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Rational points on higher genus curves

Theorem (Faltings, 1983)

The set of rational points on a curve X/Q of
genus 2 or more is always finite.

Faltings” theorem is not constructive.

Gerd Faltings
MFO

Motivating problem:
Given a curve X/Q with genus g > 2, compute the set X(Q).




Motivating problem:
Given a curve X/Q with genus ¢ > 2, compute

the set X(Q).

What makes a curve difficult to compute
with—or what might make a curve more
amenable to computation?

Which curves are interesting to study?

A curve, by DALL-E 3



What is known about computing X(Q) when g > 2?

For certain curves X of genus at least 2, by associating other
geometric objects to X, we can explicitly compute a slightly
larger (but importantly, finite) set of points containing X(Q),
and then (hopefully) use this set to determine X(Q).
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» This program starts with the
Chabauty—Coleman method,
where one embeds the curve into
its Jacobian J.

» This construction relies on the
Mordell-Weil rank r of the
Jacobian being less than the
genus and uses analysis over Q,,.

» What about r > g? (More soon!)




Chabauty’s theorem

Theorem (Chabauty, "41)

Let X be a curve of genus § > 2 over Q. Suppose the Mordell-Weil
rank r of J(Q) is less than g. Then X(Q) is finite.

Coleman ("85) made Chabauty’s theorem effective:
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» He gave an upper bound on

#(X(Qp) NJ(Q)).

» Idea: construct functions (p-adic
integrals of regular 1-forms) on
J(Q,) that vanish on J(Q) and
restrict them to X(Q,).

» Since X(Q) C X(Qp) NJ(Q), this
gives an upper bound on #X(Q).




The method of Chabauty—Coleman

Let p > 2 be a prime of good reduction for
X. Fix b € X(Q). Embed X into its Jacobian |
via the Abel-Jacobi map t: X < ], sending
P~ [(P) — (b)].

The map HO(]QP,O.l) — HO(XQP,Ql)
induced by t is an isomorphism of Q,-vector

¥

1 Robert Co;er;wan
spaces. Suppose wj restricts to w. RO

Then for Q, Q" € X(Q,), define the Coleman integral

Q' [Q"H—(Q)l
J w = J w].
Q 0



Computing rational points via Chabauty—Coleman
If r < g, there exists an annihilating differential w € HO(XQP,Ql)

such that ,
J w=0
b

for all P € X(Q). Thus by studying the zeros of [ w, we can find
a finite set of p-adic points containing the rational points of X.

We have
Z
X(Q) € X(Qy); = {z € X(Q,): L w= o}
for a p-adic line integral [, w, with w € HO(XQP,Ql).

By counting the number of zeros of such an integral, Coleman
gave the bound
#X(Q) < #X(F,) +2g —2.

We would like to compute an annihilating differential w and
then calculate the finite set of p-adic points X(Q,); .



Example: Computing an annihilating differential

The curve X(37), given as y2 = —x® —9x* — 11x% + 37 has

tkJo(37)(Q) = 1.
We see {(£1,+4)} C X(Q), and wesetb = (—1,4) € X(Q) as our
basepoint.

» We have HO(XQp, Ql) = <%, x7d9‘>

» Sincer =1 < 2 = g, we can compute X(Q,); as the zero set
of a p-adic integral. Take p = 3.

» The point P := [(1,—4) — (—1,4)] € Jo(37)(Q) is non-torsion,
as can be seen by computing the 3-adic Coleman integral

d
J T 324233434 42.354+37 + 0(3).
P Y

Moreover, fp dy—" = O(3%). Thus we may take ”;—" as our
annihilating differential.



Example: from an annihilating differential to X(Q, )

The curve X(37), given as
¥ = —x®—9x* —11x* + 37

has rkJy(37)(Q) = 1 and {(£1, +4)} C X(Q).
» We compute the Chabauty—Coleman set X(Qs3); by solving

the equation
Z
d
4
b Y
for z € X(Q3).

» The set X(Q3); :={z € X(Q3) : [, dyi = 0} is finite, and X(Q)
is contained in this set.



p-adic integration
Coleman integrals are p-adic line integrals.

p-adic line integration is difficult — how do we construct the
correct path?

» We can construct local (“tiny”) integrals easily, but
extending them to the entire space is challenging.

» Coleman’s solution: analytic continuation along Frobenius,
giving rise to a theory of p-adic line integration satisfying
the usual nice properties: linearity, additivity, change of
variables, fundamental theorem of calculus.

» Implementations in SageMath, Julia, and Magma.



Example: Xy(37)(Qs3)1
Consider X((37), given as
y? = —x® —9x* —11x% +37.
We want to compute X(Q3); :={z € X(Q3) : Z dy—x = 0}, which
we do in each residue disk.

» Over F3, these are the rational points of X, (37):
(0,1),(0,2),(1,1),(1,2),(2,1),(2,2), which correspond to
the residue disks.

» We start in the residue disk of (0,1). We take

So=1(0,1+2-3>+3*4+2.3°+37+2.3%+2.3° 4 0(3Y)),
at which we compute our local coordinate, producing
S = (t,—3788 + O(3'%) + (2159 + O(3'%)) 12—
(15737 + O(319))#* — (23833 4+ O(319))t°+
(746 - 3% + O(319))18 4 O(t1%))
=: (x(t),y(t)).
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Example: X;(37)(Q3)1

» We compute the zeros of the power series I(3T), where

S0 4d ST dx(t) dt
[ e
—14) ¥ s, Yy

We find

3+3%4+2.3%42.35 +3° 437 4+2. 38+39+3“‘+O(3”))T+

36+37+2-38+39+310+311+2~313+2-314+O(315])T5+

1= (
(P+2-34 428 +37+2.354+2.37 4310 4 0(312)) 13+
(
(=

3 +2~39+31°+2~311+2~312+2<313+2<315+O(317])T7+

7(37+2_38+2_310+2_311+312+314+2_316+O(317))T9+O(T10’/

which has precisely one zero at T = 0, corresponding to Sy,
which we can identify, after fixing a choice of V37 € Q3, as
(0, V37).

» Parametrizing each residue disk by a local coordinate and
computing the zeros of I(3T) in each disk, we find that
X0(37)(Q3)1 = {(0, £ /37), (1, +4)}. Thus
X0(37)(Q) = {(£1, +4)}.

11



On luck

It was fairly lucky that

Xo(37)(Q3)1 = {(0, £V/37), (£1, +4)} :

» We can’t always choose a small good prime p to run
Chabauty—Coleman, and by the Weil bound, we know
#X(F,) grows as p grows. (Counterpoint: one may also use
a small bad prime! This is work of Katz—Zureick-Brown.)

» So if we’d used larger p, we’d expect more p-adic points in
X(Qp)1. This would then necessitate other tools, such as
the Mordell-Weil sieve, to rule out points not in X(Q).

» Relatedly, we were able to recognize the points in
X0(37)(Q3); that weren’t in X(Q)ynown a@s points in
X(Q(v37)).

12



Beyond Chabauty—Coleman
Do we have any hope of doing something like
Chabauty—Coleman when r > g?
» Conjecturally, yes, via Kim’s nonabelian Chabauty program.
» Instead of using the Jacobian of X and abelian integrals,

use nonabelian geometric objects associated to X, which carry
iterated Coleman integrals.

» These iterated integrals cut out Selmer varieties, which
give a sequence of sets

X(Q) C - CX(Qp)n € X(Qp)y—1 C - C X(Qp)2 C X(Qp)1

where the depth n set X(Q,), is given by equations in
terms of n-fold iterated Coleman integrals

P
J Wy -+ - W1

b
» Note that X(Qy); is the classical Chabauty—Coleman set.

13



Nonabelian Chabauty

Conjecture (Kim, "12)
Forn > 0, the set X(Qy), is finite.

Questions:
» When can X(Q,), be shown to be finite?

» For which classes of curves can nonabelian Chabauty be
used to determine X(Q)?

We focus today on the case of n = 2, known as quadratic Chabauty.

14



AMERIGAN MATHEMATICAL SOCIETY
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APPENDIX AND ERRATUM TO “MASSEY PRODUCTS
FOR ELLIPTIC CURVES OF RANK 17

JFNNIFRR 8. BALAKRISHNAN, KIRAN S. KEDLAYA, AND MINHYONG KIM

The paper 6] contains a few errors in the hasic assumptions as well as in the
foruaula of Corollary 0.2. Fist of all it should bave beess e clea at. the outst
that the r
and X the complement of the origin in the regular minimal model. S
tangential base-point b must be integral. in that it is a Z-hasis of the relative tangent
space ¢ Tezz. Tt could also be an integral two-torsion point for the arguments of
the paper to hold verbatim.

The most significant error is in the contribution of the local terms at | £ p,
that is. Lemma 1.2. The problem is that a point that is integral on X may not be
intogral on s smooth model over  field of good reduction. As it stands, the lemima
will only apply to points that are integral in this stronger sense

However, to get immediate examples, one can replace the lemma by

Lemma 1.2 Suppose the Nevon model of E has only one rational component for
mm prime. (Equivalently, the Tamagawa number is one at cach prime.) Then the
()= HY (G, Us)

is trivial for every | # p.

Therefore, for the function

$ (G, Ug) 25 112G, Q1)) = @y,

X(7,)
construeted via the refined Massey product, we gel
Theorem 0.1'. Suppose the Neron model of E has only one rational component
for each prime. Then the map

070 5o

vanishes on the global points X (7).

Quadratic Chabauty: pre-history

The first quadratic Chabauty
formula, for integral points on
punctured rank 1 elliptic curves:

Corollary 0.2'. In addition to the assumptions of the theorem, suppose there is a
point y of infinite onder in E(Z). Then
X(Z) C E(y)
is in the zero sel of
(l0ga (9))° Da (=) = (10ga())* Daly)
The proof of Theorem 0.1' is identical to that of Theorem 0.1, once we have
replaced Lemma 1.2 by Lemma 1.2'

Shortly after we had finished this,
Minhyong Kim generously shared

another insight about this formula:

the double integral D, is “essentially
the log of Mazur and Tate’s sigma
function.”

15



What are p-adic heights?

Let p be an odd prime and let A be an abelian variety over a
number field K with good reduction at p.
» A (global) p-adic height pairing is a symmetric bilinear
pairing
\4
(, ):AK)xA (K)— Q.

» p-adic height pairings were

> First defined for abelian varieties by Schneider ('82),
Mazur-Tate ('83),

» extended to motives by Nekovaf ('93), and

» also defined, in the case of Jacobians of curves, by Coleman
and Gross ('89).

» This third definition is known to be equivalent to the
previous ones (Besser, '04).

» A global height pairing & can be written as a sum of local
height pairings h = ) __ hy.

16



Quadratic Chabauty (roughly)

Given a global p-adic height /i, we study it on rational points:

\h/ - \hp/ + Z hy
ili ite i v#
bilinear form, rewrite in terms locally analytic function P
of locally analytic function ia p-adic differential equation —
using known rational points via p-adic i 1al equatic takes on finite
number of values
on rational points

(best case: all trivial)

17



Quadratic Chabauty (roughly)

o= h o+ Yh
. . ~~
quadratic form, rewrite as a T . . v#Ep
p-adic analytic function p-adic analytic function "

via double Coleman integral takes on finite

number of values
(controlled in some way)

using Coleman integrals

By - g = - §¢ o
- . . dratic form, rewrite as a vFp
p-adic analytic function quacra ! -
. . p-adic analytic function —
via double Coleman integral using Coleman integrals takes on finite

number of values
(controlled in some way)

18



Quadratic Chabauty for integral points

Theorem (B—Besser—Miiller "16)

Let X/Q be a hyperelliptic curve. If r = g > 2 and f;(x) == [, w; for
w; € H'(Xq,, Q") are linearly independent, then there is an
explicitly computable finite set S C Qy, and explicitly computable
constants oy € Qp such that

0(P)— > affi(P),

0<i<j<g—1

takes values in S on integral points, where 8(P) = Zf;ol ff w;@;.

19



Quadratic Chabauty for rational points

Theorem (B-Dogra "18)

For X/Qwith g > 2 and r < g +rkNS(Jg) — 1, the set X(Qy)> is
finite.

We also gave a quadratic Chabauty formula for bielliptic curves
with ¢ = r = 2 and, with Miiller, used it to determine

Xo(37)(Q(1)).

Together with Dogra, Miiller, Tuitman, and Vonk, we sought to
generalize these quadratic Chabauty techniques to curves
beyond hyperelliptic ones.

» The main application that we had in mind was a certain
genus 3 non-hyperelliptic modular curve, coming from
Serre’s uniformity problem.

20



Serre’s uniformity problem

Let E/Q be an elliptic curve, { a prime number.
» Gg := Gal(Q/Q) acts on the {-torsion points E[(].
» Fixing a basis of E[{] = (Z/(Z)?, get a Galois representation

PE,¢ : GQ — Aut(E[{]) = GL;(F,)

Theorem (Serre, '72)

If E does not have complex multiplication, then pg ¢ is surjective for
> 0.

Serre’s uniformity problem: Does there exist an absolute
constant {y such that pg ¢ is surjective for every non-CM elliptic
curve E/Q and every prime { > {y?

Conjecture: {p = 37 should work.

21



Serre’s Uniformity Problem

Idea: To show that pg ¢ is surjective, show that im(pg ) is not
contained in a maximal subgroup of GL;(F;). These are

1. Borel subgroups
2. Exceptional subgroups
3. Normalizers of split Cartan subgroups

4. Normalizers of non-split Cartan subgroups

Idea: For a maximal G C GL,(F;), there is a modular curve
X;/Q such that non-cuspidal points in X (Q) correspond to
elliptic curves E/Q with im(pg¢) C G.

22



The “cursed” modular curve

Bilu, Parent, and Rebolledo proved a spectacular result about
essentially all split Cartan modular curves:

Theorem (Bilu-Parent "11, Bilu-Parent-Rebolledo "13)
We have X (£)(Q) = {cusps, CM-points} for £ > 11, { # 13.

....yes, except for one: the one at “cursed” level 13.

Parent Rebolledo

23



Quadratic Chabauty and the cursed curve

The split Cartan modular curve X; (13), given as
— Y4222y —xyP — Oz Pzt ayPz—2xy22 2072 a2 —3yZ® = 0

was referred to as “cursed” (Bilu-Parent—-Rebolledo), after their
classification of rational points on essentially all other split
Cartan modular curves.

This is a genus ¢ = 3 curve that was known to have larger
Jacobian rank (r > g; it turned out r = g). Our goal was to apply
quadratic Chabauty to determine its rational points.

24



Abel-Jacobi with basepoint

Let AJ, be the map

X(Q,) A HO(Xq,, Q1)
X (W Jx w).
b

25



Quadratic Chabauty function

A quadratic Chabauty function 0 : X(Q,) — Q, has these
properties:
1. On each residue disk, the map

(AJp, 0) : X(Qp) — HO(XQP,Ql)* X Q, is locally analytic.

2. There exist
» an endomorphism E of H(Xg,, Q')*,
> a functional c € H°(Xq,, Q')*, and
» a bilinear form

B:H(Xq, Q)" ® H'(Xq, Q)" - Q,
such that for all x € X(Q),

0(x) — B(AJy(x), E(AJp(x)) +¢) = 0.

26



Quadratic Chabauty functions for rational points

When r = g and rk NS(J) > 1, we construct a quadratic
Chabauty function by associating to points of X certain p-adic
Galois representations, and then take Nekovaf p-adic heights.

» Idea is to construct a representation Az(x) for every
x € X(Q). This depends on a choice of “nice”
correspondence Z on X, given by nontrivial elements of
ker(NS(J) = NS(X) ~ Z). Such a correspondence exists
when rk NS(]) > 1.

» Compute p-adic height of Az(x) via p-adic Hodge theory.

» It turns out that for many interesting curves, for all v # p,
local heights h,(Az(x)) are trivial (e.g., if X has potential
good reduction at v).

27



Quadratic Chabauty for rational points

Using Nekovét’s p-adic height £, there is a local decomposition

h(Az(x)) = hy(Az(x)) + ) ho(Az(x))
VEp
where

> x — hy(Az(x)) extends to a locally analytic function
0: X(Qp) — Q, by Nekovéi’s construction.

This gives a quadratic Chabauty function whose pairing is h
and whose endomorphism is induced by Z.

28



Quadratic Chabauty (with Dogra, Miiller, Tuitman,

Vonk)
Suppose X/Q satisfies
| g — g,

> I'kNSUQ) > 1,

» p-adic closure J(Q) has finite index in | (Qyp),

» X has everywhere potential good reduction (or otherwise
some control of local heights away from p),

» and that we know enough rational points P; € X(Q) to
“fit” the global height pairing in terms of a basis of bilinear
forms.

If we can solve the following problems, we have an algorithm
for computing a finite subset of X(Q,) containing X(Q):
1. Expand the function x + hy(Az(x)) into a p-adic power
series on every residue disk.
2. Evaluate h(Az(P;)) for the known rational points
P; € X(Q).
29



Applying quadratic Chabauty to the cursed curve

» We showed that X;"(13) has r = 3.

» Since rk NS(Jg) = 3, we had two independent nontrivial
nice correspondences Z1, Z, on X; we computed equations
for 17-adic heights h#1, h?2 on X.

» Checked the simultaneous solutions of the above two
equations...are they precisely on the 7 known rational
points?!

30



Quadratic Chabauty for rational points on X (13)

Theorem (B-Dogra-Miiller-Tuitman—Vonk "19)
We have | X} (13)(Q)| = 7.

This completes the classification of rational points on split
Cartan curves by Bilu-Parent-Rebolledo.

Baran showed that X; (13) is isomorphic to X/(13) over Q, so
we also get (for free) that |X/};(13)(Q)| = 7.
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Two new formulations of quadratic Chabauty

Edixhoven-Lido (2019):
Geometric quadratic Chabauty

I . Motk i (203, 220, 70353
e Author(), 2021 Publabed by Cambridgs Universy 279
i terms of the Creative Commons
ee ( 0/, which permits unrestricted re-use,
trbution and reproduction, provided th giaal ariee s roperly e

GEOMETRIC QUADRATIC CHABAUTY

BAS EDIXIOVEN © AND GUIDO LIDO
Mathematisch Instituut Universiteit Leiden, Postbus 9512, 2300 RA Leiden,
The Netherlands
(edixOrmath leid 1, guid i L.com)
(Received 22 August 2020; revised 10 May 2021; accepted 11 May 2021; first published
online 17 June 2021)
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Besser—Miiller-Srinivasan
(2021): p-adic Arakelov
theoretic quadratic Chabauty

p-ADIC ADELIC METRICS AND QUADRATIC CHABAUTY 1

AMNON BESSER, J. STEFFEN MULLER, AND PADMAVATHI SRINIVASAN

AssTRACT. We giv a new construction of p-adic st on varietiesoves number ields uing p-adic Arskeloy
theory. In analogy with Zhang'

given in terms of p-adic adelic metrics on line bundles. In Darucu.\u e e s ot of canonicl

d we show that we recover the canonical Mazur-Tate height and, for

Coteman and Gress Our main application s & v and. smplica
approach to the Quadratic Chabauty method for the computation of rational points on certain curves over
the rationals, by pulling back the canonical height on the Jacobian with respect to a carefully chosen line
bundle. We show that,our construction allows us to reprove, without using p-adic Hodge theory or arithmetic
fundamental groups, several results due to Balakrishnan and Dogra. Our method also extends to primes p
of bad reduction. One consequence of our work is that for any canonical height (p-adic or R-valied) on an
abelian variety (and hence on pull-backs to other varicties), the local contribution at a finite prime g can be
constrcted using g-analytic methods.
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The modular curves XJ (p)

The modular curves X; (p) := Xo(p)/(wp) for prime level p
provide an interesting testing ground for quadratic Chabauty.

» Moduli perspective: non-cuspidal points classify
unordered pairs {E;, E;} of elliptic curves admitting a
p-isogeny between them.

» Rational points are cusps, CM points, or “exceptional”
(neither cusps nor CM points).

» Elkies (1998), Galbraith (2002): Computed models,
searched for rational points, and asked if for all large
primes p, only rational points are cusps or CM points.

33



The modular curves XJ (p)

» By work of Ogg, the modular curve X{ (p) has genus 3 if
and only if

p €{97,109,113,127,139,149,151, 179,239}.

» For all of these curves, rk]ar (p)(Q) =3.

Using models of these (smooth plane quartic) curves computed

by Elkies, we can apply quadratic Chabauty to show the
following;:

Theorem (B.-Dogra—Miiller-Tuitman—Vonk "23)

There are no exceptional rational points on the genus 3 modular
curves X (p).

34



The modular curves XJ (p)

The curve X; (p) has genus 4 iff
p € {137,173,199, 251,311},
genus 5 iff
p € {157,181,227,263},
and genus 6 iff
p € {163,197,211,223,269, 271, 359}.

Nikola Adzaga, Vishal Arul, Lea Beneish, Mingjie Chen, Shiva
Chidambaram, Timo Keller, Boya Wen started looking at the
X (p) of genus 4, 5, and 6 at the 2020 Arizona Winter School.

They used quadratic Chabauty to determine rational points on

all such curves and proved the following:

Theorem (AABCCKW "22)

The only exceptional rational points on the genus 4, 5, and 6 curves
Xg (p) occur at level p = 137 or 311.

35



Quadratic Chabauty and Galbraith’s conjecture
Xy (N) with 2 < g(X7 (N)) < 6, with N prime

» B.-Best-Bianchi-Lawrence-Miiller-Triantafillou-Vonk (g = 2:
N =67,73,103)

» B.-Dogra-Miiller-Tuitman—Vonk (g = 2,3,
N = 107,167,191;97,109, 113,127, 139, 149, 151, 179, 239)

» AdZaga—Arul-Beneish—-Chen-Chidambaram-Keller-Wen
(g=4,56: N =137,173,199,251,311;157,181, 227,263;
163,197,211,223,269,271, 359)

X4 (N), with N composite

» N = 91: B.-Besser—Bianchi-Miiller

» N =125: Arul-Miiller

» N =169: B.-Dogra-Miiller-Tuitman—Vonk

Collectively, these results, plus work of Momose, Galbraith,
and Arai-Momose settle a 2002 conjecture of Galbraith: that if
2 < g(Xy (N)) < 5, then X (N)(Q) contains exceptional
rational points if and only if N € {73,91,103,125,137,191, 311}.



Quadratic Chabauty for modular curves

» With Dogra, Miiller, Tuitman, and Vonk, we generalized
our techniques and developed quadratic Chabauty
algorithms for further modular curves over Q.

» In addition to the Atkin-Lehner quotient curves, we
computed rational points on curves motivated by the
problem of classifying {-adic images of Galois attached to
elliptic curves (a suggestion of Rouse, Sutherland, and
Zureick-Brown).

Theorem (BDMTV "23)
We have #Xs,(13)(Q) = 4 and #X,(17)(Q) = 7.

These computations finished the classification of 13-adic and
17-adic images.

A Magma package is available on GitHub.
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Our most recent quadratic Chabauty roadmap

Idea: for certain (modular) curves X over number fields K of
genus at least 2, we can explicitly compute a slightly larger (but
importantly, finite) set of points containing X(K), and then
(hopefully) from this set, extract X(K).

QC for modular curves over K (B-Betts—Hast-Jha—Miiller '25) — QCfor©® k points (B-Besser—Bianchi-Miiller "20)

restriction of scalars

h(Az(x))
QC for modular curves over Q (BDMTV 19, '23) — > QC for integral points (B-Besser-Miiller "16)
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Nonabelian Chabauty over number fields?

» Dogra ("19) and Hast ("20): finiteness theorems over
number fields.

» In work with Besser, Bianchi, and Miiller ("20), we gave
explicit quadratic Chabauty methods for integral points on
hyperelliptic curves over number fields (and K-rational
points on genus 2 bielliptic curves), using multiple p-adic
heights and restriction of scalars.
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More on p-adic heights

For curves X/K, unlike the R-valued canonical height, there
may be many canonical p-adic valued heights associated to the
curve’s Jacobian for a given number field K.

» Up to nontrivial scalar multiple:

{canonical p-adic height pairings} &L {Z,-extensions L/K},

where L has finitely many ramified primes and these
primes are primes of ordinary reduction for J.

» So over K real quadratic, the situation is essentially the
same as it was over Q: just the cyclotomic p-adic height h¢

» Over K imaginary quadratic, have cyclotomic 7% and
anticyclotomic #*™ p-adic heights.
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Remarks

» For V = Resg,/g X and A = Resg g J, one can check
finiteness of the intersection

V(Qp) NA(Q)

for a given example by computing Coleman integrals.
Difficult to prove finiteness in general. &/

» Siksek asked whether a sufficient condition for finiteness of
the Chabauty—Coleman set X(K}); is that 7 < [K: QJ(g — 1)
with X not defined over any proper subfield of K.

» Dogra ("19) showed that this question has a negative
answer.

» Triantafillou ("20) gave applications of restrictions of
scalars Chabauty to study solutions to the S-unit equation.
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Quadratic Chabauty over number fields

Suppose X/K, where [K : Q] =d =r; + 2r,.

» Siksek’s restriction of scalars method generically works for
rkJ(K) +d < dg.
In work with Besser, Bianchi, and Miiller, extended quadratic
Chabauty to approximate the Og-points on hyperelliptic X:
» There are at least r; 4 1 independent p-adic heights.
» Generically, this approach works for

tkJ(K) + (d — (r2 +1)) < dg
rk(J(K)) +rk(0F) < dg.
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More on Mazur’s Program B

Rouse-Sutherland-Zureick-Brown ("21) describe the
classification of possible images of {-adic Galois representations
attached to elliptic curves E over Q (Mazur’s “Program B”).

» The case of { = 2 was completed by Rouse-Zureick-Brown
and ¢ = 13,17 was finished by work of [BDMTV23].

» The work of [RSZB21] focuses on { = 3,5,7,11: they
classify rational points on almost all maximal {-power level
modular curves, aside from those dominating two
modular curves of level 49 and genus 9 and the non-split
Cartan curves of level 27, 25, 49, 121, and prime level
greater than 17.

» The case of X}(27) is particularly interesting: it would
finish the classification of 3-adic images of Galois.
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X/(27) and quadratic Chabauty over number fields

The curve X := X (27) has genus 12 and rank 12 and satisfies
the hypotheses of the [BDMTV23] algorithm.

» And yet it seems to be computationally infeasible to work
directly with this curve using [BDMTV23]!

[RSZB21] identify a smooth plane quartic curve X/, over
K = Q((3) together with a degree 3 morphism X — X/, defined
over K, and so every K-point of X maps to a K-point of Xj;.

» The restriction of scalars Resg /g J(X};) is isogenous to the
Q-simple abelian variety associated to 729.2.a.c with
rank 6.
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Quadratic Chabauty for curves over number fields

By combining quadratic Chabauty for modular curves with
restriction of scalars, it should be possible to study X}, (K), even
though it is a genus ¢ = 3 curve with Jacobian rank r = 6 since

r<[K:Ql(g—1)+ (r2+1)(rns — 1),
= 2-B—-1)+(1+1)(3—-1)=8,

where 7, is the number of pairs of complex embeddings of K.
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Computing X},(Q((3)) and 3-adic images of Galois

Together with Alexander Betts, Daniel Hast, Aashraya Jha, and
Steffen Miiller, we have combined quadratic Chabauty with
restriction of scalars for this curve Xj; over K = Q((3).

Theorem (BBHJM ’"25)
We have #X{,(Q((3)) = 13.

This yields
Theorem (BBHJM "25)
#X55(27)(Q) = 8.

and completes the classification of 3-adic images of Galois, after
the work of Rouse-Sutherland—Zureick-Brown.
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