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Isogenies
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Rational Isogenies

Let E1, E2 be two elliptic curves over a number field K . Write
GK := Gal(K/K ).

Definition
I An isogeny φ : E1 → E2 is a non-constant morphism of curves which

} maps OE1 to OE2 ;
⇔ induces a group homomorphism from E1(K) to E2(K);
⇔ has finite kernel.

I The degree of φ = | ker(φ)| = [K (E1) : φ∗K (E2)].
I φ is K -rational if it is compatible with the GK -action on E1 and E2;

that is, if the following diagram commutes for all σ ∈ GK :

E1 E2

E1 E2

φ

σ σ

φ

Equivalently, φ is K -rational if ker(φ) is GK -stable.
I φ is said to be cyclic if ker(φ) is a cyclic group.
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The Dream

Goal
“Understand rational isogenies.”

Fact
Every isogeny is the composition of a cyclic isogeny with the
multiplication-by-m map for some m ≥ 1.

Reduced Goal
“Understand cyclic rational isogenies.”
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The Dream made precise

Open Problem

For a number field K , what possible degrees arise as the degree of a
K -rational cyclic isogeny between elliptic curves over K?

Let’s call this set of possible degrees IsogCyclicDeg(K ).

We write IsogPrimeDeg(K ) for the primes in this set, and call them
isogeny primes for K .

A priori these could be infinite sets, so the above Open Problem should
be interpreted as:
I Exactly determine IsogCyclicDeg(K ) when it is finite;
I Classify the degrees in IsogCyclicDeg(K ) when it is infinite.

Question
What happens for K = Q?
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Mazur’s Method
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The Theorems of Mazur and Kenku

Theorem (Mazur, 1978, [Maz78])

IsogPrimeDeg(Q) = {2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163}

Theorem (Kenku, 1981, [Ken79, Ken80a, Ken80b, Ken81])

IsogCyclicDeg(Q) = {1 ≤ N ≤ 19} ∪ {21, 25, 27, 37, 43, 67, 163}

Barry C. Mazur Monsur A. Kenku
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Mazur’s Formal Immersion Method
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The work of Fumiyuki Momose
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In [Mom95], Momose classified isogenies into three types according to
the isogeny character, which encodes the Galois action

λ : GK −→ AutV (K ) ∼= F×p
on the kernel V of a K -rational p-isogeny.

Fumiyuki Momose
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Momose’s Classification of Isogenies into three types

Theorem (Momose)

Let K be a number field. Then there exists a constant C0 = C0(K ) such
that for any prime p > C0, and for any elliptic curve admitting a
K -rational p-isogeny, the isogeny character λ falls into one of the
following three types:
Type 1. λ12 or (λθ−1

p )12 is unramified (θp =mod-p cyclotomic character).

Type 2. λ12 = θ6
p and p ≡ 3 (mod 4).

Type 3. K contains the Hilbert class field HL of an imaginary quadratic
field L. The rational prime p splits in L:

pOL = pp̄.

For any prime q of K prime to p,

λ12(Frobq) = α12 (mod p)

for any α ∈ K× with αOL = NmK/L(q).
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Type 1 isogenies

Theorem (Momose, Theorem 3 in loc. cit.)

Let K be a number field of degree ≤ 12. Then there are only finitely
many Type 1 primes for K .

Why the restriction d := [K : Q] ≤ 12? The proof requires a formal
immersion criterion for the d th symmetric power modular curve:

X0(p)(d) :=

d-times︷ ︸︸ ︷
(X0(p)× · · · × X0(p)) /Sd

X0(p)(d) ↔ effective degree d divisors on X0(p).

Define the map

f (d)
p : X0(p)

(d)
sm,/Z −→ J0(p)/Z −→ J̃/Z

D 7−→ [D − d(∞)] 7−→ [D − d(∞)] (mod γJJ0(p))

(See [Maz77, Chapter 2 Section 10] for the definition of γJ.)
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Theorem (Kamienny, Kamienny-Mazur [KM95], Abramovich [Abr95])

For d ≤ 12, there are constants Ad and Bd such that, for all primes
p > Ad and q > Bd , the map f

(d)
p is a formal immersion along the

section (∞, . . . ,∞) in characteristic q.

The constants Ad and Bd were not made explicit (except for d = 2, more
on this later). This theorem was approached via Kamienny’s
reformulation of the formal immersion criterion in terms of linear
independence of Hecke operators in positive characteristic.

Sheldon Kamienny Barry C. Mazur Dan Abramovich
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from [Kam92b]

Why did they care about such statements?

from [Kam92b]

We’ll revisit this in the ‘Merel’ section. For now we frame the following:

SLOGAN
Explicit formal immersion criteria defeat Type One primes.
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Type 2 isogenies

Condition CC (Momose + B.-Derickx)

Let K be a number field, and E/K an elliptic curve admitting a K -rational
p-isogeny, with p of Type 2. Let q be a rational prime admitting a prime ideal
q | q of odd residue degree f satisfying:

1 qf < p/4;
2 q2f + qf + 1 6≡ 0 (mod p).

Then q does not split in Q(
√
−p).
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Barry C. Mazur
receives National

Medal of Science from
US President Barack

H. Obama
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Determining the Type 2 primes is harder for general K .
However, Momose was able to establish the following two results:

Vijaya Kumar Murty
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Type 3 isogenies

Open Problem (Momose’s Conjecture)

Let K be a number field containing the Hilbert class field of an imaginary
quadratic field L. Then there is a constant CK such that, for prime
p > CK , if there exists an elliptic curve E over K admitting a K -rational
p-isogeny of Type 3, then E has CM by an order O in L, and p splits or
ramifies in O.
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After Lori Watson’s talk in this series, I wondered the following:

Question
Does Momose’s conjecture follow from recent developments in the realm of
isolated or sporadic points on modular curves?

Pete Clark also mentioned “sporadic CM points” which might be relevant here.

One place to start with this is to watch their respective VaNTAGe talks.

Pete L. Clark Lori D. Watson
VaNTAGe talk: VaNTAGe talk:

https://youtu.be/4cX8amfVr8M https://youtu.be/S4ZX3CUIzLE

https://youtu.be/4cX8amfVr8M
https://youtu.be/S4ZX3CUIzLE
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In summary ...

Theorem (Momose)

Assume GRH. Let K be a number field of degree ≤ 12 which does not
contain the Hilbert class field of an imaginary quadratic field. Then
IsogPrimeDeg(K ) is finite.

Theorem (Momose)

Let K be a quadratic field which is not imaginary quadratic of class
number 1. Then IsogPrimeDeg(K ) is finite.

These results of Momose were not effective.

Question

Can one exactly determine IsogPrimeDeg(K ) for a single number field
K 6= Q?
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The work of Loïc Merel
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Strong Uniform Boundedness for torsion on elliptic curves

Conjecture

Let d ≥ 1 be an integer. Then there is a constant Bd such that, if E is
an elliptic curve over any number field K of degree ≤ d , then
|E (K )tors | ≤ Bd .

Loïc Merel
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Strong Uniform Boundedness for torsion on elliptic curves

Theorem (Merel, 1996, [Mer96])

Let d ≥ 1 be an integer. Then there is a constant Bd such that, if E is
an elliptic curve over any number field K of degree ≤ d , then
|E (K )tors | ≤ Bd .

Loïc Merel
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Merel proved the linear independence of Hecke operators for general d :

This was achieved by working with the Winding quotient rather than the
Eisenstein quotient.

The winding quotient is the largest rank 0 quotient of J0(N), and it
allows one to get explicit formal immersion criteria (i.e. the Ad and
Bd from earlier can be written down).
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In summary ...

Theorem (Momose)

Assume GRH. Let K be a number field of degree ≤ 12 which does not
contain the Hilbert class field of an imaginary quadratic field. Then
IsogPrimeDeg(K ) is finite.

Theorem (Momose)

Let K be a quadratic field which is not imaginary quadratic of class
number 1. Then IsogPrimeDeg(K ) is finite.

These results of Momose were not effective.

Question

Can one exactly determine IsogPrimeDeg(K ) for a single number field
K 6= Q?
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In summary ...

Theorem (Momose + Merel)

Assume GRH. Let K be a number field of degree ≤ 12 which does not
contain the Hilbert class field of an imaginary quadratic field. Then
IsogPrimeDeg(K ) is finite.

Theorem (Momose)

Let K be a quadratic field which is not imaginary quadratic of class
number 1. Then IsogPrimeDeg(K ) is finite.

These results of Momose were not effective.

Question

Can one exactly determine IsogPrimeDeg(K ) for a single number field
K 6= Q?
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Explicit isogenies of prime degree over quadratic
fields

arxiv.org/abs/2101.02673 - submitted

arxiv.org/abs/2101.02673
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Question

Can one exactly determine IsogPrimeDeg(K ) for a single number field
K 6= Q?

Makes sense to start at quadratic fields K which are not imaginary
quadratic of class number one (called isogeny-finite in the sequel). I tried
to approach this via a two-step process:

1 Find an upper bound for IsogPrimeDeg(K );
2 For each prime up to this upper bound, decide whether or not it is in

IsogPrimeDeg(K ).
Note that this is the same approach used by Yuri Bilu, Pierre Parent, and
Marusia Rebolledo to show that the split Cartan primes over the rationals
are {2, 3, 5, 7, 13} [BPR13].

Yuri Bilu Pierre Parent Marusia Rebolledo
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Upper bound for IsogPrimeDeg(K )

There are 3 components of IsogPrimeDeg(K ):

C0 TypeOnePrimes TypeTwoPrimes

Bound C(K , 2(∆K )AhK ) (1 + 36dK hK )2
∏
`∈SK

` ≤ ec
dK
2 (RK d

rK
K

+(hK log ∆K )2)

Found by Agnès David Joseph Oesterlé Eric Larson & Dmitry Vaintrob

Reference [Dav12] [DKSS17, Section 6] [LV14]

This wasn’t quite explicit because of the unknown constants A and c2 which arise from
applying Effective Chebotarev Density.
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However, we replaced these steps with the absolute best possible
Effective Chebotarev Density bound of Bach and Sorenson [BS96] (which
is free of unknown constants):

Eric Bach

Jonathan
Sorenson
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The DLMV bound

Proposition (B.)

Assume GRH. Then there is an algorithm which, given a quadratic field
K which is not imaginary quadratic of class number 1, computes an
upper bound on IsogPrimeDeg(K ).
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∆K K DLMV(K )

−40 Q(
√
−10) 3.20× 10316

−24 Q(
√
−6) 2.99× 10308

−20 Q(
√
−5) 2.58× 10305

8 Q(
√
2) 4.06× 10139

12 Q(
√
3) 1.68× 10152

5 Q(
√
5) 5.65× 10126

24 Q(
√
6) 9.76× 10177

28 Q(
√
7) 1.08× 10189

40 Q(
√
10) 2.59× 10354

Clearly the bounds had to be improved ... so I returned to Momose’s
paper ... after 10 years!
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The backstory

John Cremona suggests the problem to me in about June 2010.

Jim Stankewicz tells me about Momose’s paper in about November
2010.

In June 2020 I attend the Simons AGNTC workshop organised by
Jennifer Balakrishnan, Noam Elkies, Brendan Hassett, Bjorn Poonen,
Drew Sutherland, and John Voight.

John Cremona
Jim Stankewicz and I take
selfie with Bryan Birch

The organisers of Simons
AGNTC 2020
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On the first day of that workshop I have a zoom call with Isabel Vogt
who clearly explains to me an idea of Luis Dieulefait who has a method to
compute non-surjective primes of a generic genus 2 curve over Q [Die02].

Very roughly, the idea is to choose a finite set of auxiliary primes q,
compute a handful of integers Ai (q) whose supports in union is a
superset for the non-surjective primes, then take GCDs over q of the
LCMs of Ai (q).

Isabel Vogt Luis V. Dieulefait
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Back to the problem ...
When I returned to Momose’s paper in November 2020, I had the following
question in mind:

Question

Instead of finding upper bounds for IsogPrimeDeg(K ), can you instead find a
tight superset for it by computing a handful of integers associated to auxiliary
primes q of K?

This led to the integers

A(ε, q) := NmK/Q(αε − 1);

B(ε, q) := NmK/Q(αε − q12hK );

C(ε, q) := lcm(
{
NmK(β)/Q(αε − β12hK ) | β is a Frobenius root over Fq

}
);

D(q) := lcm(
{
1 + Nm(q)12hK − β12hK − β̄12hK | β is a Frobenius root over Fq

}
).

See the paper for the definitions, or attend my up upcoming talk at Universität
Bayreuth:
http://www.mathe2.uni-bayreuth.de/oberseminar/index.html

http://www.mathe2.uni-bayreuth.de/oberseminar/index.html
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Coding it all up led to

Theorem (B.)

Let K be a quadratic field which is not imaginary quadratic of class
number 1. Then there is an algorithm which computes a superset of
IsogPrimeDeg(K ) as the union of three sets:

IsogPrimeDeg(K ) ⊆ PreTypeOneTwoPrimes(K ) ∪ TypeOnePrimes(K )

∪ TypeTwoPrimes(K ).
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Quadratic Isogeny Primes

Sage and PARI/GP implementation of the command-line tool is available
at

github.com/barinderbanwait/quadratic_isogeny_primes

github.com/barinderbanwait/quadratic_isogeny_primes
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TypeOnePrimes

Recalling that

SLOGAN
Explicit formal immersion criteria defeat Type One primes.

we use Kamienny’s explicit formal immersion criteria for quadratic fields:

Sheldon Kamienny
From [Kam92a].
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TypeOnePrimes(K ) = PrimesUpTo(71) ∪ {p : p | ∆K}

∪ {p : (p − 1) | 12hK} ∪

 ⋂
q∈Aux

{p : p | D(q)}

 .
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TypeTwoPrimes

This part of the algorithm doesn’t use auxiliary primes, but instead
checks primes up to the bound on TypeTwoPrimes whether they satisfy
condition CC:
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From Superset to Set

Let’s run the algorithm on Q(
√
5); we get a superset of

PrimesUpTo(79) ∪ {163} .

How to determine which of these are actually in IsogPrimeDeg(Q(
√
5))?

There are three ingredients.
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Ingredient 1: Quadratic points on low-genus modular curves

Peter J. Bruin

Hyperelliptic modular curves X0(N)
and isogenies of elliptic curves over

quadratic fields, 2015 [BN15]

Filip Najman

Ekin Özman

Quadratic points on modular curves,
2019 [ÖS19], see Ekin’s VaNTAGe

talk here:
https://youtu.be/fj--cM2o-sA

Samir Siksek

Josha Box

Quadratic points on modular curves
with infinite Mordell-Weil group,

2021 [Box21]

https://youtu.be/fj--cM2o-sA
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Ingredient 2: Local solubility of twisted modular curves

Ekin Özman

From [Özm12]
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Ingredient 3: Dealing with 79

Maarten Derickx
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This requires that

J0(79)−(Q(
√
5)) = J0(79)−(Q).

We in fact show that J0(79)−(Q)tors does not grow in any quadratic
extension.

Open Problem (Quadratic Generalised Ogg’s conjecture?)

In general how does the torsion of J0(N) grow from Q to (specific)
quadratic fields? What about the minus part?

See [Yoo21] for recent progress on the Generalised Ogg conjecture over
Q.

Hwajong Yoo
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To summarise...

Theorem (B.)

Assuming GRH, we have the following.

IsogPrimeDeg(Q(
√
7)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
−10)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
5)) = IsogPrimeDeg(Q) ∪ {23, 47}
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Open Problem

Can you extend the results on quadratic points on low-genus modular
curves to higher genera?
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Work in progress with Maarten Derickx
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Theorem (B.-Derickx)

Let K be a number field which does not contain the Hilbert class field of
an imaginary quadratic field. Then there is an algorithm which computes
a superset of IsogPrimeDeg(K ) as the union of three sets:

IsogPrimeDeg(K ) ⊆ PreTypeOneTwoPrimes(K ) ∪ TypeOnePrimes(K )

∪ TypeTwoPrimes(K ).

Zoom call with Maarten Derickx
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TypeOnePrimes
The implementation of TypeOnePrimes uses the state-of-the-art explicit and
tight formal immersion criteria due to Derickx, Kamienny, Stein, and Stoll
[DKSS17]:

Maarten Derickx Sheldon Kamienny William Stein Michael Stoll
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From Superset to Set

Let’s run the algorithm on Q(ζ7)+; we get a superset of

PrimesUpTo(43) ∪ {61, 67, 73, 163} .

How to determine which of these are actually in IsogPrimeDeg(Q(ζ7)+)?
The main ingredient is

Theorem (Box-Gajović-Goodman, 2021)

For N ∈ {53, 57, 61, 65, 67, 73}, the set of cubic points on X0(N) is finite
and listed in Section 5 of [BGG21].

Josha Box Stevan Gajović Pip Goodman
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The first cubic case of IsogPrimeDeg

Theorem (B.-Derickx)

Assuming GRH,

IsogPrimeDeg(Q(ζ7)+) = IsogPrimeDeg(Q)
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Open Problem

Can you extend the results on cubic points on low-genus modular curves
to higher genera?

Open Problem

Can you start compiling catalogues of higher degree points on low-genus
modular curves?
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Uniform TypeTwoPrimes

Theorem (B.-Derickx)

Assume GRH, and let d be an odd integer. Then there is a bound Cd

such that if E is an elliptic curve over a number field K of degree d
which admits a K -rational p-isogeny, then p ≤ Cd . Moreover, we have
C3 = 253,507.

There is a cubic field which satisfies Condition CC with p = 253,507, but
this is only a necessary condition for Type 2 isogenies, so the following is
natural:

Open Problem

Does there exist an elliptic curve over a cubic field admitting a rational
253,507-isogeny?
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Strong Uniform Boundedness for Isogenies?

Open Problem

Fix an integer d . As one varies over all elliptic curves over all number
fields of degree d which do not contain the Hilbert class field of an
imaginary quadratic field, are there only finitely many isogeny primes that
arise?
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Code optimisations

"Tu devrais essayer GP2C, GP2C est plus rapide que
GP pour les boucles longues."

reproduced with permission

Bill Allombert

Open Problem

Can you make the implementation wicked fast?
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Further Problems to consider
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Statistical Distribution of IsogPrimeDeg(K )

Both Ralph Greenberg and Jaap Top asked this Arithmetic Statistics
question:

Open Problem

Fix an integer d . What is the distribution of IsogPrimeDeg(K ) as one
varies over all number fields K of degree d?

Ralph Greenberg Jaap Top
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Definition

Let K be a number field, and let p ∈ IsogPrimeDeg(K ). We say that p is
new if p /∈ IsogPrimeDeg(L) for any proper subfield L ⊂ K .

Question

As one varies over all isogeny-finite quadratic fields Q(
√
D) for |D| ≤ 50,

how many new isogeny primes arise for each D, which new isogeny
primes arise, and how often do they arise?

There are 54 quadratic fields to consider.
We were able to decide on 38 of these.
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Theorem (B.-Derickx)

Assuming GRH,

IsogPrimeDeg(Q(
√
−46)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
−42)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
−39)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
−38)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
−34)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
−30)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
−29)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
−23)) = IsogPrimeDeg(Q) ∪ {29, 31}

IsogPrimeDeg(Q(
√
−21)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
−17)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
−15)) = IsogPrimeDeg(Q) ∪ {23}

IsogPrimeDeg(Q(
√
−14)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
−13)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
−5)) = IsogPrimeDeg(Q) ∪ {23}

IsogPrimeDeg(Q(
√
2)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
3)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
6)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
7)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
10)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
11)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
13)) = IsogPrimeDeg(Q) ∪ {31}

IsogPrimeDeg(Q(
√
14)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
19)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
21)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
23)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
26)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
30)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
31)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
33)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
34)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
35)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
38)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
39)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
42)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
43)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
46)) = IsogPrimeDeg(Q)
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OK, to be totally honest: In these diagrams I have assumed that the hyperelliptic curves

X17(23), X37(23), X29(31), X29(37), X−31(41), X−22(59), X47(59) do not have any Q-rational points, because I searched

up to a really big height bound but failed to find any points. This could possibly be proved with Quadratic Chabauty; this only

affects a small number of the 54 cases, so even if not true, the general picture would remain unaffected.
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Put results in https://lmfdb.org?

Question

Do people want to see the results in the ? Even if they’re "only
supersets"?

See Jeremy Rouse’s VaNTAGe talk for applications of knowing what the
isogeny primes are.

Jeremy Rouse’s VaNTAGe talk: https://youtu.be/L_Il_sJymEs

https://lmfdb.org
https://youtu.be/L_Il_sJymEs
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Quadratic Bilu-Parent-Rebolledo?

Momose wrote a paper about the split Cartan modular curves Xs(p)
[Mom84] and one about its generalisation X+

0 (pr ) [Mom87].

Open Problem

Fix a quadratic field K . Can one exactly determine the primes p for
which the split Cartan modular curve Xs(p) admits non-cuspidal, non-CM
rational points?

There’s been enough progress on quadratic points on modular curves in
recent years to at least start thinking about this seriously.
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Quadratic Kenku

Open Problem

For a number field K , what possible degrees arise as the degree of a
K -rational cyclic isogeny between elliptic curves over K?

I am currently working on this with Oana Adascalitei and Filip Najman:
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Mazur’s theorems for abelian surfaces?

Open Problem

Is there a uniform bound on isogeny primes for abelian surfaces over Q?

Open Problem

Is there a uniform bound on torsion primes for abelian surfaces over Q?

One may initially want to restrict the class to principally polarised abelian
surfaces, and to isogenies which are compatible with the polarisation.
But this is hard because fewer explicit results are known about moduli
spaces of principally polarised abelian surfaces.
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Thank You!
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