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Rational points on higher genus curves

Gerd Faltings
MFO

Theorem (Faltings, 1983)
The set of rational points on a curve X/Q of
genus 2 or more is always finite.

Faltings’ theorem is not constructive.

Motivating problem:
Given a curve X/Q with genus g > 2, compute the set X(Q).
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Motivating problem:
Given a curve X/Q with genus g > 2, compute
the set X(Q).

What makes a curve difficult to compute
with—or what might make a curve more
amenable to computation?

Which curves are interesting to study?

A curve, by DALL-E 3
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What is known about computing X(Q) when g > 2?

For certain curves X of genus at least 2, by associating other
geometric objects to X, we can explicitly compute a slightly
larger (but importantly, finite) set of points containing X(Q),
and then (hopefully) use this set to determine X(Q).

I This program starts with the
Chabauty–Coleman method,
where one embeds the curve into
its Jacobian J.

I This construction relies on the
Mordell–Weil rank r of the
Jacobian being less than the
genus and uses analysis over Qp.

I What about r > g? (More soon!)
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Chabauty’s theorem

Theorem (Chabauty, ’41)
Let X be a curve of genus g > 2 over Q. Suppose the Mordell-Weil
rank r of J(Q) is less than g. Then X(Q) is finite.

Coleman (’85) made Chabauty’s theorem effective:

I He gave an upper bound on
#(X(Qp) ∩ J(Q)).

I Idea: construct functions (p-adic
integrals of regular 1-forms) on
J(Qp) that vanish on J(Q) and
restrict them to X(Qp).

I Since X(Q) ⊂ X(Qp) ∩ J(Q), this
gives an upper bound on #X(Q).
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The method of Chabauty–Coleman

Let p > 2 be a prime of good reduction for
X. Fix b ∈ X(Q). Embed X into its Jacobian J
via the Abel-Jacobi map ι : X ↪→ J, sending
P 7→ [(P) − (b)].

The map H0(JQp ,Ω1) −→ H0(XQp ,Ω1)
induced by ι is an isomorphism of Qp-vector
spaces. SupposeωJ restricts toω. Robert Coleman

MFO

Then for Q, Q ′ ∈ X(Qp), define the Coleman integral∫Q ′

Q
ω :=

∫ [(Q ′)−(Q)]

0
ωJ.

5



Computing rational points via Chabauty–Coleman
If r < g, there exists an annihilating differentialω ∈ H0(XQp ,Ω1)
such that ∫P

b
ω = 0

for all P ∈ X(Q). Thus by studying the zeros of
∫
ω, we can find

a finite set of p-adic points containing the rational points of X.

We have

X(Q) ⊂ X(Qp)1 :=

{
z ∈ X(Qp) :

∫ z

b
ω = 0

}
for a p-adic line integral

∫∗
b ω, withω ∈ H0(XQp ,Ω1).

By counting the number of zeros of such an integral, Coleman
gave the bound

#X(Q) 6 #X(Fp) + 2g − 2.

We would like to compute an annihilating differentialω and
then calculate the finite set of p-adic points X(Qp)1 .
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Example: Computing an annihilating differential
The curve X0(37), given as y2 = −x6 − 9x4 − 11x2 + 37 has
rk J0(37)(Q) = 1.
We see {(±1,±4)} ⊂ X(Q), and we set b = (−1, 4) ∈ X(Q) as our
basepoint.

I We have H0(XQp ,Ω1) = 〈 dx
y , x dx

y 〉.
I Since r = 1 < 2 = g, we can compute X(Qp)1 as the zero set

of a p-adic integral. Take p = 3.
I The point P := [(1,−4)− (−1, 4)] ∈ J0(37)(Q) is non-torsion,

as can be seen by computing the 3-adic Coleman integral∫
P

x dx
y

= 32 + 2 · 33 + 34 + 2 · 35 + 37 + O(39).

Moreover,
∫

P
dx
y = O(39). Thus we may take dx

y as our
annihilating differential.
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Example: from an annihilating differential to X(Qp)1

The curve X0(37), given as

y2 = −x6 − 9x4 − 11x2 + 37

has rk J0(37)(Q) = 1 and {(±1,±4)} ⊂ X(Q).
I We compute the Chabauty–Coleman set X(Q3)1 by solving

the equation ∫ z

b

dx
y

= 0

for z ∈ X(Q3).
I The set X(Q3)1 := {z ∈ X(Q3) :

∫z
b

dx
y = 0} is finite, and X(Q)

is contained in this set.
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p-adic integration
Coleman integrals are p-adic line integrals.

P
P’ Q’

“Tiny” integral?

p-adic line integration is difficult – how do we construct the
correct path?
I We can construct local (“tiny”) integrals easily, but

extending them to the entire space is challenging.
I Coleman’s solution: analytic continuation along Frobenius,

giving rise to a theory of p-adic line integration satisfying
the usual nice properties: linearity, additivity, change of
variables, fundamental theorem of calculus.

I Implementations in SageMath, Julia, and Magma.
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Example: X0(37)(Q3)1
Consider X0(37), given as

y2 = −x6 − 9x4 − 11x2 + 37.

We want to compute X(Q3)1 := {z ∈ X(Q3) :
∫z

b
dx
y = 0}, which

we do in each residue disk.
I Over F3, these are the rational points of X0(37):
(0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2), which correspond to
the residue disks.

I We start in the residue disk of (0, 1). We take

S0 = (0, 1 + 2 · 32 + 34 + 2 · 35 + 37 + 2 · 38 + 2 · 39 + O(310)),

at which we compute our local coordinate, producing

St = (t,−3788 + O(310) + (2159 + O(310))t2−

(15737 + O(310))t4 − (23833 + O(310))t6+

(746 · 33 + O(310))t8 + O(t10))

=: (x(t), y(t)).
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Example: X0(37)(Q3)1
I We compute the zeros of the power series I(3T), where

I(T) =
∫S0

(−1,4)

dx
y

+

∫ST

S0

dx(t) dt
y(t)

.

We find
I(3T) =

(
3 + 33 + 2 · 34 + 2 · 35 + 36 + 37 + 2 · 38 + 39 + 310 + O(311)

)
T+

=
(

32 + 2 · 34 + 2 · 35 + 37 + 2 · 38 + 2 · 39 + 310 + O(312)
)

T3+

=
(

36 + 37 + 2 · 38 + 39 + 310 + 311 + 2 · 313 + 2 · 314 + O(315)
)

T5+

=
(

38 + 2 · 39 + 310 + 2 · 311 + 2 · 312 + 2 · 313 + 2 · 315 + O(317)
)

T7+

=
(

37 + 2 · 38 + 2 · 310 + 2 · 311 + 312 + 314 + 2 · 316 + O(317)
)

T9 + O(T10),

which has precisely one zero at T = 0, corresponding to S0,
which we can identify, after fixing a choice of

√
37 ∈ Q3, as

(0,
√

37).
I Parametrizing each residue disk by a local coordinate and

computing the zeros of I(3T) in each disk, we find that
X0(37)(Q3)1 = {(0,±

√
37), (±1,±4)}. Thus

X0(37)(Q) = {(±1,±4)}.
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On luck

It was fairly lucky that

X0(37)(Q3)1 = {(0,±
√

37), (±1,±4)} :

I We can’t always choose a small good prime p to run
Chabauty–Coleman, and by the Weil bound, we know
#X(Fp) grows as p grows. (Counterpoint: one may also use
a small bad prime! This is work of Katz–Zureick-Brown.)

I So if we’d used larger p, we’d expect more p-adic points in
X(Qp)1. This would then necessitate other tools, such as
the Mordell–Weil sieve, to rule out points not in X(Q).

I Relatedly, we were able to recognize the points in
X0(37)(Q3)1 that weren’t in X(Q)known as points in
X(Q(

√
37)).
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Beyond Chabauty–Coleman
Do we have any hope of doing something like
Chabauty–Coleman when r > g?
I Conjecturally, yes, via Kim’s nonabelian Chabauty program.
I Instead of using the Jacobian of X and abelian integrals,

use nonabelian geometric objects associated to X, which carry
iterated Coleman integrals.

I These iterated integrals cut out Selmer varieties, which
give a sequence of sets

X(Q) ⊂ · · · ⊂ X(Qp)n ⊂ X(Qp)n−1 ⊂ · · · ⊂ X(Qp)2 ⊂ X(Qp)1

where the depth n set X(Qp)n is given by equations in
terms of n-fold iterated Coleman integrals∫P

b
ωn · · ·ω1.

I Note that X(Qp)1 is the classical Chabauty–Coleman set.
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Nonabelian Chabauty

Conjecture (Kim, ’12)
For n� 0, the set X(Qp)n is finite.

Questions:
I When can X(Qp)n be shown to be finite?
I For which classes of curves can nonabelian Chabauty be

used to determine X(Q)?

We focus today on the case of n = 2, known as quadratic Chabauty.
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Quadratic Chabauty: pre-history

The first quadratic Chabauty
formula, for integral points on
punctured rank 1 elliptic curves:

Shortly after we had finished this,
Minhyong Kim generously shared
another insight about this formula:
the double integral D2 is “essentially
the log of Mazur and Tate’s sigma
function.”
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What are p-adic heights?

Let p be an odd prime and let A be an abelian variety over a
number field K with good reduction at p.
I A (global) p-adic height pairing is a symmetric bilinear

pairing
( , ) : A(K)× A

∨

(K)→ Qp.

I p-adic height pairings were
I First defined for abelian varieties by Schneider (’82),

Mazur-Tate (’83),
I extended to motives by Nekovář (’93), and
I also defined, in the case of Jacobians of curves, by Coleman

and Gross (’89).
I This third definition is known to be equivalent to the

previous ones (Besser, ’04).

I A global height pairing h can be written as a sum of local
height pairings h =

∑
v hv.
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Quadratic Chabauty (roughly)

Given a global p-adic height h, we study it on rational points:

h︸︷︷︸
bilinear form, rewrite in terms

of locally analytic function
using known rational points

= hp︸︷︷︸
locally analytic function

via p-adic differential equation

+
∑
v,p

hv︸   ︷︷   ︸
takes on finite

number of values
on rational points

(best case: all trivial)
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Quadratic Chabauty (roughly)

h︸︷︷︸
quadratic form, rewrite as a

p-adic analytic function
using Coleman integrals

= hp︸︷︷︸
p-adic analytic function

via double Coleman integral

+
∑
v,p

hv︸   ︷︷   ︸
takes on finite

number of values
(controlled in some way)

hp︸︷︷︸
p-adic analytic function

via double Coleman integral

− h︸︷︷︸
quadratic form, rewrite as a

p-adic analytic function
using Coleman integrals

= −
∑
v,p

hv︸   ︷︷   ︸
takes on finite

number of values
(controlled in some way)
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Quadratic Chabauty for integral points

Theorem (B–Besser–Müller ’16)
Let X/Q be a hyperelliptic curve. If r = g > 2 and fi(x) :=

∫x
b ωi for

ωi ∈ H0(XQp ,Ω1) are linearly independent, then there is an
explicitly computable finite set S ⊂ Qp and explicitly computable
constants αij ∈ Qp such that

θ(P) −
∑

06i6j6g−1

αijfifj(P),

takes values in S on integral points, where θ(P) =
∑g−1

i=0

∫P
b ωiω̄i.
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Quadratic Chabauty for rational points

Theorem (B–Dogra ’18)
For X/Q with g > 2 and r < g + rk NS(JQ) − 1, the set X(Qp)2 is
finite.

We also gave a quadratic Chabauty formula for bielliptic curves
with g = r = 2 and, with Müller, used it to determine
X0(37)(Q(i)).

Together with Dogra, Müller, Tuitman, and Vonk, we sought to
generalize these quadratic Chabauty techniques to curves
beyond hyperelliptic ones.
I The main application that we had in mind was a certain

genus 3 non-hyperelliptic modular curve, coming from
Serre’s uniformity problem.
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Serre’s uniformity problem

Let E/Q be an elliptic curve, ` a prime number.
I GQ := Gal(Q/Q) acts on the `-torsion points E[`].
I Fixing a basis of E[`] � (Z/`Z)2, get a Galois representation

ρ̄E,` : GQ → Aut(E[`]) � GL2(F`)

Theorem (Serre, ’72)
If E does not have complex multiplication, then ρ̄E,` is surjective for
`� 0.
Serre’s uniformity problem: Does there exist an absolute
constant `0 such that ρ̄E,` is surjective for every non-CM elliptic
curve E/Q and every prime ` > `0?

Conjecture: `0 = 37 should work.
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Serre’s Uniformity Problem

Idea: To show that ρ̄E,` is surjective, show that im(ρ̄E,`) is not
contained in a maximal subgroup of GL2(F`). These are

1. Borel subgroups
2. Exceptional subgroups
3. Normalizers of split Cartan subgroups
4. Normalizers of non-split Cartan subgroups

Idea: For a maximal G ⊂ GL2(F`), there is a modular curve
XG/Q such that non-cuspidal points in XG(Q) correspond to
elliptic curves E/Q with im(ρ̄E,`) ⊂ G.

22



The “cursed” modular curve

Bilu, Parent, and Rebolledo proved a spectacular result about
essentially all split Cartan modular curves:

Theorem (Bilu–Parent ’11, Bilu–Parent–Rebolledo ’13)
We have X+

s (`)(Q) = {cusps, CM-points} for ` > 11, ` , 13.

....yes, except for one: the one at “cursed” level 13.

Bilu Parent Rebolledo
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Quadratic Chabauty and the cursed curve

The split Cartan modular curve X+
s (13), given as

−x3y+2x2y2−xy3−x3z+x2yz+xy2z−2xyz2+2y2z2+xz3−3yz3 = 0

was referred to as “cursed” (Bilu–Parent–Rebolledo), after their
classification of rational points on essentially all other split
Cartan modular curves.

This is a genus g = 3 curve that was known to have larger
Jacobian rank (r > g; it turned out r = g). Our goal was to apply
quadratic Chabauty to determine its rational points.
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Abel–Jacobi with basepoint

Let AJb be the map

X(Qp)
AJb−−→ H0(XQp ,Ω1)∗

x 7→ (ω 7→
∫ x

b
ω).
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Quadratic Chabauty function

A quadratic Chabauty function θ : X(Qp)→ Qp has these
properties:

1. On each residue disk, the map
(AJb, θ) : X(Qp)→ H0(XQp ,Ω1)∗ ×Qp is locally analytic.

2. There exist
I an endomorphism E of H0(XQp ,Ω1)∗,
I a functional c ∈ H0(XQp ,Ω1)∗, and
I a bilinear form

B : H0(XQp ,Ω1)∗ ⊗H0(XQp ,Ω1)∗ → Qp

such that for all x ∈ X(Q),

θ(x) − B(AJb(x), E(AJb(x)) + c) = 0.
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Quadratic Chabauty functions for rational points

When r = g and rk NS(J) > 1, we construct a quadratic
Chabauty function by associating to points of X certain p-adic
Galois representations, and then take Nekovář p-adic heights.
I Idea is to construct a representation AZ(x) for every

x ∈ X(Q). This depends on a choice of “nice”
correspondence Z on X, given by nontrivial elements of
ker(NS(J)→ NS(X) ' Z). Such a correspondence exists
when rk NS(J) > 1.

I Compute p-adic height of AZ(x) via p-adic Hodge theory.
I It turns out that for many interesting curves, for all v , p,

local heights hv(AZ(x)) are trivial (e.g., if X has potential
good reduction at v).
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Quadratic Chabauty for rational points

Using Nekovář’s p-adic height h, there is a local decomposition

h(AZ(x)) = hp(AZ(x)) +
∑
v,p

hv(AZ(x))

where
I x 7→ hp(AZ(x)) extends to a locally analytic function
θ : X(Qp)→ Qp by Nekovář’s construction.

This gives a quadratic Chabauty function whose pairing is h
and whose endomorphism is induced by Z.
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Quadratic Chabauty (with Dogra, Müller, Tuitman,
Vonk)

Suppose X/Q satisfies
I r = g,
I rk NS(JQ) > 1,
I p-adic closure J(Q) has finite index in J(Qp),
I X has everywhere potential good reduction (or otherwise

some control of local heights away from p),
I and that we know enough rational points Pi ∈ X(Q) to

“fit” the global height pairing in terms of a basis of bilinear
forms.

If we can solve the following problems, we have an algorithm
for computing a finite subset of X(Qp) containing X(Q):

1. Expand the function x 7→ hp(AZ(x)) into a p-adic power
series on every residue disk.

2. Evaluate h(AZ(Pi)) for the known rational points
Pi ∈ X(Q).
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Applying quadratic Chabauty to the cursed curve

I We showed that X+
s (13) has r = 3.

I Since rk NS(JQ) = 3, we had two independent nontrivial
nice correspondences Z1, Z2 on X; we computed equations
for 17-adic heights hZ1 , hZ2 on X.

I Checked the simultaneous solutions of the above two
equations...are they precisely on the 7 known rational
points?!
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Quadratic Chabauty for rational points on X+
s (13)

Theorem (B–Dogra–Müller–Tuitman–Vonk ’19)
We have |X+

s (13)(Q)| = 7.

This completes the classification of rational points on split
Cartan curves by Bilu–Parent–Rebolledo.

Baran showed that X+
s (13) is isomorphic to X+

ns(13) over Q, so
we also get (for free) that |X+

ns(13)(Q)| = 7.
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Two new formulations of quadratic Chabauty

Edixhoven–Lido (2019):
Geometric quadratic Chabauty

Besser–Müller–Srinivasan
(2021): p-adic Arakelov
theoretic quadratic Chabauty
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The modular curves X+
0 (p)

The modular curves X+
0 (p) := X0(p)/〈wp〉 for prime level p

provide an interesting testing ground for quadratic Chabauty.

I Moduli perspective: non-cuspidal points classify
unordered pairs {E1, E2} of elliptic curves admitting a
p-isogeny between them.

I Rational points are cusps, CM points, or “exceptional”
(neither cusps nor CM points).

I Elkies (1998), Galbraith (2002): Computed models,
searched for rational points, and asked if for all large
primes p, only rational points are cusps or CM points.

33



The modular curves X+
0 (p)

I By work of Ogg, the modular curve X+
0 (p) has genus 3 if

and only if

p ∈ {97, 109, 113, 127, 139, 149, 151, 179, 239}.

I For all of these curves, rk J+0 (p)(Q) = 3.

Using models of these (smooth plane quartic) curves computed
by Elkies, we can apply quadratic Chabauty to show the
following:

Theorem (B.–Dogra–Müller–Tuitman–Vonk ’23)
There are no exceptional rational points on the genus 3 modular
curves X+

0 (p).
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The modular curves X+
0 (p)

The curve X+
0 (p) has genus 4 iff

p ∈ {137, 173, 199, 251, 311},

genus 5 iff
p ∈ {157, 181, 227, 263},

and genus 6 iff

p ∈ {163, 197, 211, 223, 269, 271, 359}.

Nikola Adžaga, Vishal Arul, Lea Beneish, Mingjie Chen, Shiva
Chidambaram, Timo Keller, Boya Wen started looking at the
X+

0 (p) of genus 4, 5, and 6 at the 2020 Arizona Winter School.

They used quadratic Chabauty to determine rational points on
all such curves and proved the following:

Theorem (AABCCKW ’22)
The only exceptional rational points on the genus 4, 5, and 6 curves
X+

0 (p) occur at level p = 137 or 311.
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Quadratic Chabauty and Galbraith’s conjecture
X+

0 (N) with 2 6 g(X+
0 (N)) 6 6, with N prime

I B.–Best–Bianchi–Lawrence–Müller–Triantafillou–Vonk (g = 2:
N = 67, 73, 103)

I B.–Dogra–Müller–Tuitman–Vonk (g = 2, 3,
N = 107, 167, 191; 97, 109, 113, 127, 139, 149, 151, 179, 239)

I Adžaga–Arul–Beneish–Chen–Chidambaram–Keller–Wen
(g = 4, 5, 6: N = 137, 173, 199, 251, 311; 157, 181, 227, 263;
163, 197, 211, 223, 269, 271, 359)

X+
0 (N), with N composite
I N = 91: B.–Besser–Bianchi–Müller
I N = 125: Arul–Müller
I N = 169: B.–Dogra–Müller–Tuitman–Vonk

Collectively, these results, plus work of Momose, Galbraith,
and Arai–Momose settle a 2002 conjecture of Galbraith: that if
2 6 g(X+

0 (N)) 6 5, then X+
0 (N)(Q) contains exceptional

rational points if and only if N ∈ {73, 91, 103, 125, 137, 191, 311}.
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Quadratic Chabauty for modular curves

I With Dogra, Müller, Tuitman, and Vonk, we generalized
our techniques and developed quadratic Chabauty
algorithms for further modular curves over Q.

I In addition to the Atkin–Lehner quotient curves, we
computed rational points on curves motivated by the
problem of classifying `-adic images of Galois attached to
elliptic curves (a suggestion of Rouse, Sutherland, and
Zureick-Brown).

Theorem (BDMTV ’23)
We have #XS4(13)(Q) = 4 and #X+

ns(17)(Q) = 7.

These computations finished the classification of 13-adic and
17-adic images.
A Magma package is available on GitHub.
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Our most recent quadratic Chabauty roadmap

Idea: for certain (modular) curves X over number fields K of
genus at least 2, we can explicitly compute a slightly larger (but
importantly, finite) set of points containing X(K), and then
(hopefully) from this set, extract X(K).

QC for modular curves over K (B–Betts–Hast–Jha–Müller ’25) QC for OK points (B–Besser–Bianchi–Müller ’20)

QC for modular curves over Q (BDMTV ’19, ’23) QC for integral points (B–Besser–Müller ’16)

restriction of scalars

h(AZ(x))
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Nonabelian Chabauty over number fields?

I Dogra (’19) and Hast (’20): finiteness theorems over
number fields.

I In work with Besser, Bianchi, and Müller (’20), we gave
explicit quadratic Chabauty methods for integral points on
hyperelliptic curves over number fields (and K-rational
points on genus 2 bielliptic curves), using multiple p-adic
heights and restriction of scalars.
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More on p-adic heights

For curves X/K, unlike the R-valued canonical height, there
may be many canonical p-adic valued heights associated to the
curve’s Jacobian for a given number field K.
I Up to nontrivial scalar multiple:

{canonical p-adic height pairings} 1:1←→ {Zp-extensions L/K},

where L has finitely many ramified primes and these
primes are primes of ordinary reduction for J.

I So over K real quadratic, the situation is essentially the
same as it was over Q: just the cyclotomic p-adic height hcyc

I Over K imaginary quadratic, have cyclotomic hcyc and
anticyclotomic hanti p-adic heights.
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Remarks

I For V = ResK/Q X and A = ResK/Q J, one can check
finiteness of the intersection

V(Qp) ∩ A(Q)

for a given example by computing Coleman integrals.

Difficult to prove finiteness in general.
I Siksek asked whether a sufficient condition for finiteness of

the Chabauty–Coleman set X(Kp)1 is that r 6 [K : Q](g − 1)
with X not defined over any proper subfield of K.

I Dogra (’19) showed that this question has a negative
answer.

I Triantafillou (’20) gave applications of restrictions of
scalars Chabauty to study solutions to the S-unit equation.
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Quadratic Chabauty over number fields

Suppose X/K, where [K : Q] = d = r1 + 2r2.

I Siksek’s restriction of scalars method generically works for
rk J(K) + d 6 dg.

In work with Besser, Bianchi, and Müller, extended quadratic
Chabauty to approximate the OK-points on hyperelliptic X:
I There are at least r2 + 1 independent p-adic heights.
I Generically, this approach works for

rk J(K) + (d − (r2 + 1)) 6 dg

rk(J(K)) + rk(O×K ) 6 dg.
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More on Mazur’s Program B

Rouse–Sutherland–Zureick-Brown (’21) describe the
classification of possible images of `-adic Galois representations
attached to elliptic curves E over Q (Mazur’s “Program B”).
I The case of ` = 2 was completed by Rouse–Zureick-Brown

and ` = 13, 17 was finished by work of [BDMTV23].
I The work of [RSZB21] focuses on ` = 3, 5, 7, 11: they

classify rational points on almost all maximal `-power level
modular curves, aside from those dominating two
modular curves of level 49 and genus 9 and the non-split
Cartan curves of level 27, 25, 49, 121, and prime level
greater than 17.

I The case of X+
ns(27) is particularly interesting: it would

finish the classification of 3-adic images of Galois.
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X+
ns(27) and quadratic Chabauty over number fields

The curve X := X+
ns(27) has genus 12 and rank 12 and satisfies

the hypotheses of the [BDMTV23] algorithm.
I And yet it seems to be computationally infeasible to work

directly with this curve using [BDMTV23]!

[RSZB21] identify a smooth plane quartic curve X ′H over
K = Q(ζ3) together with a degree 3 morphism X→ X ′H defined
over K, and so every K-point of X maps to a K-point of X ′H.

I The restriction of scalars ResK/Q J(X ′H) is isogenous to the
Q-simple abelian variety associated to 729.2.a.cwith
rank 6.
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Quadratic Chabauty for curves over number fields

By combining quadratic Chabauty for modular curves with
restriction of scalars, it should be possible to study X ′H(K), even
though it is a genus g = 3 curve with Jacobian rank r = 6 since

r 6 [K : Q](g − 1) + (r2 + 1)(rNS − 1),
= 2 · (3 − 1) + (1 + 1)(3 − 1) = 8,

where r2 is the number of pairs of complex embeddings of K.
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Computing X ′H(Q(ζ3)) and 3-adic images of Galois

Together with Alexander Betts, Daniel Hast, Aashraya Jha, and
Steffen Müller, we have combined quadratic Chabauty with
restriction of scalars for this curve X ′H over K = Q(ζ3).

Theorem (BBHJM ’25)
We have #X ′H(Q(ζ3)) = 13.

This yields

Theorem (BBHJM ’25)
#X+

ns(27)(Q) = 8.
and completes the classification of 3-adic images of Galois, after
the work of Rouse–Sutherland–Zureick-Brown.
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