Equidistribution counts abelian varieties

Jeff Achter

j.achter@colostate.edu
Colorado State University
https://www.math.colostate.edu/~achter

February 2022
VaNTAGe
Curves and abelian varieties over finite fields

Prologue

Motivating question

How big is an isogeny class of elliptic curves over a finite field?

* Joint work with S. Ali Altuğ (Radix), Luis Garcia (UCL), and Julia Gordon (UBC)

Isogenous elliptic curves

If E_1 , E_2 / \mathbb{F}_q , the following are equivalent:

- E_1 and E_2 are isogenous;
- $\#E_1(\mathbb{F}_q) = \#E_2(\mathbb{F}_q);$
- $a(E_1) = a(E_2)$, where characteristic polynomial of Frobenius is

$$f_{E_i/\mathbb{F}_q}(T) = T^2 - a(E_i)T + q.$$

Let

$$I(a, \mathbb{F}_q) = \{ E/\mathbb{F}_q : a(E) = a \}.$$

Motivating question

What is $\#I(a, \mathbb{F}_a)$?

Or $\widetilde{\#}I(a, \mathbb{F}_a)$, where *E* has weight $1/\# \operatorname{Aut}(E)$.

First guess: uniform

- $a \in [-2\sqrt{q}, 2\sqrt{q}]$ (Hasse)
- \times q elliptic curves over \mathbb{F}_q . (Exact, if we weight by automorphism.)
- Suppose a(E) uniformly distributed on $[-2\sqrt{q}, 2\sqrt{q}]$.

Heuristic

$$\widetilde{\#}I(a,\mathbb{F}_q) \asymp q/\sqrt{q} = \sqrt{q}.$$

This can't be exactly right. The distribution is *not* uniform.

Sato-Tate distribution

• Frobenius angles:

$$f_E(T) = T^2 - a_E T + q = (T - \sqrt{q} \exp(i\theta_E))(T - \sqrt{q} \exp(-i\theta_E))$$

$$a_E = 2\sqrt{q} \cos(\theta_E)$$

$$\widetilde{a}_E := \frac{a_E}{2\sqrt{q}}$$

Sato-Tate distribution:

Second guess: Sato-Tate

Heuristic

$$\widetilde{\#}I(a, \mathbb{F}_q) \approx \#\left\{E/\mathbb{F}_q\right\} \cdot \mathbb{P}(a_E = a)$$

$$\approx 2q \cdot \frac{1}{2\sqrt{q}} \frac{1}{2\pi} \sqrt{1 - \left(\frac{a}{2\sqrt{q}}\right)^2}$$

$$= \sqrt{q} \frac{1}{2\pi} \sqrt{1 - \widetilde{a}^2}.$$

Seems closer, unlikely to be literally correct.

Frobenius elements

- \bullet E/\mathbb{F}_q
- For $\ell \neq p$, Frobenius gives

$$\operatorname{Fr}_{E/\mathbb{F}_q,E_\ell} \in \operatorname{Aut}(E_\ell) \cong \operatorname{GL}_2(\mathbb{Z}/\ell)$$

 $\operatorname{Fr}_{E/\mathbb{F}_q,\ell} \in \operatorname{Aut}(T_\ell E) \cong \operatorname{GL}_2(\mathbb{Z}_\ell)$

and thus conjugacy classes

$$\gamma_{E/\mathbb{F}_q,\mathbb{Z}/\ell} \in \operatorname{GL}_2(\mathbb{Z}/\ell)^{\#}$$

$$\gamma_{E/\mathbb{F}_q,\ell} \in \operatorname{GL}_2(\mathbb{Z}_\ell)^{\#}.$$

- These Frobenius elements are:
 - ▶ Equidistributed in $GL_2(\mathbb{Z}/\ell)$ and $GL_2(\mathbb{Z}_\ell)$; and
 - ▶ Independent: equidistributed in $GL_2(\mathbb{Z}/\ell_1) \times GL_2(\mathbb{Z}/\ell_2)$.

Local factors

Set

$$\nu_{\ell}(a,q) = \lim_{n \to \infty} \frac{\#\{\gamma \in \operatorname{GL}_2(\mathbb{Z}/\ell^n) : (\operatorname{tr}(\gamma), \operatorname{det}(\gamma)) \equiv (a,q) \bmod \ell^n\}}{\#\operatorname{GL}_2(\mathbb{Z}/\ell^n)/(\ell^n \cdot \ell^{n-1}(\ell-1))}.$$

Rationale (sic)

- Denominator is average number of elements with given charpoly.
- Equivalently, ν_{ℓ} comes from pushforward of Haar:

Third guess: local corrections

Heuristic

$$\begin{split} \widetilde{\#}I(a,\mathbb{F}_q) &\asymp \sqrt{q}\nu_\infty(a,q) \prod_{\ell < \infty} \nu_\ell(a,q) \\ \nu_\infty(a,q) &= \frac{2}{\pi} \sqrt{1 - \frac{a^2}{4q}} \\ \nu_\ell(a,q) &= \lim_{n \to \infty} \frac{\#\left\{\gamma \in \operatorname{GL}_2(\mathbb{Z}/\ell^n) : (\operatorname{tr}(\gamma), \operatorname{det}(\gamma)) \equiv (a,q) \bmod \ell^n\right\}}{\#\operatorname{GL}_2(\mathbb{Z}/\ell^n)/(\ell^n \cdot \ell^{n-1}(\ell-1))}. \end{split}$$

This can't be right.

Equidistribution only holds for $\ell \ll q$.

Gekeler's Theorem

Set

$$\begin{split} \nu_{\ell}(a,p) &= \lim_{n \to \infty} \frac{\#\left\{\gamma \in \mathrm{GL}_{2}(\mathbb{Z}/\ell^{n}) : (\mathrm{tr}(\gamma), \det(\gamma)) \equiv (a,p) \bmod \ell^{n}\right\}}{\#\mathrm{GL}_{2}(\mathbb{Z}/\ell^{n})/(\ell^{n} \cdot \ell^{n-1}(\ell-1))} \\ \nu_{p}(a,p) &= \lim_{n \to \infty} \frac{\#\left\{\gamma \in \mathrm{Mat}_{2}(\mathbb{Z}/p^{n}) : (\mathrm{tr}(\gamma), \det(\gamma)) \equiv (a,p) \bmod p^{n}\right\}}{\#\mathrm{GL}_{2}(\mathbb{Z}/p^{n})/(p^{n} \cdot p^{n-1}(p-1))} \\ \nu_{\infty}(a,p) &= \frac{2}{\pi} \sqrt{1 - \frac{a^{2}}{4p}} \end{split}$$

Theorem (Gekeler)

If $|a| < 2\sqrt{p}$ and $a \neq 0$, then

$$\widetilde{\#}I(a,\mathbb{F}_p) = \sqrt{p}\nu_{\infty}(a,p)\prod_{\ell}\nu_{\ell}(a,p).$$

Counterfactual equidistribution predicts the right answer!

Why does it work?

Why How does it work?

- $\Delta := \Delta_{a,q} = a^2 4q$, $\mathcal{O}_{a,q} = \mathbb{Z}[\sqrt{\Delta}] = \mathbb{Z}[T]/(T^2 aT + q)$.
- $K = \mathbb{Q}(\sqrt{\Delta})$, $\Delta_0 = \Delta_{K/\mathbb{Q}}$, $\chi = \chi_K = \left(\frac{\Delta_0}{\cdot}\right)$.

Theorem (Deuring)

$$\widetilde{\#}I(a,q) = \sum_{b \mid f} \frac{h(b^2 \Delta_0)}{w(b^2 \Delta_0)} = \sum_{\mathcal{O}' \supset \mathcal{O}_{a,a}} \widetilde{h}(\mathcal{O}').$$

A class number counts the isogeny class.

Special case

Suppose
$$\mathcal{O}_{a,q} = \mathcal{O}_K$$
.
$$\widetilde{\#}I(a,q) = h(K) \ \ Deuring$$

$$= \frac{\#\mathcal{O}_K^{\times} \sqrt{|\Delta_K|}}{2\pi} L(1,\chi) \ \ analytic \ class \ number \ formula$$

$$= \frac{\#\mathcal{O}_K^{\times} \sqrt{|\Delta_K|}}{2\pi} \prod_{\ell} \frac{1}{1-\chi(\ell)/\ell}.$$

Key matrix calculation Suppose $\ell \nmid \Delta = a^2 - 4q$.

$$\begin{array}{|c|c|c|c|} \hline f(T) \bmod \ell & \text{split} & \text{irreducible} \\ \hline \text{centralizer } T & \begin{pmatrix} * & \\ & *' \end{pmatrix} & \begin{pmatrix} * & \epsilon *' \\ *' & * \end{pmatrix} \\ \hline T(\mathbb{F}_{\ell}) & \mathbb{F}_{\ell}^{\times} \times \mathbb{F}_{\ell}^{\times} & \mathbb{F}_{\ell^{2}}^{\times} \\ \# T(\mathbb{F}_{\ell}) & (\ell-1)^{2} & \ell^{2}-1 \\ \hline \end{array}$$

$$\begin{split} \frac{\#\{\text{conjugacy class of}\gamma_0 \bmod \ell\}}{\#\operatorname{GL}_2(\mathbb{F}_\ell)/(\ell(\ell-1))} \\ &= \frac{\#\operatorname{GL}_2(\mathbb{F}_\ell)/\#T(\mathbb{F}_\ell)}{\#\operatorname{GL}_2(\mathbb{F}_\ell)/(\ell(\ell-1))} = \frac{\ell(\ell-1)}{\#T(\mathbb{F}_\ell)} \\ &= \begin{cases} \frac{1}{1-1/\ell} & \text{split} \\ \frac{1}{1+1/\ell} & \text{irreducible} \end{cases} = \frac{1}{1-\chi(\ell)/\ell}. \end{split}$$

Extensions

Similar strategy used for certain:

- Abelian surfaces [Williams, Rauch]
- Abelian varieties of prime dimension [Gerhard-Williams]

Count isogeny class using something like $h(K)/h(K^+)$.

Two questions

Can we find...

- a pure-thought proof of Gekeler's theorem?
- an analogue for isogeny classes of principally polarized abelian varieties?

Remark 8.7. Perhaps with a more conceptual approach, one could also verify the conjecture for the more general moduli problems we considered, where we allow also a $\Gamma_0(L)$ -structure and a $\Gamma_1(M)$ -structure. What is the relation of the conjectured formula to the formula, in terms of orbital integrals, given by Kottwitz in [Ko1, §1, pp. 432-433] and [Ko2, p. 205], when that general formula is specialized to the case of elliptic curves; cf. also [Cl, §3,§41]

N. Katz, Lang-Trotter Revisited, 2008.

One answer

Theorem (AAGG)

 $[X, \lambda] \in \mathcal{A}_g(\mathbb{F}_q)$ a principally polarized abelian variety over \mathbb{F}_q with commutative endomorphism ring. Suppose X is ordinary or that $\mathbb{F}_q = \mathbb{F}_p$. Then

$$\widetilde{\#}I([X,\lambda],\mathbb{F}_q)=q^{\frac{\dim(\mathcal{A}_g)}{2}}\tau_T\nu_\infty([X,\lambda],\mathbb{F}_q)\prod_{\ell}\nu_\ell([X,\lambda],\mathbb{F}_q).$$

Proof is close to pure thought:

- No actual calculation of local terms.
- No appeal to analytic class number formula.

Theorem (Remix)

$$\widetilde{\#}I([X,\lambda],\mathbb{F}_q) = \tau_T \frac{q^{-\frac{g(3g-1)}{4}}}{(2\pi)^g} \sqrt{\left|\frac{\operatorname{disc}(f)}{\operatorname{disc}(f^+)}\right|} B([X,\lambda]) \lim_{s \to 1^+} \frac{\zeta_K(s)}{\zeta_{K^+}(s)}$$

where

$$B([X,\lambda]) = \prod_{\ell \mid 2p \text{ disc}(f)} \frac{\zeta_{K^+,\ell}(1)}{\zeta_{K,\ell}(1)} \nu_{\ell}([X,\lambda]).$$

Class numbers emerge, but we never used the class number formula.

Weil polynomials and isogeny classes

- $(X, \lambda)/\mathbb{F}_q$ a *g*-dimensional principally polarized abelian variety.
- Frobenius $\operatorname{Fr}_{X/\mathbb{F}_{a,\ell}}$ acts on $V_{\ell}X = T_{\ell}X \otimes \mathbb{Q}_{\ell}$.
- Tate: (unpolarized) isogeny class determined by charpoly of $\operatorname{Fr}_{X/\mathbb{F}_q,\ell}$:

$$f_{X/\mathbb{F}_q}(T) \in \mathbb{Z}[T].$$

- λ induces $\langle \cdot, \cdot \rangle_{\lambda} : V_{\ell}X \times V_{\ell}X \to \mathbb{Q}_{\ell}^{\times}$.
- (X, λ) determines
 - $\gamma_0 = \gamma_{X/\mathbb{F}_q,\ell} \in \operatorname{GSp}(V_\ell, \langle \cdot, \cdot \rangle_{\lambda}) \cong \operatorname{GSp}_{2q}(\mathbb{Q}_\ell)$, up to conjugacy.
 - $\delta_0 = \delta_{X/\mathbb{F}_q} \in \mathrm{GSp}(H^1_{\mathrm{cris}}(X), \langle \cdot, \cdot \rangle) \cong \mathrm{GSp}_{2g}(\mathbb{Q}_q)$ up to σ -conjugacy.

If g = 1, λ unique, $\langle \cdot, \cdot \rangle$ unique, $GSp_2 = GL_2$, conjugacy determined by charpoly.

Groups attached to (X, λ)

- $\bullet \ G = \operatorname{GSp}_{2g}, g = \dim X;$
- $\gamma_0 \in G(\mathbb{A}_{fin}^p)$, $\delta_0 \in G(\mathbb{Q}_q)$;
- Polarization induces involution (†) on End(X).
 - ▶ Define group scheme $T = T_{(X,\lambda)}$:

$$T_{(X,\lambda)}(R) = \left\{ \alpha \in (\operatorname{End}(X) \otimes R)^{\times} : \alpha \alpha^{(\dagger)} \in R^{\times} \right\}.$$

•

$$T(\mathbb{Q}_{\ell}) = \operatorname{GSp}(V_{\ell}X) \cap (\operatorname{End}(X) \otimes \mathbb{Q}_{\ell})$$

$$T_{\mathbb{Q}_{\ell}} = (\operatorname{GSp}_{2g})_{\gamma_{X/\mathbb{F}_{a},\ell}} \text{ (Tate)}$$

Orbital integrals

Theorem (Kottwitz)

We have

$$\begin{split} \widetilde{\#}I([X,\lambda],\mathbb{F}_q) &= \operatorname{vol}(T_{(X,\lambda)}(\mathbb{Q}) \backslash T_{(X,\lambda)}(\mathbb{A}_{\operatorname{fin}})) \\ & \times \int_{G_{\gamma_0}(\mathbb{A}_{\operatorname{fin}}^p) \backslash G(\mathbb{A}_{\operatorname{fin}}^p)} \frac{\phi_0(g^{-1}\gamma_0 g) \, d\mu^{\operatorname{can}}(g)}{\psi_{q,p}(h^{-1}\delta_0 h^\sigma) \, d\mu^{\operatorname{can}}(h)} \\ & \times \int_{G_{\delta_0 \sigma}(\mathbb{Q}_p) \backslash G(\mathbb{Q}_q)} \psi_{q,p}(h^{-1}\delta_0 h^\sigma) \, d\mu^{\operatorname{can}}(h) \end{split}$$

where the measure on the orbit is the canonical measure.

Idea

Proof is elementary; count sub-lattices of $H^1(X)$ stable under Frobenius.

Towards local terms

Want natural local factors $\nu_{\ell}(X,\lambda)$ which compute

$$\int_{G_{\gamma_0}(\mathbb{Q}_\ell)\backslash G(\mathbb{Q}_\ell)} \mathbf{1}_{G(\mathbb{Z}_\ell)}(g^{-1}\gamma_0 g) d\mu^{\operatorname{can}}(g).$$

- $G(\mathbb{Q}_{\ell})$ vs. $G(\overline{\mathbb{Q}_{\ell}})$ Can't use $f_{X/\mathbb{F}_{q}}(T)$; conjugacy and stable conjugacy are different.
- $G(\mathbb{Q}_{\ell})$ vs. $G(\mathbb{Z}_{\ell})$ Can't use $G(\mathbb{Z}_{\ell})$ -conjugacy;

$$\left\{g^{-1}\gamma_0g:g\in G(\mathbb{Z}_\ell)\right\}\subsetneq \left\{g^{-1}\gamma_0g:g\in G(\mathbb{Q}_\ell)\right\}\cap G(\mathbb{Z}_\ell).$$

Local terms

The key definition is:

Local factor

$$\nu_{\ell}([X,\lambda]) = \lim_{d \to \infty} \lim_{n \to \infty} \frac{\#C_{(d,n,\ell)}(\gamma_0)}{\#G(\mathbb{Z}_{\ell}/\ell^n)/\#A(\mathbb{Z}_{\ell}/\ell^n)}.$$

Lemma

If $\ell \nmid \operatorname{disc}(f(T))$, then

$$\nu_{\ell}([X,\lambda]) = \frac{\#\{\gamma \in G(\mathbb{Z}_{\ell}/\ell) : \gamma \sim \gamma_0\}}{\#G(\mathbb{Z}_{\ell}/\ell)/\#A(\mathbb{Z}_{\ell}/\ell)}.$$

Strategy

Rewrite Kottwitz formula as Gekeler-type product.

But for the unquiet heart and brain A use in measured language lies; The sad mechanic exercise Like dull narcotics numbing pain.

Alfred, Lord Tennyson

Serre–Oesterlé measure (on analytic sets)

 μ^{SO} is essentially a point-counting measure on ℓ -adic analytic sets. If $\mathcal{Z} \subset \mathbb{A}^m_{\mathbb{Z}_*}$,

$$\mu^{SO}(\mathcal{Z}(\mathbb{Z}_{\ell})) = \int_{\mathcal{Z}(\mathbb{Z}_{\ell})} d\mu^{SO} = \lim_{n \to \infty} \frac{\#\mathcal{Z}(\mathbb{Z}_{\ell}/\ell^n)}{\ell^n \dim \mathcal{Z}}.$$

Example

If \mathbb{Z} smooth, then

$$\mu^{SO}(\mathcal{Z}(\mathbb{Z}_\ell)) = \frac{\#\mathcal{Z}(\mathbb{Z}/\ell)}{\ell^{\dim \mathcal{Z}}}.$$

Gauge measures (on groups)

 G/\mathbb{Q}_{ℓ} an algebraic group.

• ω_G an invariant top-degree form; then

$$\mu^{\omega}(S) = \int_{S} |\omega_{G}|.$$

Example

G split, ω_G Gross's canonical form; then

$$\mu^{\omega}(G(\mathbb{Z}_{\ell})) = \int_{G(\mathbb{Z}_{\ell})} |\omega_{G}|_{\ell} = \mu^{SO}(G(\mathbb{Z}_{\ell})) = \frac{\#G(\mathbb{Z}_{\ell}/\ell)}{\ell^{\dim G}}.$$

Canonical measure (on groups)

• Normalize Haar measure so a certain maximal compact subgroup has volume 1.

Example

 $\mathcal{G}/\mathbb{Z}_{\ell}$ smooth; choose Haar measure with

$$\mu_G^{\operatorname{can}}(\mathcal{G}(\mathbb{Z}_\ell)) = 1.$$

Geometric measure (on orbit)

Use Steinberg fibration ("characteristic polynomial map") to define a measure on the orbit of γ_0 :

Tamagawa measure (on orbit)

• S/\mathbb{Q} a torus, ω a gauge form on S.

•

$$\omega^{\text{Tama}} = \omega_{\infty} \prod_{\ell} L_{\ell}(1, \sigma_{S}) \omega_{\ell}.$$

• Define Tamagawa measure on orbit of γ_0 :

$$\mu_{\gamma_0}^{\mathrm{Tama}} = \frac{\left|\omega_G^{\mathrm{can}}\right|}{\left|\omega_T^{\mathrm{Tama}}\right|}.$$

Key observation

Recall:

$$\nu_{\ell}([X,\lambda]) = \lim_{d \to \infty} \lim_{n \to \infty} \frac{\#C_{(d,n,\ell)}(\gamma_0)}{\#G(\mathbb{Z}_{\ell}/\ell^n)/\#A(\mathbb{Z}_{\ell}/\ell^n)}.$$

Let
$$\widetilde{C}_{(d,n,\ell)}(\gamma_0) = \left\{ \gamma \in \gamma_0 : (\gamma \bmod \ell^n) \in C_{(d,n,\ell)}(\gamma_0) \right\}.$$

Lemma

$$\begin{aligned} \#C_{(d,n,\ell)}(\gamma_0) &= \ell^{n \dim G} \mu^{SO}(\widetilde{C}_{(d,n,\ell)}(\gamma_0)) \\ &= \ell^{n \dim G} \mu^{|\omega_G|}(\widetilde{C}_{(d,n,\ell)}(\gamma_0)) \end{aligned}$$

Use this to relate ν_{ℓ} to $\mathcal{O}^{\text{geom}}$.

$$c(\gamma_0)$$
 $\widetilde{U}_n(c(\gamma_0))$

Main result

Theorem (AAGG)

 $[X,\lambda] \in \mathcal{A}_{g}(\mathbb{F}_{q})$ a principally polarized abelian variety, $\operatorname{End}(X)$ commutative. Suppose X is ordinary or that $\mathbb{F}_q = \mathbb{F}_p$. Then

$$\widetilde{\#}I([X,\lambda],\mathbb{F}_q)=q^{\frac{\dim(\mathcal{A}_g)}{2}}\tau_T\nu_\infty([X,\lambda],\mathbb{F}_q)\prod_{\ell}\nu_\ell([X,\lambda],\mathbb{F}_q).$$

Proof.

$$\prod_{\ell} \nu_{\ell} \rightsquigarrow \mathcal{O}^{geom} \rightsquigarrow \mathcal{O}^{Tama} \rightsquigarrow LHS$$

Kottwitz formula

A numerical example

• Consider the 3-Weil polynomial

$$f(T) = T^8 - 6T^7 + 13T^6 - 10T^5 + T^4 - 30T^3 + 117T^2 - 162T + 81.$$

Isogeny class is ordinary, contains principally polarized $(X, \lambda)/\mathbb{F}_3$.

- $K := \mathbb{Q}[T]/f(T)$; $Gal(K/\mathbb{Q}) \cong \mathbb{Z}/4 \oplus \mathbb{Z}/2$.
- $\tau_T = 2$ [Rüd]
- Since

$$disc(f(T)) / disc(K) = 3^{4(4-1)}$$

for all finite ℓ , including $\ell = p$,

$$\nu_{\ell}([X,\lambda],\mathbb{F}_3) = \frac{\zeta_{K,\ell}(1)}{\zeta_{K^+,\ell}(1)}.$$

A numerical example

• Evaluate numerically:

$$\widetilde{\#}I([X,\lambda],\mathbb{F}_3) = 3^{3(3+1)/4} \tau_T \nu_{\infty}([X,\lambda],\mathbb{F}_3) \lim_{s \to 1} \frac{\zeta_K(s)}{\zeta_{K^+}(s)}$$

$$\approx 3^3 \cdot 2 \cdot 0.000111808 \cdot 0.871253$$

which of course is

$$\approx 0.0500000$$
.

• Check LMFDB: (X, λ) is unique in $I([X, \lambda], \mathbb{F}_3)$, and

$$\#\operatorname{Aut}([X,\lambda]) \cong (\mathcal{O}_K^{\times})_{\operatorname{tors}} \cong \mathbb{Z}/20.$$

Questions?

Putting the *p* back in Prym[†]

Credit: BBC Two

[†] Joint work with S. Casalaina-Martin (Boulder)

Inclusions of abelian schemes

- S reduced, connected, locally Noetherian
- $Y \stackrel{\iota_Y}{\hookrightarrow} X$ an inclusion of abelian schemes over S
- $\lambda: X \to \widehat{X}$ a polarization of X.

Example

 $\omega: C \to C'$ a finite morphism of curves over *S*.

Then $\omega^* : \operatorname{Pic}_{C'/S}^0 \to \operatorname{Pic}_{C/S}^0$ has finite kernel, and factors as

$$\operatorname{Pic}_{C'/S}^{0} \xrightarrow{\mathscr{O}^{*}} \operatorname{Pic}_{C/S}^{0}$$

Complements

• The exponent $e = e_{Y \subset X, \lambda}$ is the exponent of $\iota_Y^* \lambda$:

$$\begin{array}{c}
Y \xrightarrow{\iota^* \lambda} \widehat{Y} \\
\downarrow^{\iota} & \widehat{\iota} \\
X \xrightarrow{\lambda} \widehat{X}
\end{array}$$

- Define a norm endomorphism $N_Y: X \to X$ with image Y.
- Let $Z = im([e]_X N_Y)$.

Question

When does λ induce a principal polarization on Y?

Definition (Prym–Tyurin)

A Prym-Tyurin scheme of exponent e is:

- $(Z,\xi)/S$ a principally polarized abelian scheme;
- C/S a smooth projective curve; and

$$Z \xrightarrow{\iota_Z} Pic^0_{C/S}$$

such that

$$\iota_Z^* \lambda_C = e \xi.$$

Definition (Prym)

 (Z,ξ) is further a Prym scheme if there is a finite separable $\omega:C\to C'$, and Z is the complement of im $Pic_{C/S}^0$ in $Pic_{C/S}^0$.

Welters' Criterion

Welters' Criterion (proved for varieties over an algebraically closed field of characteristic zero) holds over an arbitrary field:

Theorem

- $(Z, \xi)/K$ *PPAV*, $\Xi \subset Z$ a divisor, $\phi_{\Xi} = \xi$;
- C/K a smooth projective curve, $\Theta \subset \operatorname{Pic}^0_{C/K}$ a divisor, $\phi_{\Theta} = \theta$.

Suppose there is a morphism $\beta: C \to Z$ such that:

- $\beta^* : \widehat{Z} \hookrightarrow \operatorname{Pic}^0_{C/K}$ is an inclusion; and
- $\bullet \ \beta_*[C] \equiv \frac{e}{(g_Z-1)!} [\Xi] g_Z-1.$

Then there is a morphism $Z \hookrightarrow \operatorname{Pic}^0_{C/K}$ making (Z, ξ) a Prym–Tyurin variety of exponent e.

If $C(K) \neq \emptyset$, then the converse holds.

Everything is a Prym–Tyurin

Corollary

Let $(Z, \xi)/K$ be a principally polarized abelian variety.

Then (Z, ξ) is a Prym–Tyurin variety of exponent $n^{g-1}(g-1)!$ for infinitely many n.

If char(K) = 0, this holds for all $n \ge 3$.

Classification of Prym varieties

Theorem

- $\omega: C \to C'/K$ finite separable morphism of degree d
- *Z* the complement of $\omega^* \operatorname{Pic}_{C'/K}^0$ in $\operatorname{Pic}_{C/K}^0$.

Then Z is a Prym variety of exponent e and dimension f if and only if one of:

- **1** d = 2 and ω is étale; then (e, f) = (2, g' 1);
- **1** d = 2, deg ram(ω) = 2; then (e, f) = (2, g');
- d = 3, ω étale noncyclic, and g' = 2; then (e, f) = (3, 2);
- **1** g = 2 and g' = 1; then (e, f) = (d, 1).

In case (b), either

- $char(K) \neq 2$, ω is tamely ramified at exactly two points; or
- char(K) = 2, and f is weakly wildly ramified at exactly one point. $K[x] \hookrightarrow K[x][y]/(y^2 y x)$

Thanks!