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Rational Isogenies

Let £1, E Ee two elliptic curves over a number field K. Write
Gk = Gal(K/K).

Definition

» An isogeny ¢ : E; — E; is a non-constant morphism of curves which

© maps Og, to Okg,; - -
< induces a group homomorphism from E;(K) to Ex(K);
< has finite kernel.

» The degree of ¢ = |ker(¢)| = [K(E1) : ¢*K(E2)].

» ¢ is K-rational if it is compatible with the Gk-action on E; and Ep;
that is, if the following diagram commutes for all o € Gk:

E1L>E2

Ul la

E1L>E2

Equivalently, ¢ is K-rational if ker(¢) is Gk-stable.

> ¢ is said to be cyclic if ker(¢) is a cyclic group.
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The Dream

_

“Understand rational isogenies.”

Every isogeny is the composition of a cyclic isogeny with the
multiplication-by-m map for some m > 1.

Reduced Goal

“Understand cyclic rational isogenies.”
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The Dream made precise

Open Problem

For a number field K, what possible degrees arise as the degree of a
K-rational cyclic isogeny between elliptic curves over K?

Let’s call this set of possible degrees IsogCyclicDeg(K).

We write IsogPrimeDeg(K) for the primes in this set, and call them
isogeny primes for K.

A priori these could be infinite sets, so the above Open Problem should
be interpreted as:

» Exactly determine IsogCyclicDeg(K) when it is finite;

> Classify the degrees in IsogCyclicDeg(K) when it is infinite.

What happens for K = Q? \




Mazur's Method
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The Theorems of Mazur and Kenku

Theorem (Mazur, 1978, [Maz78])

IsogPrimeDeg(Q) = {2,3,5,7,11,13,17, 19, 37, 43,67, 163}

Theorem (Kenku, 1981, [Ken79, Ken80a, Ken80b, Ken81])

IsogCyclicDeg(Q) = {1 < N < 19} U {21, 25,27,37,43,67,163}

Barry C. Mazur Monsur A. Kenku
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Mazur's Formal Immersion Method

The method of proof of Theorem 1 is as follows.

Step 1. Let N be a prime number. We begin with a geometric analysis of the
projection fi X,(N)g>™ — J, where J; is the Néron model of the Eisenstein
quotient of the jacobian of X (N).

We show that f is a formal immersion along the cuspidal section oo at
least away from characteristic 2. We show this when p= N, by noting that if f

the section o .. If f: X—7Y is a morphism of finite type between noetherian
schemes, we shall say that f'is a formal immersion at a point x if the induced map on
the completions of local rings @Y'm,a(ﬁx! «issurjective. This is equivalent to asking
that the map induce an isomorphism between residue fields of x and f(x), and that f
be formally unramified at x ([44] EGA IV 17.4.4). Recall further that to check
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Isogenies of prime degree over number fields

FUMIYUKI MOMOSE
Department of Mathematics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112, Japan

Received 19 August 1993; accepted in final form 24 December 1993

In [Mom95], Momose classified isogenies into three types according to
the isogeny character, which encodes the Galois action

A1 Gk — AutV(K) = F)

on the kernel V of a K-rational p-isogeny.
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Momose's Classification of Isogenies into three types

Theorem (Momose)

Let K be a number field. Then there exists a constant Co = Co(K) such
that for any prime p > Co, and for any elliptic curve admitting a
K-rational p-isogeny, the isogeny character )\ falls into one of the

following three types:
Type 1. X2 or (M, 1)'? is unramified (6, =mod-p cyclotomic character).

Type 2. A2 =68 and p = 3 (mod 4).
Type 3. K contains the Hilbert class field H; of an imaginary quadratic
field L. The rational prime p splits in L:

pOL = pp.
For any prime q of K prime to p,

M2(Frobg) = a'? (mod p)

for any a € K* with aOp = Nmy/.(q).
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Type 1 isogenies

Theorem (Momose, Theorem 3 in loc. cit.)

Let K be a number field of degree < 12. Then there are only finitely
many Type 1 primes for K.

Why the restriction d := [K : Q] < 127 The proof requires a formal
immersion criterion for the dt symmetric power modular curve:

d-times
Xo(p)') := (Xo(p) x -+ x Xo(p)) /S
Xo(p)'¥) > effective degree d divisors on Xo(p).

Define the map
A9 Xo(p)m p — Ho(P)z — gz

D =D —d(c0)] — [D — d(c0)] (mod v3J0(p))

(See [Maz77, Chapter 2 Section 10] for the definition of ~3.)
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Theorem (Kamienny, Kamienny-Mazur [KM95], Abramovich [Abr95])

For d < 12, there are constants Ay and By such that, for all primes

p > Aqg4 and g > By, the map fp(d) is a formal immersion along the
section (00, ...,00) in characteristic q.

The constants Ag and By were not made explicit (except for d = 2, more
on this later). This theorem was approached via Kamienny's
reformulation of the formal immersion criterion in terms of linear
independence of Hecke operators in positive characteristic.

Sheldon Kamienny Barry C. Mazur Dan Abramovich
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ProrosITION 3.1.  The following are equivalent.

(1) The map [: X{@ — Jis is a formal immersion along the section (o0, ..., co) in
characteristic p (possibly zero).

(2) There exist d weight-two cusp forms, associated to J, that satisfy the linear
independence condition (mod p).

from [Kam92b]
Why did they care about such statements?
Equivalently, suppose that the images of the first d Hecke operators Ty, ..., T, in the

l-adic completion T, of the Hecke algebra T are Z-linearly independent. Then the
uniform boundedness conjecture is true for all number fields of degree d.

from [Kam92b]

We'll revisit this in the ‘Merel’ section. For now we frame the following:

Explicit formal immersion criteria defeat Type One primes.
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Type 2 isogenies

Condition CC (Momose + B.-Derickx)

Let K be a number field, and E/K an elliptic curve admitting a K-rational
p-isogeny, with p of Type 2. Let q be a rational prime admitting a prime ideal
q | g of odd residue degree f satisfying:

Q ¢ <p/4

Q@ ¢* + ¢ +1#0 (mod p).
Then q does not split in Q(\/—p).
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Claim. If the above case occurs then for all odd primes p < N/4 we have (;) =-1

To conclude our theorem, we shall now prove that the above claim implies that
Q(]/?ﬁ) has class number 1 and hence (by Baker-Stark-Heegner [3, 37, 38]) we
have N =11, 19, 43, 67, or 163 (ignoring the genus 0 cases).

Since N= —1 mod 4, quadratic reciprocity applied to (7.1) implies that for
2<p<N/4, p remains prime in Q(}/ —N).

Thus all ideals I of odd norm < N/4 are principal in the ring of integers of
Q(]/;—rN), To be sure, if we had the stronger assertion that all ideals of norm < N/4
were principal, then Q(l/:-]_\l) would have class number 1 by Minkowski’s
theorem: the absolute value of the discriminant of Q(}/ — N is N; the Minkowski
constant is 2/n; and 2/7:v1/ﬁ<N/4 for N>11. We shall prove this stronger
assertion. If 2 does not split in Q(}/ — N), there is nothing to prove. Suppose, then,

Barry C. Mazur

receives National that 2 does split, in which case N= —1 or 7 mod 16. We must show that one (and

. hence both) of the primes of norm 2 are principal. If N = — 1 mod 16, consider the

Medal of Science from element ox=(3+1/ —N)/2. One sees that the norm of a is twice an odd number;
US President Barack hence (x)=p - I where p is one of the primes of norm 2, and I is an “odd” ideal, with
norm (9+ N)/8. Since N =11, the norm of I is less than N/4, and therefore I is

H. Obama principal. Consequently so is p. If N =7 mod 16, take the element & =(1 +7/ — N)/2,

and repeat the above argument.



Momose
Determining the Type 2 primes is harder for general K.
However, Momose was able to establish the following two results:

PROPOSITION 1. For any quadratic field k, there are only finitely many
prime numbers p which satisfy the condition C.

REMARK 8. K. Murty taught me that the G.R.H. leads Goldfeld conjec-
ture. In fact, G.R.H. implies that Condition C is satisfied only for finitely
many prime numbers p for a given algebraic number field k of finite degree.

N

Vijaya Kumar Murty
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Type 3 isogenies

algebraic number field of odd degree (cf. Theorem 6). The k-rational points
of Type 3 are expected to be the C.M. points for almost all prime numbers
p. But, even for the imaginary quadratic field k of class number one, we
have not solved this case. We add a result under a strong condition on
reduction. The classification of algebraic points on Xy(p)’s can be applied

Open Problem (Momose's Conjecture)

Let K be a number field containing the Hilbert class field of an imaginary
quadratic field L. Then there is a constant Cx such that, for prime

p > Cg, if there exists an elliptic curve E over K admitting a K-rational
p-isogeny of Type 3, then E has CM by an order O in L, and p splits or
ramifies in O.
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After Lori Watson's talk in this series, | wondered the following:

Does Momose’s conjecture follow from recent developments in the realm of
isolated or sporadic points on modular curves?

Pete Clark also mentioned “sporadic CM points” which might be relevant here.

One place to start with this is to watch their respective VaNTAGe talks.

Philosophy of the CM case

o The CM case is (apparently or provably) extremal in some
ways and exceptional in others. If you are in interested in the
general case, you may need to sieve out the CM case to study

it properly.

Pete L. Clark Lori D. Watson
VaNTAGe talk: VaNTAGe talk:
https://youtu.be/4cX8amfVr8M https://youtu.be/S4ZX3CUIzLE


https://youtu.be/4cX8amfVr8M
https://youtu.be/S4ZX3CUIzLE
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In summary ...

Theorem (Momose)

Assume GRH. Let K be a number field of degree < 12 which does not
contain the Hilbert class field of an imaginary quadratic field. Then
IsogPrimeDeg(K) is finite.

Theorem (Momose)

Let K be a quadratic field which is not imaginary quadratic of class
number 1. Then lsogPrimeDeg(K) is finite.

These results of Momose were not effective.

Can one exactly determine lsogPrimeDeg(K) for a single number field

K #Q?




The work of Loic Merel
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Strong Uniform Boundedness for torsion on elliptic curves

Let d > 1 be an integer. Then there is a constant By such that, if E is
an elliptic curve over any number field K of degree < d, then
|E(K)tors| < Bd-
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Strong Uniform Boundedness for torsion on elliptic curves

Theorem (Merel, 1996, [Mer96])

Let d > 1 be an integer. Then there is a constant By such that, if E is
an elliptic curve over any number field K of degree < d, then
|E(K)tors| < Bd-

Loic Merel
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Merel proved the linear independence of Hecke operators for general d:

Prnpositinn 3. Soient d un nombre entier = 1 et p un nombre premier vérifiant
> Sup(d00d*,d®). C’est le cas lorsqu’onap > 24+ d 14/ 2 et d > 4, ou en-

1::L
core lorsque p > & erd > 3. Alors Tye,..., Tye sont linéairement indépendants

dans H® Q.

This was achieved by working with the Winding quotient rather than the
Eisenstein quotient.

.(21),C),‘qui Ac®l atesocie c;- — f( w, d’un élément e de H® R, que néué
appellerons élément d’enroulement (winding element dans [12]). En fait on a
(p—Dec H &1 ([12]).

The winding quotient is the largest rank 0 quotient of Jo(N), and it
allows one to get explicit formal immersion criteria (i.e. the A, and
By from earlier can be written down).



In summary ...

Theorem (Momose)

Assume GRH. Let K be a number field of degree < 12 which does not
contain the Hilbert class field of an imaginary quadratic field. Then
IsogPrimeDeg(K) is finite.

Theorem (Momose)

Let K be a quadratic field which is not imaginary quadratic of class
number 1. Then lsogPrimeDeg(K) is finite.

These results of Momose were not effective.

Can one exactly determine lsogPrimeDeg(K) for a single number field

K #Q?




In summary ...

Theorem (Momose + Merel)

Assume GRH. Let K be a number field efdegree=<+2 which does not
contain the Hilbert class field of an imaginary quadratic field. Then
IsogPrimeDeg(K) is finite.

Theorem (Momose)

Let K be a quadratic field which is not imaginary quadratic of class
number 1. Then lsogPrimeDeg(K) is finite.

These results of Momose were not effective.

Can one exactly determine lsogPrimeDeg(K) for a single number field

K #Q?
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Explicit isogenies of prime degree over quadratic

fields

arxiv.org/abs/2101.02673 - submitted
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Can one exactly determine lsogPrimeDeg(K) for a single number field

K # Q7

Makes sense to start at quadratic fields K which are not imaginary
quadratic of class number one (called isogeny-finite in the sequel). | tried
to approach this via a two-step process:

@ Find an upper bound for IsogPrimeDeg(K);

© For each prime up to this upper bound, decide whether or not it is in

IsogPrimeDeg(K).

Note that this is the same approach used by Yuri Bilu, Pierre Parent, and
Marusia Rebolledo to show that the split Cartan primes over the rationals
are {2,3,5,7,13} [BPR13].

Yuri Bilu Pierre Parent Marusia Rebolledo
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Upper bound for IsogPrimeDeg(K)

There are 3 components of IsogPrimeDeg(K):

(@) TypeOnePrimes TypeTwoPrimes
Bound C(K,2(Ax) ™) (1 4 35dkhx)2 H < eC:K(RKd:(K+(hK log Ak)?)
LeSk

Found by Agnés David Joseph Oesterlé

Eric Larson & Dmitry Vaintrob

.
il

Reference [Dav12] [DKSS17, Section 6] [Lv14]

This wasn't quite explicit because of the unknown constants A and ¢, which arise from
applying Effective Chebotarev Density.
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However, we replaced these steps with the absolute best possible
Effective Chebotarev Density bound of Bach and Sorenson [BS96] (which
is free of unknown constants):

5.1. An explicit version of the main result.

Theorem 5.1 (ERH). Let E/K be a Galois extension of number fields, with E #
Q. Let A denote the absolute value of E’s discriminant. Let n denote the degree of
E. Let o € G, the Galois group of E/K.

Then there is a prime ideal p of K with (-E—%?) = o, of residue degree 1, satis-

fuing Jonathan
Np < (4log A +2.5n + 5)%.
Sorenson

Eric Bach
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The DLMV bound

Proposition (B.)

Assume GRH. Then there is an algorithm which, given a quadratic field
K which is not imaginary quadratic of class number 1, computes an
upper bound on IsogPrimeDeg(K).

K.discriminant().abs()
.class_number()
.regulator()
.unit group().rank()

log(2)/(r_K )
rK (r K ) delta_K**(-(r_K ))
exp( )

(4*log(Delta_K**h_K) h_ K
( h_K))

type 1 bound ( ( h K))
type 2 bound = get type 2 bound(K)

(C_0, type 1 bound, type 2_bound)
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Ak K DLMV(K)
—40 | Q(v/—10) | 3.20 x 1036
—24 | Q(v/=6) | 2.99 x 10308
—20 | Q(v/=5) | 2.58 x 1030
8 Q(v2) | 4.06 x 10'%
12 Q(v3) | 1.68 x 10%52
5 Q(+v/5) | 5.65 x 1026
24 Q(v6) | 9.76 x 1077
28 Q(V7) | 1.08 x 108
40 | Q(10) | 2.59 x 10%*

Clearly the bounds had to be improved ... so | returned to Momose's
paper ... after 10 years!
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The backstory

John Cremona suggests the problem to me in about June 2010.

Jim Stankewicz tells me about Momose's paper in about November
2010.

In June 2020 | attend the Simons AGNTC workshop organised by
Jennifer Balakrishnan, Noam Elkies, Brendan Hassett, Bjorn Poonen,
Drew Sutherland, and John Voight.

Vo) Jim Stankewicz and | take

- Stan _ The organisers of Simons
John Cremona selfie with Bryan Birch AGNTC 2020
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On the first day of that workshop | have a zoom call with Isabel Vogt
who clearly explains to me an idea of Luis Dieulefait who has a method to
compute non-surjective primes of a generic genus 2 curve over Q [Die02].

Very roughly, the idea is to choose a finite set of auxiliary primes g,
compute a handful of integers A;(g) whose supports in union is a
superset for the non-surjective primes, then take GCDs over g of the
LCMs of Aj(q).

: G ]

Isabel Vogt Luis V. Dieulefait
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Back to the problem ...

When | returned to Momose's paper in November 2020, | had the following
question in mind:

Instead of finding upper bounds for IsogPrimeDeg(K), can you instead find a
tight superset for it by computing a handful of integers associated to auxiliary
primes q of K7

This led to the integers

A(e,q) := Nmgg(a® —1);
12hK).

B(e,q) := Nmg (e — q
C(e,q) := Icm({NmK(g)/@(a6 — 8" | B is a Frobenius root over Fq});

D(q) := Icm({l + Nm(q)*?" — g*?" _ 32| 3 is a Frobenius root over Fq})

See the paper for the definitions, or attend my up upcoming talk at Universitat

Bayreuth:
http://www.mathe2.uni-bayreuth.de/oberseminar/index.html


http://www.mathe2.uni-bayreuth.de/oberseminar/index.html
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Coding it all up led to

Theorem (B.)

Let K be a quadratic field which is not imaginary quadratic of class
number 1. Then there is an algorithm which computes a superset of
IsogPrimeDeg(K) as the union of three sets:

IsogPrimeDeg(K) C PreTypeOneTwoPrimes(K) U TypeOnePrimes(K)
U TypeTwoPrimes(K).

<
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Quadratic Isogeny Primes

Sage and PARI/GP implementation of the command-line tool is available
at

github.com/barinderbanwait/quadratic_isogeny_primes



github.com/barinderbanwait/quadratic_isogeny_primes
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TypeOnePrimes

Recalling that

Explicit formal immersion criteria defeat Type One primes.

we use Kamienny's explicit formal immersion criteria for quadratic fields:

1
S=Specl|:N:|.

The basic ingredient in this work is the following.

Proposition 3.2 Let N be a prime > 61, but not 71. The map

S X@ - Js

Sheldon Kamienny

is a formal immersion along (o0, ) away from characteristics 2, 3, and 5.
From [Kam92a].
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TypeOnePrimes(K) = PrimesUpTo(71) U{p: p | Ak}

U{p:(p—1)|12n}U | [ {p:p|D(a)}

qE€Aux
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TypeTwoPrimes

This part of the algorithm doesn’t use auxiliary primes, but instead
checks primes up to the bound on TypeTwoPrimes whether they satisfy

p/\RIE

)
(pBeg)
(p,cond);
(p = pBeg*blockSize, (pBeg+1l)*blockSize-1,
cond (p,D);

(cond, (p)));

(checktypetwo)

howMany (typetwobound/blockSize) ;
(checktypetwo, [ 5
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From Superset to Set

Let's run the algorithm on Q(1/5); we get a superset of
PrimesUpTo(79) U {163} .

How to determine which of these are actually in IsogPrimeDeg(Q(+/5))?

There are three ingredients.
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Ingredient 1: Quadratic points on low-genus modular curves

Hyperelliptic modular curves Xp(N)
and isogenies of elliptic curves over
quadratic fields, 2015 [BN15]

Peter J. Bruin

Quadratic points on modular curves,
2019 [OS19], see Ekin's VaNTAGe
talk here:
https://youtu.be/fj--cM2o-sA

Ekin Ozman Samir Siksek

Quadratic points on modular curves

- with infinite Mordell-Weil group,
2021 [Box21]

Josha Box
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Ingredient 2: Local solubility of twisted modular curves

THEOREM 1.1. Let p be a prime, N a square-free integer, and K a
quadratic field. Then
(1) X’i(f\")(Qﬁ) # 0 for all p that split in K and for (J, =R (Proposi-
ti(m.
(2) XUNYNQp) #0 if p is inert in K and does not divide N (Theorem

£

(3) For all odd p that are inert in K and divide N, X"(N)(Qp) <0 if

and only if either
(a) N = p]l, ¢ where p=3mod4 and ¢; = 1 mod 4 for all i and
(;HP‘L) =—1, or
(b) N =2pT]; g where p=3mod4 and g, =1 mod 4 for all i and
(%} = —1 (Theorem
(4) If 2 is inert in K and divides N, X4(N)(Q,) # 0 if and only if
N = 2]]; i where q; = 1 modulo 4 for all i (Theorem .
(5) Forall pthat are ramified in K and unramified inQ (=N ), X4(N )(Q,)
# ) if and only if p is in the set Sy defined in Proposition|4.6] (Theorem

feao)
(6) For all p that are ramified in K and Q(v—-N), if X’i(f\")(Qﬁ) 10

then p € Sy (Pmpﬂsztmn.

From [Ozm12]

Ekin Ozman
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Ingredient 3: Dealing with 79

APPENDIX A. ON X,(79)(Q(v5))
by BARINDER S. BANWAIT AND MAARTEN DERICKX
In this appendix we establish the following result.

Proposition A.1. The set of Q(v/5)-rational points on the modular curve Xo(79)
consists only of the two (Q-rational cusps.

Maarten Derickx



This requires that
Jo(79)~(QV5)) = Jo(79)-(Q).

We in fact show that Jy(79)_(Q)tors does not grow in any quadratic
extension.

Open Problem (Quadratic Generalised Ogg's conjecture?)

In general how does the torsion of Jo(N) grow from Q to (specific)
quadratic fields? What about the minus part?

See [Y0021] for recent progress on the Generalised Ogg conjecture over

Q.

E

Hwajong Yoo
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To summarise...

Theorem (B.)
Assuming GRH, we have the following.

IsogPrimeDeg(Q(v/7)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(+v/—10)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(Vv/5)) = IsogPrimeDeg(Q) U {23, 47}
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Open Problem

Can you extend the results on quadratic points on low-genus modular
curves to higher genera?
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Work in progress with Maarten Derickx
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Theorem (B.-Derickx)

Let K be a number field which does not contain the Hilbert class field of
an imaginary quadratic field. Then there is an algorithm which computes
a superset of IsogPrimeDeg(K) as the union of three sets:

IsogPrimeDeg(K) C PreTypeOneTwoPrimes(K) U TypeOnePrimes(K)
U TypeTwoPrimes(K).

v

Zoom call with Maarten Derickx
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TypeOnePrimes

The implementation of TypeOnePrimes uses the state-of-the-art explicit and

tight formal immersion criteria due to Derickx, Kamienny, Stein, and Stoll
[DKSS17]:

Proposition 5.3. Let H C (Z/pZ)”/{£1} be a subgroup. Let { # p be a prime and
consider t = t4(t,) as in Proposition 5.1 when € is oddy, or t as in Corollary 5.2 when
¢ = 2. Then t o vis a formal immersion at all X, € X‘Hd'(F[} that are sums of images of
rational cusps on X,(p), if for all partitions d = ny +...+n, withny > --- > n,, and
all m-tuples (dy = 1,dy, ..., dw) of integers representing pairwise distinct elements of H,
the d Hecke operators

.1

are Fy-linearly independent in T @ I, where T is considered as a subalgebra of Endg(]}).

Maarten Derickx Sheldon Kamienny William Stein Michael Stoll
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From Superset to Set

Let's run the algorithm on Q(¢7)™; we get a superset of

PrimesUpTo(43) U {61,67,73,163} .

How to determine which of these are actually in IsogPrimeDeg(Q(¢7)™)?
The main ingredient is

Theorem (Box-Gajovi¢-Goodman, 2021)

For N € {53,57,61, 65,67, 73}, the set of cubic points on Xo(N) is finite
and listed in Section 5 of [BGG21].

Josha Box Stevan Gajovi¢ Pip Goodman
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The first cubic case of IsogPrimeDeg

Theorem (B.-Derickx)
Assuming GRH,

IsogPrimeDeg(Q(¢7) ") = IsogPrimeDeg(Q)
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Open Problem

Can you extend the results on cubic points on low-genus modular curves
to higher genera?

| A\

Open Problem

Can you start compiling catalogues of higher degree points on low-genus
modular curves?
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Uniform TypeTwoPrimes

Theorem (B.-Derickx)

Assume GRH, and let d be an odd integer. Then there is a bound Cy4
such that if E is an elliptic curve over a number field K of degree d

which admits a K-rational p-isogeny, then p < C4. Moreover, we have
C3 = 253,507.

There is a cubic field which satisfies Condition CC with p = 253,507, but
this is only a necessary condition for Type 2 isogenies, so the following is
natural:

Open Problem

Does there exist an elliptic curve over a cubic field admitting a rational
253,507-isogeny?
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Strong Uniform Boundedness for Isogenies?

Open Problem

Fix an integer d. As one varies over all elliptic curves over all number
fields of degree d which do not contain the Hilbert class field of an
imaginary quadratic field, are there only finitely many isogeny primes that
arise?
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Code optimisations

"Tu devrais essayer GP2C, GP2C est plus rapide que
GP pour les boucles longues."

produced with permissi.

Open Problem
Can you make the implementation wicked fast?
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Further Problems to consider
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Statistical Distribution of IsogPrimeDeg(K)

Both Ralph Greenberg and Jaap Top asked this Arithmetic Statistics
question:

Open Problem

Fix an integer d. What is the distribution of IsogPrimeDeg(K) as one
varies over all number fields K of degree d?

Ralph Greenberg
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Let K be a number field, and let p € IsogPrimeDeg(K). We say that p is
new if p ¢ IsogPrimeDeg(L) for any proper subfield L C K.

Question

| A\

As one varies over all isogeny-finite quadratic fields Q(+v/D) for |D| < 50,
how many new isogeny primes arise for each D, which new isogeny
primes arise, and how often do they arise?

There are 54 quadratic fields to consider.
We were able to decide on 38 of these.



Isogenies  Mazur Momose

Isogeny Primes  To Do

Credits

Theorem (B.-Derickx)
Assuming GRH,

IsogPrimeDeg(Q(1/—46)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(y/—42)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(y/—39)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(y/—38)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(y/—34)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(1/—30)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(1/—29)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(\/—23)) = IsogPrimeDeg(Q) U {29, 31}
IsogPrimeDeg(Q(y/—21)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(y/—17)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(y/—15)) = IsogPrimeDeg(Q) U {23}
IsogPrimeDeg(Q(y/—14)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(y/—13)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(y/—5)) = IsogPrimeDeg(Q) U {23}

000@000000

IsogPrimeDeg(Q(V/2)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(V/3)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(V/6)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(1/7)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(1/10)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(1/11)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(/13)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(1/14)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(1/19)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(1/21)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(1/23)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(1/26)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(1/30)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(1/31)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(1/33)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(1/34)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(1/35)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(1/38)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(1/39)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(1/42)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(1/43)) = IsogPrimeDeg(Q)
IsogPrimeDeg(Q(1/46)) = IsogPrimeDeg(Q)

U {31}




Number of new isogeny primes Frequency of new isogeny primes
3.0

254

23 2931 41 47 73

OK, to be totally honest: In these diagrams | have assumed that the hyperelliptic curves

Xx17(23), x37(23), x29(31), x292(37), x 31(a1), X ~22(59)

X47(59) do not have any Q-rational points, because | searched
up to a really big height bound but failed to find any points. This could possibly be proved with Quadratic Chabauty; this only

affects a small number of the 54 cases, so even if not true, the general picture would remain unaffected.
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Put results in https://1mfdb.org?

Do people want to see the results in the LMEDE > Fyen if they're "only
supersets"?

See Jeremy Rouse's VaNTAGe talk for applications of knowing what the
isogeny primes are.

Applications of Galois representations - 1/4

o Suppose £ is an odd prime and a + b’ = ¢/ with abc # 0. Let

Eiy? = x(x - a')(x + b)

o This elliptic curve has full 2-torsion. Level-lowering gives that if
pE.s is irreducible, it must arise from a modular form of level 2.
This contradiction proves Fermat's last theorem

® There are a number of other applications of this technique:
proving that 0, 1, 8 and 144 are the only perfect powers in the
Fibonacci sequence, solving generalized Fermat equations, etc.

Jeremy Rouse

-adic images of Galois

Jeremy Rouse’s VaNTAGe talk: https://youtu.be/L_I1_sJymEs

/42


https://lmfdb.org
https://youtu.be/L_Il_sJymEs

To Do
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) » Number fields » 2.2.5.1

Number field 2.2.5.1: Q(v/5)

Normalized defining polynomial
22—z—1

Isogeny primes

2,3,5,7,11,13,17,19, 23, 37, 43, 47,67, 163

0O - Number fields » 5.5.14641.1

Number field 5.5.14641.1: Q(¢11)*

“n

This is the quintic field with Galois group €5 with the smallest absolute discriminant.
Normalized defining polynomial
5

z® — 2! —42° + 327 + 3z — 1

Superset for isogeny primes

1sogeny primes of elliptic curves
Isogeny primes are AWESOME!

permalink - (awaiting review)

2,3,5,7,11,13,17,19, 23, 29, 31, 37,41, 43, 47, 53,59, 61, 67, 71, 73, 89, 07, 109, 163, 197, 199, 241, 307, 397, 571
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Quadratic Bilu-Parent-Rebolledo?

Momose wrote a paper about the split Cartan modular curves X(p)
[Mom84] and one about its generalisation X (p") [Mom87].

Open Problem

Fix a quadratic field K. Can one exactly determine the primes p for
which the split Cartan modular curve X;(p) admits non-cuspidal, non-CM
rational points?

There's been enough progress on quadratic points on modular curves in
recent years to at least start thinking about this seriously.
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Quadratic Kenku

Open Problem

For a number field K, what possible degrees arise as the degree of a
K-rational cyclic isogeny between elliptic curves over K ?

| am currently working on this with Oana Adascalitei and Filip Najman:
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Mazur's theorems for abelian surfaces?

Open Problem

Is there a uniform bound on isogeny primes for abelian surfaces over Q7

Open Problem

Is there a uniform bound on torsion primes for abelian surfaces over Q?

One may initially want to restrict the class to principally polarised abelian
surfaces, and to isogenies which are compatible with the polarisation.
But this is hard because fewer explicit results are known about moduli
spaces of principally polarised abelian surfaces.



Thank You!
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