Explicit isogenies of prime degree over number fields

Barinder Singh Banwait

Harish-Chandra Research Institute

VaNTAGe Seminar
Tuesday, 29 ${ }^{\text {th }}$ June 2021

VaNTAGe

a virtual math seminar on open conjectures in
number theory and arithmetic geometry

Copyright Disclaimer: Photo credits and attribution are given in the final section.

Isogenies

Rational Isogenies

Let E_{1}, E_{2} be two elliptic curves over a number field K. Write $G_{K}:=\operatorname{Gal}(\bar{K} / K)$.

Definition

- An isogeny $\phi: E_{1} \rightarrow E_{2}$ is a non-constant morphism of curves which
© maps $O_{E_{1}}$ to $O_{E_{2}}$;
\Leftrightarrow induces a group homomorphism from $E_{1}(\bar{K})$ to $E_{2}(\bar{K})$;
\Leftrightarrow has finite kernel.
- The degree of $\phi=|\operatorname{ker}(\phi)|=\left[\bar{K}\left(E_{1}\right): \phi^{*} \bar{K}\left(E_{2}\right)\right]$.
- ϕ is K-rational if it is compatible with the G_{K}-action on E_{1} and E_{2}; that is, if the following diagram commutes for all $\sigma \in G_{K}$:

Equivalently, ϕ is K-rational if $\operatorname{ker}(\phi)$ is G_{K}-stable.

- ϕ is said to be cyclic if $\operatorname{ker}(\phi)$ is a cyclic group.

The Dream

Goal

"Understand rational isogenies."

Fact

Every isogeny is the composition of a cyclic isogeny with the multiplication-by-m map for some $m \geq 1$.

Reduced Goal

"Understand cyclic rational isogenies."

The Dream made precise

Open Problem

For a number field K, what possible degrees arise as the degree of a K-rational cyclic isogeny between elliptic curves over K?

Let's call this set of possible degrees IsogCyclicDeg (K).
We write IsogPrimeDeg(K) for the primes in this set, and call them isogeny primes for K.

A priori these could be infinite sets, so the above Open Problem should be interpreted as:

- Exactly determine IsogCyclicDeg (K) when it is finite;
- Classify the degrees in IsogCyclicDeg (K) when it is infinite.

Question

What happens for $K=\mathbb{Q}$?

Mazur's Method

Theorem (Mazur, 1978, [Maz78])

$$
\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q})=\{2,3,5,7,11,13,17,19,37,43,67,163\}
$$

Theorem (Kenku, 1981, [Ken79, Ken80a, Ken80b, Ken81])

$$
\operatorname{IsogCyclicDeg}(\mathbb{Q})=\{1 \leq N \leq 19\} \cup\{21,25,27,37,43,67,163\}
$$

Barry C. Mazur

Monsur A. Kenku

Mazur's Formal Immersion Method

The method of proof of Theorem 1 is as follows.
Step 1. Let N be a prime number. We begin with a geometric analysis of the projection $f: X_{0}(N)_{\mid \mathbf{Z}}^{\text {smooth }} \rightarrow \tilde{J}_{/ \mathbf{Z}}$ where $\tilde{J}_{/ \mathbf{Z}}$ is the Néron model of the Eisenstein quotient of the jacobian of $X_{0}(N)$.

We show that f is a formal immersion along the cuspidal section ∞ at least away from characteristic 2 . We show this when $p \neq N$, by noting that if f
the section $\infty_{\mid S^{\prime \prime}}$. If $f: X \rightarrow Y$ is a morphism of finite type between noetherian schemes, we shall say that f is a formal immersion at a point x if the induced map on the completions of local rings $\hat{\mathcal{O}}_{Y, f(x)} \rightarrow \hat{\mathcal{O}}_{X, x}$ is surjective. This is equivalent to asking that the map induce an isomorphism between residue fields of x and $f(x)$, and that f be formally unramified at x ([44] EGA IV 17.4.4). Recall further that to check

The work of Fumiyuki Momose

Isogenies of prime degree over number fields

FUMIYUKI MOMOSE

Department of Mathematics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112, Japan
Received 19 August 1993; accepted in final form 24 December 1993
In [Mom95], Momose classified isogenies into three types according to the isogeny character, which encodes the Galois action

$$
\lambda: G_{K} \longrightarrow \operatorname{Aut} V(\bar{K}) \cong \mathbb{F}_{p}^{\times}
$$

on the kernel V of a K-rational p-isogeny.

Fumiyuki Momose

Momose's Classification of Isogenies into three types

Theorem (Momose)

Let K be a number field. Then there exists a constant $C_{0}=C_{0}(K)$ such that for any prime $p>C_{0}$, and for any elliptic curve admitting a K-rational p-isogeny, the isogeny character λ falls into one of the following three types:
Type 1. λ^{12} or $\left(\lambda \theta_{p}^{-1}\right)^{12}$ is unramified $\left(\theta_{p}=\bmod -p\right.$ cyclotomic character).
Type 2. $\lambda^{12}=\theta_{p}^{6}$ and $p \equiv 3(\bmod 4)$.
Type 3. K contains the Hilbert class field H_{L} of an imaginary quadratic field L. The rational prime p splits in L :

$$
p \mathcal{O}_{L}=\mathfrak{p} \overline{\mathfrak{p}}
$$

For any prime \mathfrak{q} of K prime to \mathfrak{p},

$$
\lambda^{12}\left(\operatorname{Frob}_{\mathfrak{q}}\right)=\alpha^{12}(\bmod \mathfrak{p})
$$

for any $\alpha \in K^{\times}$with $\alpha \mathcal{O}_{L}=\operatorname{Nm}_{K / L}(\mathfrak{q})$.

Type 1 isogenies

Theorem (Momose, Theorem 3 in loc. cit.)

Let K be a number field of degree ≤ 12. Then there are only finitely many Type 1 primes for K.

Why the restriction $d:=[K: \mathbb{Q}] \leq 12$? The proof requires a formal immersion criterion for the $d^{\text {th }}$ symmetric power modular curve:

$$
\begin{aligned}
& X_{0}(p)^{(d)}:=\overbrace{\left(X_{0}(p) \times \cdots \times X_{0}(p)\right)}^{d \text {-times }} / S_{d} \\
& X_{0}(p)^{(d)} \leftrightarrow \text { effective degree } d \text { divisors on } X_{0}(p) .
\end{aligned}
$$

Define the map

$$
\begin{aligned}
f_{p}^{(d)}: X_{0}(p)_{\mathrm{sm}, / \mathbb{Z}}^{(d)} & \longrightarrow J_{0}(p)_{/ \mathbb{Z}} \\
D & \longrightarrow \tilde{J}_{/ \mathbb{Z}} \\
D & \longmapsto[D-d(\infty)] \longmapsto[D-d(\infty)]\left(\bmod \gamma_{\mathfrak{J}} J_{0}(p)\right)
\end{aligned}
$$

(See [Maz77, Chapter 2 Section 10] for the definition of $\gamma_{\mathfrak{J}}$.)

Theorem (Kamienny, Kamienny-Mazur [KM95], Abramovich [Abr95])

For $d \leq 12$, there are constants A_{d} and B_{d} such that, for all primes $p>A_{d}$ and $q>B_{d}$, the map $f_{p}^{(d)}$ is a formal immersion along the section (∞, \ldots, ∞) in characteristic q.

The constants A_{d} and B_{d} were not made explicit (except for $d=2$, more on this later). This theorem was approached via Kamienny's reformulation of the formal immersion criterion in terms of linear independence of Hecke operators in positive characteristic.

Sheldon Kamienny

Barry C. Mazur

Dan Abramovich

Proposition 3.1. The following are equivalent.
(1) The map $f: X_{\mid S^{\prime}}^{(d)} \rightarrow J_{\mid S^{\prime}}$ is a formal immersion along the section (∞, \ldots, ∞) in characteristic p (possibly zero).
(2) There exist d weight-two cusp forms, associated to J, that satisfy the linear independence condition $(\bmod p)$.
from [Kam92b]

Why did they care about such statements?
Equivalently, suppose that the images of the first d Hecke operators T_{1}, \ldots, T_{d} in the \mathbf{I}-adic completion $\mathbf{T}_{\mathbf{1}}$ of the Hecke algebra \mathbf{T} are \mathbb{Z}-linearly independent. Then the uniform boundedness conjecture is true for all number fields of degree d.
from [Kam92b]
We'll revisit this in the 'Merel' section. For now we frame the following:

SLOGAN

Explicit formal immersion criteria defeat Type One primes.

Type 2 isogenies

Condition CC (Momose + B.-Derickx)

Let K be a number field, and E / K an elliptic curve admitting a K-rational p-isogeny, with p of Type 2. Let q be a rational prime admitting a prime ideal $\mathfrak{q} \mid q$ of odd residue degree f satisfying:
(1) $q^{f}<p / 4$;
(c) $q^{2 f}+q^{f}+1 \not \equiv 0(\bmod p)$.

Then q does not split in $\mathbb{Q}(\sqrt{-p})$.

Claim. If the above case occurs then for all odd primes $p<N / 4$ we have $\binom{p}{N}=-1$.

Barry C. Mazur receives National
Medal of Science from US President Barack H. Obama

To conclude our theorem, we shall now prove that the above claim implies that $\mathbf{Q}(\sqrt{-N})$ has class number 1 and hence (by Baker-Stark-Heegner [3, 37, 38]) we have $N=11,19,43,67$, or 163 (ignoring the genus 0 cases).

Since $N \equiv-1 \bmod 4$, quadratic reciprocity applied to (7.1) implies that for $2<p<N / 4, p$ remains prime in $\mathbf{Q}(\sqrt{-N})$.

Thus all ideals I of odd norm $<N / 4$ are principal in the ring of integers of $\mathbf{Q}(\sqrt{-N})$. To be sure, if we had the stronger assertion that all ideals of norm $<N / 4$ were principal, then $\mathbf{Q}(\sqrt{-N})$ would have class number 1 by Minkowski's theorem: the absolute value of the discriminant of $\mathbf{Q}(\sqrt{-N})$ is N; the Minkowski constant is $2 / \pi$; and $2 / \pi \cdot \sqrt{N}<N / 4$ for $N \geqq 11$. We shall prove this stronger assertion. If 2 does not split in $\mathbf{Q}(\sqrt{-N})$, there is nothing to prove. Suppose, then, that 2 does split, in which case $N \equiv-1$ or $7 \bmod 16$. We must show that one (and hence both) of the primes of norm 2 are principal. If $N \equiv-1 \bmod 16$, consider the element $\alpha=(3+\sqrt{-N}) / 2$. One sees that the norm of α is twice an odd number; hence $(\alpha)=\mathfrak{p} \cdot I$ where \mathfrak{p} is one of the primes of norm 2 , and I is an "odd" ideal, with norm $(9+N) / 8$. Since $N \geqq 11$, the norm of I is less than $N / 4$, and therefore I is principal. Consequently so is \mathfrak{p}. If $N \equiv 7 \bmod 16$, take the element $\alpha=(1+\sqrt{-N}) / 2$, and repeat the above argument.

Determining the Type 2 primes is harder for general K. However, Momose was able to establish the following two results:

PROPOSITION 1. For any quadratic field k, there are only finitely many prime numbers p which satisfy the condition C.

REMARK 8. K. Murty taught me that the G.R.H. leads Goldfeld conjecture. In fact, G.R.H. implies that Condition C is satisfied only for finitely many prime numbers p for a given algebraic number field k of finite degree.

Vijaya Kumar Murty

Type 3 isogenies

algebraic number field of odd degree (cf. Theorem 6). The k-rational points of Type 3 are expected to be the C.M. points for almost all prime numbers p. But, even for the imaginary quadratic field k of class number one, we have not solved this case. We add a result under a strong condition on reduction. The classification of algebraic points on $X_{0}(p)$'s can be applied

Open Problem (Momose's Conjecture)

Let K be a number field containing the Hilbert class field of an imaginary quadratic field L. Then there is a constant C_{K} such that, for prime $p>C_{K}$, if there exists an elliptic curve E over K admitting a K-rational p-isogeny of Type 3, then E has CM by an order \mathcal{O} in L, and p splits or ramifies in \mathcal{O}.

After Lori Watson's talk in this series, I wondered the following:

Question

Does Momose's conjecture follow from recent developments in the realm of isolated or sporadic points on modular curves?

Pete Clark also mentioned "sporadic CM points" which might be relevant here.
One place to start with this is to watch their respective VaNTAGe talks.

Pete L. Clark
 VaNTAGe talk:

https://youtu.be/4cX8amfVr8M

Lori D. Watson VaNTAGe talk:

https://youtu.be/S4ZX3CUIzLE

In summary ...

Theorem (Momose)

Assume GRH. Let K be a number field of degree ≤ 12 which does not contain the Hilbert class field of an imaginary quadratic field. Then IsogPrimeDeg (K) is finite.

Theorem (Momose)

Let K be a quadratic field which is not imaginary quadratic of class number 1. Then IsogPrimeDeg (K) is finite.

These results of Momose were not effective.

Question

Can one exactly determine IsogPrimeDeg (K) for a single number field $K \neq \mathbb{Q}$?

The work of Loïc Merel

Strong Uniform Boundedness for torsion on elliptic curves

Conjecture

Let $d \geq 1$ be an integer. Then there is a constant B_{d} such that, if E is an elliptic curve over any number field K of degree $\leq d$, then $\left|E(K)_{\text {tors }}\right| \leq B_{d}$.

Strong Uniform Boundedness for torsion on elliptic curves

Theorem (Merel, 1996, [Mer96])

Let $d \geq 1$ be an integer. Then there is a constant B_{d} such that, if E is an elliptic curve over any number field K of degree $\leq d$, then $\left|E(K)_{\text {tors }}\right| \leq B_{d}$.

Loïc Merel

Merel proved the linear independence of Hecke operators for general d :
Proposition 3. Soient d un nombre entier ≥ 1 et p un nombre premier vérifiant $\frac{p}{\log ^{4} p}>\operatorname{Sup}\left(400 d^{4}, d^{8}\right)$. C'est le cas lorsqu'on ap $>2^{d+1}(d!)^{5 d / 2}$ etd ≥ 4, ou encore lorsque $p>d^{3 d^{2}}$ et $d \geq 3$. Alors $\mathrm{T}_{1} \mathbf{e}, \ldots, \mathrm{~T}_{d} \mathbf{e}$ sont linéairement indépendants dans $\mathbf{H} \otimes \mathbf{Q}$.

This was achieved by working with the Winding quotient rather than the Eisenstein quotient.
Ω^{1}), C), qui à $c \otimes 1$ associe $\dot{\omega} \mapsto \int_{c} \omega$, d'un élément \mathbf{e} de $\mathbf{H} \otimes \mathbf{R}$, que nous appellerons élément d'enroulement (winding element dans [12]). En fait on a $(p-1) \mathbf{e} \in \mathbf{H}^{+} \otimes 1$ ([12]).

The winding quotient is the largest rank 0 quotient of $J_{0}(N)$, and it allows one to get explicit formal immersion criteria (i.e. the A_{d} and B_{d} from earlier can be written down).

In summary ...

Theorem (Momose)

Assume GRH. Let K be a number field of degree ≤ 12 which does not contain the Hilbert class field of an imaginary quadratic field. Then IsogPrimeDeg (K) is finite.

Theorem (Momose)

Let K be a quadratic field which is not imaginary quadratic of class number 1. Then IsogPrimeDeg (K) is finite.

These results of Momose were not effective.

Question

Can one exactly determine IsogPrimeDeg (K) for a single number field $K \neq \mathbb{Q}$?

In summary ...

Theorem (Momose + Merel)

Assume GRH. Let K be a number field of degree ≤ 12 which does not contain the Hilbert class field of an imaginary quadratic field. Then IsogPrimeDeg (K) is finite.

Theorem (Momose)

Let K be a quadratic field which is not imaginary quadratic of class number 1. Then IsogPrimeDeg (K) is finite.

These results of Momose were not effective.

Question

Can one exactly determine IsogPrimeDeg (K) for a single number field $K \neq \mathbb{Q}$?

Explicit isogenies of prime degree over quadratic fields

arxiv.org/abs/2101.02673 - submitted

Question

Can one exactly determine IsogPrimeDeg (K) for a single number field $K \neq \mathbb{Q}$?

Makes sense to start at quadratic fields K which are not imaginary quadratic of class number one (called isogeny-finite in the sequel). I tried to approach this via a two-step process:
(1) Find an upper bound for IsogPrimeDeg (K);
(2) For each prime up to this upper bound, decide whether or not it is in IsogPrimeDeg (K).
Note that this is the same approach used by Yuri Bilu, Pierre Parent, and Marusia Rebolledo to show that the split Cartan primes over the rationals are $\{2,3,5,7,13\}$ [BPR13].

Yuri Bilu

Pierre Parent

Marusia Rebolledo

Upper bound for IsogPrimeDeg(K)

There are 3 components of IsogPrimeDeg (K) :

This wasn't quite explicit because of the unknown constants A and c_{2} which arise from applying Effective Chebotarev Density.

However, we replaced these steps with the absolute best possible Effective Chebotarev Density bound of Bach and Sorenson [BS96] (which is free of unknown constants):

5.1. An explicit version of the main result.

Theorem 5.1 (ERH). Let E / K be a Galois extension of number fields, with $E \neq$ \mathbb{Q}. Let Δ denote the absolute value of E 's discriminant. Let n denote the degree of E. Let $\sigma \in G$, the Galois group of E / K.

Then there is a prime ideal \mathfrak{p} of K with $\left(\frac{\mathfrak{p}}{E / K}\right)=\sigma$, of residue degree 1 , satisfying

$$
N \mathfrak{p} \leq(4 \log \Delta+2.5 n+5)^{2}
$$

Jonathan Sorenson

Eric Bach

The DLMV bound

Proposition (B.)

Assume GRH. Then there is an algorithm which, given a quadratic field K which is not imaginary quadratic of class number 1 , computes an upper bound on IsogPrimeDeg (K).

```
jef DLMV(K):
    """Compute the DLMV bound"""
    # First compute David's C_0
    Delta_K = K.discriminant().abs()
    h K = K.class number()
    R_K = K.regulator()
    r_K = K.unit_group().rank()
    delta_K = log(2)/(r_K + 1)
    C_1_K= r_K ** (r_K + 1) * delta_K**(-(r_K - 1)) / 2
    C_2KK=exp(24 * C_1_K * R_K)
    CHEB DEN BOUND = (4* log(Delta_K**h_K) + 5*h_K + 5)**2
    C_0 = ((CHEB_DEN_BOUND** (12*h_K))*C_2_K + CHEB_DEN_BOUND** (6*h_K))**h
    # Now the Type 1 and 2 bounds
    type_1_bound =(1 + 3**(12 * h_K))**2
    type_2_bound = get_type_2_bound(K)
    return max(C_0, type_1_bound, type_2_bound)
```

Δ_{K}	K	DLMV (K)
-40	$\mathbb{Q}(\sqrt{-10})$	3.20×10^{316}
-24	$\mathbb{Q}(\sqrt{-6})$	2.99×10^{308}
-20	$\mathbb{Q}(\sqrt{-5})$	2.58×10^{305}
8	$\mathbb{Q}(\sqrt{2})$	4.06×10^{139}
12	$\mathbb{Q}(\sqrt{3})$	1.68×10^{152}
5	$\mathbb{Q}(\sqrt{5})$	5.65×10^{126}
24	$\mathbb{Q}(\sqrt{6})$	9.76×10^{177}
28	$\mathbb{Q}(\sqrt{7})$	1.08×10^{189}
40	$\mathbb{Q}(\sqrt{10})$	2.59×10^{354}

Clearly the bounds had to be improved ... so I returned to Momose's paper ... after 10 years!

The backstory

John Cremona suggests the problem to me in about June 2010.
Jim Stankewicz tells me about Momose's paper in about November 2010.

In June 2020 I attend the Simons AGNTC workshop organised by Jennifer Balakrishnan, Noam Elkies, Brendan Hassett, Bjorn Poonen, Drew Sutherland, and John Voight.

John Cremona

Jim Stankewicz and I take selfie with Bryan Birch

The organisers of Simons AGNTC 2020

On the first day of that workshop I have a zoom call with Isabel Vogt who clearly explains to me an idea of Luis Dieulefait who has a method to compute non-surjective primes of a generic genus 2 curve over \mathbb{Q} [Die02].

Very roughly, the idea is to choose a finite set of auxiliary primes q, compute a handful of integers $A_{i}(q)$ whose supports in union is a superset for the non-surjective primes, then take GCDs over q of the LCMs of $A_{i}(q)$.

Isabel Vogt

Luis V. Dieulefait

Back to the problem ...

When I returned to Momose's paper in November 2020, I had the following question in mind:

Question

Instead of finding upper bounds for $\operatorname{IsogPrimeDeg}(K)$, can you instead find a tight superset for it by computing a handful of integers associated to auxiliary primes \mathfrak{q} of K ?

This led to the integers

$$
\begin{aligned}
A(\epsilon, \mathfrak{q}) & :=\operatorname{Nm}_{K / \mathbb{Q}}\left(\alpha^{\epsilon}-1\right) ; \\
B(\epsilon, \mathfrak{q}) & :=\operatorname{Nm}_{K / \mathbb{Q}}\left(\alpha^{\epsilon}-q^{12 h_{K}}\right) ; \\
C(\epsilon, \mathfrak{q}) & :=\operatorname{Icm}\left(\left\{\operatorname{Nm}_{K(\beta) / \mathbb{Q}}\left(\alpha^{\epsilon}-\beta^{12 h_{K}}\right) \mid \beta \text { is a Frobenius root over } \mathbb{F}_{\mathfrak{q}}\right\}\right) ; \\
D(\mathfrak{q}) & :=\operatorname{Icm}\left(\left\{1+\operatorname{Nm}(\mathfrak{q})^{12 h_{K}}-\beta^{12 h_{K}}-\bar{\beta}^{12 h_{K}} \mid \beta \text { is a Frobenius root over } \mathbb{F}_{\mathfrak{q}}\right\}\right) .
\end{aligned}
$$

See the paper for the definitions, or attend my up upcoming talk at Universität Bayreuth:
http://www.mathe2.uni-bayreuth.de/oberseminar/index.html

Coding it all up led to

Theorem (B.)

Let K be a quadratic field which is not imaginary quadratic of class number 1. Then there is an algorithm which computes a superset of IsogPrimeDeg (K) as the union of three sets:

IsogPrimeDeg $(K) \subseteq \operatorname{PreTypeOneTwoPrimes}(K) \cup$ TypeOnePrimes (K)
\cup TypeTwoPrimes (K).

Quadratic Isogeny Primes

Sage and PARI/GP implementation of the command-line tool is available at
github.com/barinderbanwait/quadratic_isogeny_primes

483	
484	def get isogeny_primes (K, aux prime_count, bound=1000, loop_only_j=True):
485	
486	\# Start with some helpful user info
487	
488	print("\nfinding isogeny primes for $\left\} \backslash n^{\prime}\right.$. format (K) \}
489	print("Number of auxiliary primes is $\left\} \backslash \mathrm{n}^{\prime}\right.$. format (aux_prime_count))
490	
491	\# Get and show TypeOnePrimes
492	
493	type 1 primes $=$ get type 1 primes $(K$, aux prime count=aux prime count,
494	(100p only_j=loop_only_j)
495	print("type 1 primes $=[\} \backslash n$ ".format(type 1 primes))
496	
497	\# Get and show PreTypeoneTwoPrines
498	
499	pre type one two primes = get pre type one two primes (K ,
500	aux_prime_count-aux_prime_count,
501	loop_only_j=loop_only_j)
502	print("pre_type_2_primes $=\{ \} \backslash \mathrm{n}$ ". format $\left.\left(p r e+t y p e _o n e _t w o . p r i m e s\right)\right) ~$
503	
504	\# Get and show TypeTwoPrimes
505	
506	type_2_primes = get type_2_primes (K, bound=bound)
507	print("type_z_primes $=\{ \} \backslash n$ ". format(type_z_primes))
508	
509	\# Put them all together and sort the list before returning
510	candidates $=$ set.union(set(type l_primes),
511	Set(pre_type_one_two_primes),
512	set(type 2 primes))
513	candidates $=1$ ist(candidates)
514	candidates.sort()
515	
516	return candidates
517	

TypeOnePrimes

Recalling that

SLOGAN

Explicit formal immersion criteria defeat Type One primes.
we use Kamienny's explicit formal immersion criteria for quadratic fields:

Sheldon Kamienny

$$
S=\operatorname{Spec} \mathbb{Z}\left[\frac{1}{N}\right]
$$

The basic ingredient in this work is the following.
Proposition 3.2 Let N be a prime >61, but not 71. The map

$$
f: X_{\mid S}^{(2)} \rightarrow \tilde{J}_{/ S}
$$

is a formal immersion along (∞, ∞) away from characteristics 2,3 , and 5 .

TypeOnePrimes $(K)=\operatorname{PrimesUpTo(71)\cup \{ p:p|\Delta _{K}\} }$

$$
\cup\left\{p:(p-1) \mid 12 h_{K}\right\} \cup\left(\bigcap_{\mathfrak{q} \in \operatorname{Aux}}\{p: p \mid D(\mathfrak{q})\}\right) .
$$

TypeTwoPrimes

This part of the algorithm doesn't use auxiliary primes, but instead checks primes up to the bound on TypeTwoPrimes whether they satisfy condition CC:

(A) Sbge

```
def get type 2 primes(k, bound=None)
    """Compute a list containing the type z primes"""
    # First get the bound
    if bound is None:
    bound = get_type_2_bound(K)
    print("type_z_bound = {}".format(bound))
    # We need to include all primes up to 25
    # see Larson/vaintrob's proof of Theorem 6.4
    output = set(prime_range(25))
    for p in pari.primes(25, bound):
    p_int = Integer(p)
    if p_int % 4 = 3: # Type 2 primes necessarily congruent to 3 mod 4
        if satisfies_condition_CC(K,p_int):
        output.add(p_int)
    return output
```

```
blockSize=100000;
export(blockSize)
checktypetwo(pBeg) =
{
    my(p,cond);
    forprime(p = pBeg*blockSize, (pBeg+1)*blockSize-1,
        cond=custom congruence condition(p,D);
        if(cond,print satisfiesCC(p)));
}
export(checktypetwo)
howMany=floor(typetwobound/blockSize);
parapply(checktypetwo,[0. .howMany]);
```


From Superset to Set

Let's run the algorithm on $\mathbb{Q}(\sqrt{5})$; we get a superset of

$$
\text { PrimesUpTo }(79) \cup\{163\} .
$$

How to determine which of these are actually in IsogPrimeDeg $(\mathbb{Q}(\sqrt{5}))$?
There are three ingredients.

Ingredient 1: Quadratic points on low-genus modular curves

Hyperelliptic modular curves $X_{0}(N)$ and isogenies of elliptic curves over quadratic fields, 2015 [BN15]

Filip Najman
Peter J. Bruin

Ekin Ozman
Quadratic points on modular curves, 2019 [ÖS19], see Ekin's VaNTAGe talk here:
https://youtu.be/fj--cM2o-sA

Quadratic points on modular curves with infinite Mordell-Weil group, 2021 [Box21]

Samir Siksek

Josha Box

Ingredient 2: Local solubility of twisted modular curves

Ekin Ozman

Theorem 1.1. Let p be a prime, N a square-free integer, and $\mathbb{K} a$ quadratic field. Then
(1) $X^{d}(N)\left(\mathbb{Q}_{p}\right) \neq \emptyset$ for all p that split in \mathbb{K} and for $\mathbb{Q}_{\infty}=\mathbb{R}$ (Proposition 1.2 .
(2) $X^{d}(N)\left(\mathbb{Q}_{p}\right) \neq \emptyset$ if p is inert in \mathbb{K} and does not divide N (Theorem 3.17).
(3) For all odd p that are inert in \mathbb{K} and divide $N, X^{d}(N)\left(\mathbb{Q}_{p}\right) \neq \emptyset$ if and only if either
(a) $N=p \prod_{i} q_{i}$ where $p \equiv 3 \bmod 4$ and $q_{i} \equiv 1 \bmod 4$ for all i and $\left(\frac{-\prod_{i} q_{i}}{p}\right)=-1$,or
(b) $N=2 p \prod_{i} q_{i}$ where $p \equiv 3 \bmod 4$ and $q_{i} \equiv 1 \bmod 4$ for all i and $\left(\frac{-\prod_{i} q_{i}}{p}\right)=-1$ (Theorem 3.7.
(4) If 2 is inert in \mathbb{K} and divides $N, X^{d}(N)\left(\mathbb{Q}_{p}\right) \neq \emptyset$ if and only if $N=2 \prod_{i} q_{i}$ where $q_{i} \equiv 1$ modulo 4 for all i (Theorem 3.8 . .
(5) For all p that are ramified in \mathbb{K} and unramified in $\mathbb{Q}(\sqrt{-N}), X^{d}(N)\left(\mathbb{Q}_{p}\right)$ $\neq \emptyset$ if and only ifp is in the set S_{N} defined in Proposition 4.6 (Theorem 4.10).
(6) For all p that are ramified in \mathbb{K} and $\mathbb{Q}(\sqrt{-N})$, if $X^{d}(N)\left(\mathbb{Q}_{p}\right) \neq \emptyset$ then $p \in S_{N}$ (Proposition 4.5).

Ingredient 3: Dealing with 79

Appendix A. On $X_{0}(79)(\mathbb{Q}(\sqrt{5}))$

by Barinder S. Banwait and Maarten Derickx

In this appendix we establish the following result.
Proposition A.1. The set of $\mathbb{Q}(\sqrt{5})$-rational points on the modular curve $X_{0}(79)$ consists only of the two \mathbb{Q}-rational cusps.

Maarten Derickx

This requires that

$$
J_{0}(79)_{-}(\mathbb{Q}(\sqrt{5}))=J_{0}(79)_{-}(\mathbb{Q}) .
$$

We in fact show that $J_{0}(79)_{-}(\mathbb{Q})_{\text {tors }}$ does not grow in any quadratic extension.

Open Problem (Quadratic Generalised Ogg's conjecture?)

In general how does the torsion of $J_{0}(N)$ grow from \mathbb{Q} to (specific) quadratic fields? What about the minus part?

See [Yoo21] for recent progress on the Generalised Ogg conjecture over \mathbb{Q}.

Hwajong Yoo

To summarise...

Theorem (B.)

Assuming GRH, we have the following.

$$
\begin{aligned}
\text { IsogPrime } \operatorname{Deg}(\mathbb{Q}(\sqrt{7})) & =\operatorname{IsogPrime\operatorname {Deg}(\mathbb {Q})} \\
\text { IsogPrimeDeg }(\mathbb{Q}(\sqrt{-10})) & =\operatorname{IsogPrime\operatorname {Deg}(\mathbb {Q})} \\
\text { IsogPrimeDeg }(\mathbb{Q}(\sqrt{5})) & =\operatorname{IsogPrimeDeg}(\mathbb{Q}) \cup\{23,47\}
\end{aligned}
$$

Open Problem

Can you extend the results on quadratic points on low-genus modular curves to higher genera?

Work in progress with Maarten Derickx

Theorem (B.-Derickx)

Let K be a number field which does not contain the Hilbert class field of an imaginary quadratic field. Then there is an algorithm which computes a superset of $\operatorname{lsog} \operatorname{PrimeDeg}(K)$ as the union of three sets:

$$
\begin{aligned}
\operatorname{Isog} \operatorname{PrimeDeg}(K) \subseteq \operatorname{PreTypeOneTwoPrimes}(K) & \cup \operatorname{TypeOnePrimes}(K) \\
& \cup \operatorname{TypeTwoPrimes}(K) .
\end{aligned}
$$

Zoom call with Maarten Derickx

TypeOnePrimes

The implementation of TypeOnePrimes uses the state-of-the-art explicit and tight formal immersion criteria due to Derickx, Kamienny, Stein, and Stoll [DKSS17]:

Proposition 5.3. Let $\mathrm{H} \subseteq(\mathbb{Z} / \mathrm{p} \mathbb{Z})^{\times} /\{ \pm 1\}$ be a subgroup. Let $\ell \neq \mathrm{p}$ be a prime and consider $\mathrm{t}=\mathrm{t}_{1}\left(\mathrm{t}_{0}\right)$ as in Proposition 5.1 when ℓ is odd, or t as in Corollary 5.2 when $\ell=$ 2. Then $\mathrm{t} \circ \mathrm{t}$ is a formal immersion at all $\overline{\mathrm{x}}_{\mathrm{H}} \in \mathrm{X}_{\mathrm{H}}^{(\mathrm{d})}\left(\mathbb{F}_{\ell}\right)$ that are sums of images of rational cusps on $X_{1}(p)$, if for all partitions $d=n_{1}+\ldots+n_{m}$ with $n_{1} \geq \cdots \geq n_{m}$ and all m -tuples $\left(\mathrm{d}_{1}=1, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{m}}\right)$ of integers representing pairwise distinct elements of H , the d Hecke operators

$$
\begin{equation*}
\left(\mathrm{T}_{\mathrm{i}}\left\langle\mathrm{~d}_{\mathrm{j}}\right\rangle \mathrm{t}\right)_{\substack{j=1, \ldots, \mathrm{~m} \\ \mathrm{i}=1, \ldots, n_{\mathrm{j}}}} \tag{5.1}
\end{equation*}
$$

are $\mathbb{F}_{\boldsymbol{l}}$-linearly independent in $\mathbb{T} \otimes \mathbb{F}_{\boldsymbol{l}}$, where \mathbb{T} is considered as a subalgebra of $\operatorname{End}_{Q}\left(\mathrm{~J}_{\mathrm{H}}\right)$.

Maarten Derickx

Sheldon Kamienny

William Stein

Michael Stoll

From Superset to Set

Let's run the algorithm on $\mathbb{Q}\left(\zeta_{7}\right)^{+}$; we get a superset of

$$
\text { PrimesUpTo(43) } \cup\{61,67,73,163\} .
$$

How to determine which of these are actually in IsogPrimeDeg $\left(\mathbb{Q}\left(\zeta_{7}\right)^{+}\right)$?
The main ingredient is

Theorem (Box-Gajović-Goodman, 2021)

For $N \in\{53,57,61,65,67,73\}$, the set of cubic points on $X_{0}(N)$ is finite and listed in Section 5 of [BGG21].

Josha Box

Stevan Gajović

Pip Goodman

The first cubic case of IsogPrimeDeg

Theorem (B.-Derickx)

Assuming GRH,

$$
\operatorname{Isog} \operatorname{PrimeDeg}\left(\mathbb{Q}\left(\zeta_{7}\right)^{+}\right)=\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q})
$$

Open Problem

Can you extend the results on cubic points on low-genus modular curves to higher genera?

Open Problem

Can you start compiling catalogues of higher degree points on low-genus modular curves?

Uniform TypeTwoPrimes

Theorem (B.-Derickx)

Assume GRH, and let d be an odd integer. Then there is a bound C_{d} such that if E is an elliptic curve over a number field K of degree d which admits a K-rational p-isogeny, then $p \leq C_{d}$. Moreover, we have $C_{3}=253,507$.

There is a cubic field which satisfies Condition CC with $p=253,507$, but this is only a necessary condition for Type 2 isogenies, so the following is natural:

Open Problem

Does there exist an elliptic curve over a cubic field admitting a rational 253,507-isogeny?

Strong Uniform Boundedness for Isogenies?

Open Problem

Fix an integer d. As one varies over all elliptic curves over all number fields of degree d which do not contain the Hilbert class field of an imaginary quadratic field, are there only finitely many isogeny primes that arise?

Code optimisations

"Tu devrais essayer GP2C, GP2C est plus rapide que GP pour les boucles longues."
reproduced with permission

Bill Allombert

Open Problem

Can you make the implementation wicked fast?

Further Problems to consider

Statistical Distribution of IsogPrimeDeg(K)

Both Ralph Greenberg and Jaap Top asked this Arithmetic Statistics question:

Open Problem

Fix an integer d. What is the distribution of $\operatorname{Isog} \operatorname{PrimeDeg}(K)$ as one varies over all number fields K of degree d?

Ralph Greenberg

Jaap Top

Definition

Let K be a number field, and let $p \in \operatorname{lsogPrimeDeg}(K)$. We say that p is new if $p \notin \operatorname{lsog} \operatorname{PrimeDeg}(L)$ for any proper subfield $L \subset K$.

Question

As one varies over all isogeny-finite quadratic fields $\mathbb{Q}(\sqrt{D})$ for $|D| \leq 50$, how many new isogeny primes arise for each D, which new isogeny primes arise, and how often do they arise?

There are 54 quadratic fields to consider.
We were able to decide on 38 of these.

Theorem (B.-Derickx)

Assuming GRH,

```
\(\operatorname{Isog} P\) rime \(\operatorname{Deg}(\mathbb{Q}(\sqrt{-46}))=\operatorname{Isog} P\) rime \(\operatorname{Deg}(\mathbb{Q})\)
\(\operatorname{Isog} P\) rime \(\operatorname{Deg}(\mathbb{Q}(\sqrt{-42}))=\operatorname{Isog} P\) rimeDeg \((\mathbb{Q})\)
\(\operatorname{Isog} P\) rime \(\operatorname{Deg}(\mathbb{Q}(\sqrt{-39}))=\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q})\)
\(\operatorname{Isog}\) Prime \(\operatorname{Deg}(\mathbb{Q}(\sqrt{-\mathbf{3 8}}))=\operatorname{Isog}\) PrimeDeg \((\mathbb{Q})\)
\(\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q}(\sqrt{-34}))=\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q})\)
\(\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q}(\sqrt{-\mathbf{3 0}}))=\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q})\)
\(\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q}(\sqrt{-29}))=\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q})\)
\(\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q}(\sqrt{-\mathbf{2 3}}))=\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q}) \cup\{29,31\}\)
\(\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q}(\sqrt{-\mathbf{2 1}}))=\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q})\)
\(\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q}(\sqrt{-17}))=\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q})\)
IsogPrime \(\operatorname{Deg}(\mathbb{Q}(\sqrt{-\mathbf{1 5}}))=\operatorname{Isog}\) Prime \(\operatorname{Deg}(\mathbb{Q}) \cup\{23\}\)
\(\operatorname{Isog}\) PrimeDeg \((\mathbb{Q}(\sqrt{-14}))=\operatorname{Isog} P\) rime \(\operatorname{Deg}(\mathbb{Q})\)
\(\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q}(\sqrt{-\mathbf{1 3}}))=\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q})\)
    IsogPrimeDeg \((\mathbb{Q}(\sqrt{-5}))=\operatorname{Isog} \operatorname{PrimeDeg}(\mathbb{Q}) \cup\{23\}\)
```

Number of new isogeny primes

Frequency of new isogeny primes

OK, to be totally honest: In these diagrams I have assumed that the hyperelliptic curves
$x^{17}(23), x^{\mathbf{3 7}}(23), x^{29}(31), x^{29}(37), x^{-31}(41), x^{-22}(59), x^{\mathbf{4 7}}(59)$ do not have any \mathbb{Q}-rational points, because I searched up to a really big height bound but failed to find any points. This could possibly be proved with Quadratic Chabauty; this only affects a small number of the 54 cases, so even if not true, the general picture would remain unaffected.

Put results in https ://lmfdb.org?

Question

Do people want to see the results in the LMFDB? Even if they're "only supersets"?

See Jeremy Rouse's VaNTAGe talk for applications of knowing what the isogeny primes are.

Applications of Galois representations - $1 / 4$

- Suppose ℓ is an odd prime and $a^{\ell}+b^{\ell}=c^{\ell}$ with $a b c \neq 0$. Let

$$
E: y^{2}=x\left(x-a^{\ell}\right)\left(x+b^{t}\right) .
$$

- This elliptic curve has full 2 -torsion. Level-lowering gives that if $\rho_{E, \ell}$ is irreducible, it must arise from a modular form of level 2. This contradiction proves Fermat's last theorem.
- There are a number of other applications of this technique: proving that $0,1,8$ and 144 are the only perfect powers in the Fibonacci sequence, solving generalized Fermat equations, etc.

Jeremy Rouse's VaNTAGe talk: https://youtu.be/L_Il_sJymEs

$\Delta \rightarrow$ Number fields $\rightarrow 2$ 2.5.1 Number field 2.2.5.1: $\mathbb{Q}(\sqrt{5})$

Normalized defining polynomial

$$
x^{2}-x-1
$$

Isogeny primes

$2,3,5,7,11,13,17,19,23,37,43,47,67,163$
$\Delta \rightarrow$ Number fields $\rightarrow 5.5$.14641.1
Number field 5.5.14641.1: $\mathbb{Q}\left(\zeta_{11}\right)^{+}$

This is the quintic field with Galois group C_{5} with the smallest absolute discriminant.
Normalized defining polynomial
$x^{5}-x^{4}-4 x^{3}+3 x^{2}+3 x-1$
Superset for isogeny primes
Isogeny primes of elliptic curves

Isogeny primes are AWESOME!
permalink - (awaiting review)
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,89,97,109,163,197,199,241,307,397,571$

Quadratic Bilu-Parent-Rebolledo?

Momose wrote a paper about the split Cartan modular curves $X_{s}(p)$ [Mom84] and one about its generalisation $X_{0}^{+}\left(p^{r}\right)$ [Mom87].

Open Problem

Fix a quadratic field K. Can one exactly determine the primes p for which the split Cartan modular curve $X_{s}(p)$ admits non-cuspidal, non-CM rational points?

There's been enough progress on quadratic points on modular curves in recent years to at least start thinking about this seriously.

Quadratic Kenku

Open Problem

For a number field K, what possible degrees arise as the degree of a K-rational cyclic isogeny between elliptic curves over K ?

I am currently working on this with Oana Adascalitei and Filip Najman:

Mazur's theorems for abelian surfaces?

Open Problem

Is there a uniform bound on isogeny primes for abelian surfaces over \mathbb{Q} ?

Open Problem

Is there a uniform bound on torsion primes for abelian surfaces over \mathbb{Q} ?
One may initially want to restrict the class to principally polarised abelian surfaces, and to isogenies which are compatible with the polarisation. But this is hard because fewer explicit results are known about moduli spaces of principally polarised abelian surfaces.

Thank You!

Copyright Holder	License	Image
George M. Bergman, via MFO	CC BY-SA 2.0	
George M. Bergman, via MFO	CC BY-SA 2.0	
Harvard University	Fair use	
Univ. of Washington	Fair use	
Eric Bach	Fair use	
Peter J. Bruin	Fair use	
ResearchGate	Fair use	
Univ. of Warwick	Fair use	
Wake Forest Univ.	Fair use	
Pip Goodman	Fair use	

Copyright Holde
Math. Dept., Chuo University, Tokyo, Japan

Univ. Southern California

Getty images/Jewel Samad

Dmitry Vaintrob

Butler College
Matematički kolokvij u Osi-
jeku

Ekin Ozman

Univ. of Warwick

Bill Allombert

Dan Abramovich

Kumar Murty

MFO

License

Fair use

Fair use

Fair use (embed)

Fair use

Fair use

Fair use

Fair use

Fair use
Permission obtained

Fair use

Fair use

CC BY-SA 2.0
Copyright Holder
George M. Bergman, via
MFO
CIRM
Institut de Mathématiques
de Marseilles
Univ. of Warwick
Jennifer S. Balakrishnan
Noam Elkies
Brendan Hassett
Loe Rabinoff V. Dieulefait
Maarten Derickx
William Stein
LinkedIn

License

Copyright Holder
Yuri Bilu
Marusia Rebolledo

George M. Bergman, via
MFO

MFO

Bjorn Poonen

Andrew V. Sutherland

John Voight

Univ. Southern California

Hwajong Yoo

Michael Stoll

ResearchGate

Rijksuniversiteit Groningen

License

Fair use

Permission obtained

CC BY-SA 2.0

Fair use

Fair use
[Abr95] Dan Abramovich.
Formal finiteness and the torsion conjecture on elliptic curves.
Astérisque, (228):5-18, 1995.
[Ban21] Barinder S. Banwait.
Explicit isogenies of prime degree over quadratic fields.
submitted. Preprint available online at https://arxiv.org/abs/2101.02673, 2021.
[BGG21] Josha Box, Stevan Gajović, and Pip Goodman.
Cubic and quartic points on modular curves using generalised symmetric Chabauty.
Preprint available online at https://arxiv.org/abs/2102.08236, 2021.
[BN15] Peter Bruin and Filip Najman.
Hyperelliptic modular curves $X_{0}(n)$ and isogenies of elliptic curves over quadratic fields.
LMS Journal of Computation and Mathematics, 18(1):578-602, 2015.
[Box21] Josha Box.
Quadratic points on modular curves with infinite Mordell-Weil group.
Mathematics of Computation, 90:321-343, 2021.
[BPR13] Yuri Bilu, Pierre Parent, and Marusia Rebolledo.
Rational points on $X_{\mathbf{0}}^{+}\left(p^{r}\right)$.
Ann. Inst. Fourier (Grenoble), 63(3):957-984, 2013.
[BS96] Eric Bach and Jonathan Sorenson.
Explicit bounds for primes in residue classes.
Mathematics of Computation, 65(216):1717-1735, 1996.
[Dav12] Agnès David.
Caractère d'isogénie et critères d'irréductibilité.
Preprint available online at https://arxiv.org/abs/1103.3892, 2012.
[Die02] Luis V. Dieulefait.
Explicit determination of the images of the Galois representations attached to abelian surfaces with $\operatorname{End}(A)=\mathbb{Z}$.
Experimental Mathematics, 11(4):503-512, 2002.
[DKSS17] Maarten Derickx, Sheldon Kamienny, William Stein, and Michael Stoll.
Torsion points on elliptic curves over number fields of small degree.
Preprint available online at https://arxiv.org/abs/1707.00364, 2017.
[Kam92a] Sheldon Kamienny.
Torsion points on elliptic curves and q-coefficients of modular forms.
Inventiones mathematicae, 109(1):221-229, 1992.
[Kam92b] Sheldon Kamienny.
Torsion points on elliptic curves over fields of higher degree.
International Mathematics Research Notices, 1992(6):129-133, 1992.
[Ken79] M.A. Kenku.
The modular curve X_{0} (39) and rational isogeny.
In Mathematical Proceedings of the Cambridge Philosophical Society, volume 85, pages 21-23.
Cambridge University Press, 1979.
[Ken80a] M.A. Kenku.
The modular curve X_{0} (169) and rational isogeny.
Journal of the London Mathematical Society, 2(2):239-244, 1980.
[Ken80b] M.A. Kenku.
The modular curves $X_{0}(65)$ and $X_{0}(91)$ and rational isogeny.
In Mathematical Proceedings of the Cambridge Philosophical Society, volume 87, pages 15-20.
Cambridge University Press, 1980.
[Ken81] M.A. Kenku.
On the modular curves $X_{0}(125), X_{1}(25)$, and $X_{1}(49)$.
Journal of the London Mathematical Society, 2(3):415-427, 1981.
[KM95] Sheldon Kamienny and Barry Mazur.
Rational torsion of prime order in elliptic curves over number fields.
Astérisque, 228:81-100, 1995.
With an appendix by Andrew Granville.
[LV14] Eric Larson and Dmitry Vaintrob.
Determinants of subquotients of Galois representations associated with abelian varieties.
Journal of the Institute of Mathematics of Jussieu, 13(3):517-559, 2014.

Modular curves and the Eisenstein ideal.
Publications Mathématiques de I'Institut des Hautes Études Scientifiques, 47(1):33-186, 1977.
With an appendix by Barry Mazur and Michael Rapoport.
[Maz78] Barry Mazur.
Rational isogenies of prime degree.
Inventiones mathematicae, 44(2):129-162, 1978.
With an appendix by Dorian Goldfeld.
[Mer96] Loïc Merel.
Bornes pour la torsion des courbes elliptiques sur les corps de nombres.
Inventiones mathematicae, 124(1-3):437-449, 1996.
[Mom84] Fumiyuki Momose.
Rational points on the modular curves $X_{\text {split }}(p)$.
Compositio Mathematica, 52(1):115-137, 1984.
[Mom87] Fumiyuki Momose.
Rational points on the modular curves $X_{0}^{+}(N)$.
Journal of the Mathematical Society of Japan, 39(2):269-286, 1987.
[Mom95] Fumiyuki Momose.
Isogenies of prime degree over number fields.
Compositio Mathematica, 97(3):329-348, 1995.
[OS19] Ekin Ozman and Samir Siksek.
Quadratic points on modular curves.
Mathematics of Computation, 88(319):2461-2484, 2019.
[Ozm12] Ekin Ozman.
Points on quadratic twists of $X_{\mathbf{0}}(N)$.
Acta Arithmetica, 152:323-348, 2012.
[Yoo21] Hwajong Yoo.
The rational torsion subgroup of $J_{0}(N)$.
Preprint available online at https://arxiv.org/abs/2106.01020, 2021.

