On the discriminant of random polynomials

@VaNTAGeSeminar

Lior Bary-Soroker, October 17

$\lim_{n \to \infty} \operatorname{Prob}\left(\operatorname{disc}\left(\sum_{i=0}^{n} \pm X^{i}\right) = \Box\right) = 0?$

The two open problems of this talk

- For simplicity, I restrict generality to two central special cases
- Let a_0, a_1, \ldots be independent random variables taking values in *uniformly* in $[-L, L] \cap \mathbb{Z} = \{-L, -L + 1, \ldots, L\}$

Our random polynomial is $f = f_{n,L} = X^n + \sum_{i=0}^n a_i X^i$

- Put $P_{n,L} = \operatorname{Prob}(\operatorname{disc} f = \Box \neq 0)$
- Question 1: How fast $P_{n,L}$ goes to zero as $L \to \infty$?
- Question 2: Does $P_{n,L} \rightarrow 0$ as $n \rightarrow \infty$? (e.g., L = 1)

Motivation

Roots of polynomials with ± 1 coefficients of degree ≤ 24 | Sam Derbyshire

The van-der Waerden conjecture

The large box model

$$f = f_{n,L} = X^n + \sum_{i=0}^n a_i X^i$$
$$P_{n,L} = \operatorname{Prob}(\operatorname{disc} f = \Box \neq 0)$$

• Hilbert, van-der Waerden: $\lim_{L \to \infty} \operatorname{Prob}(G_f = S_n) = 1$

- Van-der Waerden conjecture (1930s): $\operatorname{Prob}(G_f \neq S_n) = \operatorname{Prob}(G_f = S_{n-1}) = O_n(L^{-1}), \quad L \to \infty$
- Knobloch, Gallagher, Zywina, Dietmann, Chow-Dietmann, Anderson-Gafni-Oliver-Lowry—Duda-Shakan-Zhang
- Bhargava's theorem (2021): $\operatorname{Prob}(G_f \neq S_n) = \operatorname{Prob}(G_f = A_n \text{ or } S_{n-1}) + O_n(L^{-2}) = O_n(L^{-1})$
- The main breakthrough of Bhargava: $P_{n,L} = O_n(L^{-1})$

How small is $P_{n,L}$, **large box model** naive heuristic $f = f_{n,L} = X^n + \sum_{i=1}^{n} a_i X^i$

i=0 $P_{n,L} = \operatorname{Prob}(\operatorname{disc} f = \Box \neq 0)$

- discf is a polynomial is a_i of degree 2n 1
- Hence $\operatorname{disc} f \approx L^{2n-2}$
- discf behaves like a random number
- Probability that a random n is a square is $n^{-1/2}$
- Hence $P_{n,L} \approx L^{1-n}$
- Wrong heuristic too small
- Explanation: discf has many symmetries so it is not like random numbers

How small is $P_{n,L}$, large box model Lower bounds

- $n = 0 \pmod{4}, f + f' = g^2 \Rightarrow \operatorname{disc} f = \Box$
- LBS-Ben-Porath-Matei: $P_{n,L} \ge \operatorname{Prob}(G_f = A_n) \gg L^{-n/4+\epsilon}$
- LBS-Ben-Porath-Matei: If *n* is even, then $P_{n,L} \gg L^{-n/2-1/2+\epsilon}$
- In the latter, the Galois group is **never** A_n , it preserves a partition to pairs; i.e., a subgroup of $(C_2 \wr S_{n/2}) \cap A_n$

. We identify a power law: so we will study $-\frac{\log P_{n,L}}{\log L}$

• Naive Conjecture: $P_{n,L} \asymp \operatorname{Prob}(G_f = A_n)$

Question 1: How fast $P_{n,L}$ goes to zero as $L \to \infty$?

Conjecture:
$$\lim_{L \to \infty} \frac{\log \operatorname{Prob}(G_f = A_n)}{\log L} = -\frac{n}{2}$$

Odlyzko-Poonen conjecture

Restricted coefficients model

- $f = f_{n,L} = X^n + \sum_{i=0}^n a_i X^i$ $P_{n,L} = \operatorname{Prob}(\operatorname{disc} f = \Box \neq 0)$
- Odlyzko-Poonen Conjecture, 1993: $\lim_{n \to \infty} \operatorname{Prob}(f \text{ is irreducible } | f(0) \neq 0) = 1$
- Easy: Prob(*f* is irreducible $|f(0) \neq 0| \gg \frac{1}{n}$

Konyagin,1999: Prob(*f* is irreducible $|f(0) \neq 0) \gg \frac{1}{\log n}$

- LBS-Kozma, LBS-Kozma-Koukoulopoulos: $\lim_{n \to \infty} \operatorname{Prob}(f \text{ is irreducible } | f(0) \neq 0) = 1$ if $L \geq 17$
- Breuillard-Varju: $\lim_{n \to \infty} \operatorname{Prob}(f \text{ is irreducible } | f(0) \neq 0) = 1$ under GRH
- LBS-Kozma: $\lim_{n\to\infty} \operatorname{Prob}(f \text{ is irreducible } | f(0) \neq 0) = 1 \text{ implies}$ $\lim_{n\to\infty} \operatorname{Prob}(G_f = A_n \text{ or } S_n) = 1$

Question 2: Does $P_{n,L} \rightarrow 0$ as $n \rightarrow \infty$?

Positive answer would imply $\lim_{n \to \infty} \operatorname{Prob}(G_f = S_n) = 1$

What is known?

Finite Fields Uniform polynomials

Stickelberger, Swan:
$$\mu_q(f_q) = (-1)^{\deg f_q} \left(\frac{\operatorname{disc} f_q}{q}\right)$$

- Here \mathbb{F}_q is a finite field, $f_q \in \mathbb{F}_q[X]$ a uniform monic polynomial of degree n

$$\begin{pmatrix} \frac{a}{q} \end{pmatrix} = \begin{cases} 1 & a = \Box \\ -1 & a \neq \Box \\ 0 & a = 0 \end{cases}$$
$$\mu_q(f_q) = \begin{cases} (-1)^r & f_q = \prod_{j=1}^r P_j, P_j \text{distinct} \\ 0 & \exists P^2 \mid f \end{cases} \text{ is the Möbius function}$$

• μ_q^2 is the indicator function for squarefree

• Prob
$$(\mu_q = 0, 1, -1) = \left(\frac{1}{q}, \frac{q-1}{2q}, \frac{q-1}{2q}\right)$$
 for $n > 1$

• Conclusion: $\operatorname{Prob}(\operatorname{disc} f_q = \Box \neq 0) = \frac{1}{2} + O(q^{-1})$

Applications

- Corollaries for the large box model:
- Easy: $P_{n,L} \to 0, L \to \infty$

• Large sieve inequality:
$$P_{n,L} \ll \frac{n^3}{\sqrt{L}}$$

- Bhargava manages to control events mod p^2 and gets $P_{n,L} \leq \frac{C_n}{I}$
- C_n grows fast with n
- This approach seems to be not applicable in the restricted coefficients model

Finite Fields Non-uniform polynomials

- Let $a_{iq} \in \mathbb{F}_q$ be independent random variables (e.g., taking the values -1,0,1 uniformly) and let $f_q = X^n + \sum_{i=0}^{n-1} a_{iq}X^i$
- How does $\mu_q(f_q)$ distribute? How does $\mu_q^2(f_q)$ distributes?
- Analog questions for the integers: How the Möbius function μ and the indicator function of squarefrees μ^2 distribute on sparse sets of integers (very related: Maynard's theorem on primes with missing digits)
- Work in progress (LBS-Goldgraber): ${\rm Prob}({\rm disc}f_p=\Box\,)\approx 1/2$ under mild conditions on the distribution
- Application: The "not-so-large model"

The not-so-large model

 $n \rightarrow \infty$

- Take L = L(n)
- Theorem (LBS-Goldgraber, in progress): If $\lim L(n) = \infty$, $\lim \operatorname{Prob}(G_f = S_n) = 1$ $n \rightarrow \infty$
- Idea of the proof:
- If $L \gg n^7$, methods of the large box model gives $\lim \operatorname{Prob}(G_f = S_n) = 1$
- If $L \leq n^7$, then the methods from the restricted coefficients model may be applied, and we get that $\lim \operatorname{Prob}(G_f = A_n \text{ or } S_n) = 1$ $n \rightarrow \infty$
- Lemma: $P_{n,L(n)} = o(1)$
- Proof: We use Fourier analysis/exponential sums to compare the distributions of $\mu_p(f \mod p)$ and $\mu_p^2(f \mod p)$ with the respective random variables for uniform polynomials. For μ_p we use tools developed by Sam Porritt and for μ_p^2 we develop new tools

Some words on Fourier analysis Why it is applicable here?

•
$$f_p(X) = X^n + \sum_{i=0}^{n-1} a_{ip}X^i$$
 is a sum of independent variables

- The distribution is then a convolution of measures
- The Fourier coefficients are then a product of Fourier coefficients

• $\hat{f}_p(\chi) = \prod \hat{a_{ip}}(\chi_i)$

- The trivial character is responsible to the contribution of the uniform measure
- The goal is to show that the other coefficients are small
- As $|\hat{a_{ip}}| \le 1$ it suffices to show that there are "enough" coefficients that are smaller than 1 to be "close" to the uniform distribution
- E.g., in LBS-Koukoulopoulos-Kozma we show that for any non-trivial distribution of the coefficients, there is a constant $\theta > 0$ such that, on average, f_p equidistributes in arithmetic progressions of modulus of degree $\leq \theta n$

Concluding remarks

- In the century of studying probabilistic Galois theory, we have learned that estimating the probability to have a square discriminant is one of the main challenges
- The tools for studying these probabilities are diverse (e.g., algebraic number theory, analytic number theory, finite group theory, combinatorics, random matrix theory,...)
- In recent years, the tool box expanded significantly, by different research groups
- The recent breakthroughs in the subject bring

hope

for further progress on the major open problems

$\lim_{n \to \infty} \operatorname{Prob}\left(\operatorname{disc}\left(\sum_{i=0}^{n} \pm X^{i}\right) = \Box\right) = 0?$