} f_{q}}{q}\right)$
- Here \mathbb{F}_{q} is a finite field, $f_{q} \in \mathbb{F}_{q}[X]$ a uniform monic polynomial of degree n
- $\left(\frac{a}{q}\right)= \begin{cases}1 & a=\square \\ -1 & a \neq \square, ~ \\ 0 & a=0\end{cases}$
. $\mu_{q}\left(f_{q}\right)=\left\{\begin{array}{ll}(-1)^{r} & f_{q}=\prod_{j=1}^{r} P_{j}, P_{j} \text { distinct } \\ 0 & \exists P^{2} \mid f\end{array}\right.$ is the Möbius function
- μ_{q}^{2} is the indicator function for squarefree
- $\operatorname{Prob}\left(\mu_{q}=0,1,-1\right)=\left(\frac{1}{q}, \frac{q-1}{2 q}, \frac{q-1}{2 q}\right)$ for $n>1$
- Conclusion: $\operatorname{Prob}\left(\operatorname{disc} f_{q}=\square \neq 0\right)=\frac{1}{2}+O\left(q^{-1}\right)$

Applications

- Corollaries for the large box model:
- Easy: $P_{n, L} \rightarrow 0, L \rightarrow \infty$
. Large sieve inequality: $P_{n, L} \ll \frac{n^{3}}{\sqrt{L}}$
- Bhargava manages to control events $\bmod p^{2}$ and gets $P_{n, L} \leq \frac{C_{n}}{L}$
- C_{n} grows fast with n
- This approach seems to be not applicable in the restricted coefficients model

Finite Fields
 Non-uniform polynomials

- Let $a_{i q} \in \mathbb{F}_{q}$ be independent random variables (e.g., taking the values
$-1,0,1$ uniformly) and let $f_{q}=X^{n}+\sum_{i=0}^{n-1} a_{i q} X^{i}$
- How does $\mu_{q}\left(f_{q}\right)$ distribute? How does $\mu_{q}^{2}\left(f_{q}\right)$ distributes?
- Analog questions for the integers: How the Möbius function μ and the indicator function of squarefrees μ^{2} distribute on sparse sets of integers (very related: Maynard's theorem on primes with missing digits)
- Work in progress (LBS-Goldgraber): $\operatorname{Prob}\left(\operatorname{disc} f_{p}=\square\right) \approx 1 / 2$ under mild conditions on the distribution
- Application: The "not-so-large model"

The not-so-large model

$$
\begin{gathered}
f=f_{n, L}=X^{n}+\sum_{i=0}^{n} a_{i} X^{i} \\
P_{n, L}=\operatorname{Prob}(\operatorname{disc} f=\square \neq 0)
\end{gathered}
$$

- Take $L=L(n)$
- Theorem (LBS-Goldgraber, in progress): If $\lim _{n \rightarrow \infty} L(n)=\infty, \lim _{n \rightarrow \infty} \operatorname{Prob}\left(G_{f}=S_{n}\right)=1$
- Idea of the proof:
- If $L \gg n^{7}$, methods of the large box model gives $\lim _{n \rightarrow \infty} \operatorname{Prob}\left(G_{f}=S_{n}\right)=1$
- If $L \leq n^{7}$, then the methods from the restricted coefficients model may be applied, and we get that $\lim _{n \rightarrow \infty} \operatorname{Prob}\left(G_{f}=A_{n}\right.$ or $\left.S_{n}\right)=1$
- Lemma: $P_{n, L(n)}=o(1)$
- Proof: We use Fourier analysis/exponential sums to compare the distributions of $\mu_{p}(f \bmod p)$ and $\mu_{p}^{2}(f \bmod p)$ with the respective random variables for uniform polynomials. For μ_{p} we use tools developed by Sam Porritt and for μ_{p}^{2} we develop new tools

Some words on Fourier analysis Why it is applicable here?

- $f_{p}(X)=X^{n}+\sum_{i=0}^{n-1} a_{i p} X^{i}$ is a sum of independent variables
- The distribution is then a convolution of measures
- The Fourier coefficients are then a product of Fourier coefficients
- $\hat{p}_{p}(x)=\prod \hat{a}_{i p}\left(x_{i}\right)$
- The trivial character is responsible to the contribution of the uniform measure
- The goal is to show that the other coefficients are small
- As $\left|\hat{a_{i p}}\right| \leq 1$ it suffices to show that there are "enough" coefficients that are smaller than 1 to be "close" to the uniform distribution
- E.g., in LBS-Koukoulopoulos-Kozma we show that for any non-trivial distribution of the coefficients, there is a constant $\theta>0$ such that, on average, f_{p} equidistributes in arithmetic progressions of modulus of degree $\leq \theta n$

Concluding remarks

- In the century of studying probabilistic Galois theory, we have learned that estimating the probability to have a square discriminant is one of the main challenges
- The tools for studying these probabilities are diverse (e.g., algebraic number theory, analytic number theory, finite group theory, combinatorics, random matrix theory,...)
- In recent years, the tool box expanded significantly, by different research groups
- The recent breakthroughs in the subject bring

hope

for further progress on the major open problems

$\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\operatorname{disc}\left(\sum_{i=0}^{n} \pm X^{i}\right)=\square\right)=0$?

