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Prologue

Motivating question

How big is an isogeny class of elliptic curves over a finite field?

*

* Joint work with S. Ali Altug (Radix), Luis Garcia (UCL), and Julia Gordon (UBC)
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Warmup

Isogenous elliptic curves

If E1, E2/TF,, the following are equivalent:
e E; and E; are isogenous;
o #E(F,) = #Ey(FF,);

@ a(E;) = a(Ey), where characteristic polynomial of Frobenius is

fe s, (T) = T? = a(E))T +q.

Let
I(a,Fy) = {E/Fy:a(E) =a}.

Motivating question
What is #1(a, F,)?

Or #1(a, F,), where E has weight 1/# Aut(E).
Vantage 2022 3/45



Warmup  Heuristics

First guess: uniform
e ac [-2,/9,2,/q] (Hasse)

@ = g elliptic curves over IF,. (Exact, if we weight by automorphism.)
@ Suppose a(E) uniformly distributed on [-2,/7,2,/7].

#1(a,Fy) < q/\/q9 = /1.

This can’t be exactly right. The distribution is nof uniform.
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https://math.mit.edu/~drew/vantage/SutherlandSlides.pdf

Sato-Tate distribution
@ Frobenius angles:
fe(T) = T? —agT +q = (T — \/gexp(i6e) ) (T — /7 exp(—ifE))
ag = 2./qcos(6k)
~ ag
ag .

T2

@ Sato-Tate distribution:

SU(2) yHaar

%tr é

[_1, 1] ‘uST _ %tr* yHaar
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https://math.mit.edu/~drew/vantage/VincentSlides.pdf

Warmup  Heuristics

Second guess: Sato-Tate

#1(a,F;) ~ #{E/F,} - P(ag = a)

1 1 < a )2
<29 ——4/1—- | =—
2,/q2m 2,/9
1

Seems closer, unlikely to be literally correct.
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Warmup ~ Nonarchimedean correction

Frobenius elements

e £/ IFq
@ For ¢ # p, Frobenius gives

FrE/]Fq,E/ S Aut(Eg) = GLZ(Z/K)
FrE/]Fq,é € Aut(TgE) = GLz(Zg)

and thus conjugacy classes

YE/¥,Z/0 € GLy(z/0)*
YE/F, 0 € GLy(Z))".

@ These Frobenius elements are:
» Equidistributed in GL,(Z/ /) and GL,(Z,); and

» Independent: equidistributed in GL,(Z /(1) x GLy(Z/(5).

(j .achter@colostate.edu) Vantage 2022
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Warmup ~ Nonarchimedean correction

Local factors
Set

ve(a,q) = lim 147 € CLaA(Z/ ) : (tx(7), det(y)) = (a,q) mod £}
B #GLA(Z/07) /(070 1((= 1)) |

Rationale (sic)
@ Denominator is average number of elements with given charpoly.

e Equivalently, v, comes from pushforward of Haar:

GLQ(Z() Y
(Al x Gu)(2y) (tr(y), det(7)),
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Warmup ~ Nonarchimedean correction

Third guess: local corrections

#1(a,Fg) < \/Gueo(a,q) [ | ve(a,q)

(<o

2 a?
Voo(a,q) = g 1-— @

) — M #{y € GLy(Z/ ") : (tr(7y),det(7)) = (a,9) mod ¢}
\a,q n—o00 #GLZ(Z/E”)/(E”-E”fl(é—l)) .

This can’t be right.
Equidistribution only holds for ¢ < 4.
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Product formula for elliptic curves ~ Statement

Gekeler’s Theorem

Set

ve(a, p) = lim #{y € GLo(Z/0") : (tr(7y), det( ) = (a,p) mod £}
\a, p n—c0 #GLz(Z/gn) ( 1(€ ))

vp(a,p) = lim T € Mab(Z/p") : (tr(y), det(’r)) = (a,p) mod p"}
PRI e #GLy(Z/p")/ (p" - p"—(p — 1))

Theorem (Gekeler)
If la] <2/panda # 0, then

#(a,F,) = \/ﬁvoow,p)];[w(a,p)-

Counterfactual equidistribution predicts the right answer!
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Product formala foreliptic curves . {Jistication S
Why does it work?
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Product formula for elliptic curves  Justification

Why How does it work?

o A:= Au,q = a? —417, Oa,q = Z[\/E] = Z[T]/(Tz _aT+q)'
o K=Q(VA), Mo =Axjo, X = xx = (A*>
) A:szo.

Theorem (Deuring)

2 -
#’I(a,q)zzm: Y RO,

b|f O/Qoa,q

A class number counts the isogeny class.

o Y T


https://math.mit.edu/~drew/vantage/MarsegliaSlides.pdf

Special case

Suppose O,; = Ok.

#I(a,q) = h(K) Deuring
_ *OxVIBk|

N 27
#(’)X\/|AK H 1
1—x(0)/¢

(1, x) analytic class number formula
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Product formula for elliptic curves  Justification

Key matrix calculation
Suppose {1 A = a? — 4q.

f(T)mod ¢ | split | irreducible

. * x  ex'
centralizer T ( ,> ( ; >
X X X

T(F,) | FS x E[ IF;
#T(F,) | (£—1)? 2 —1

# { conjugacy class ofyp mod ¢}
#GLy(Fy)/(£L(¢—1))
_ #GLy(F,)/#T(F,)  L(L—-1)
- #GLy(Fy)/(£(£—1)) n #T (IFy)

B 71_11 77 split B 1
1 +11 77 irreducible  1—x /e
Vantage 2022 14 / 45
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Product formula for elliptic curves  Justification

Extensions

Similar strategy used for certain:
@ Abelian surfaces [Williams, Rauch]

@ Abelian varieties of prime dimension [Gerhard-Williams]

Count isogeny class using something like #(K)/h(K™).

(j .achter@colostate.edu) Vantage 2022
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Product formula for elliptic curves  Justification

Two questions

Can we find...
@ a pure-thought proof of Gekeler’s theorem?

@ an analogue for isogeny classes of principally polarized abelian
varieties?

Remark 8.7. Perhaps with a more conceptual approach, one could also verify the
conjecture for the more general moduli problems we considered, where we allow also
a Dg(L)-structure and a I'y (M )-structure. What is the relation of the conjectured
formula to the formula, in terms of orbital integrals, given by Kottwitz in [Kol,
§16, pp. 432-433] and [Ko2, p. 205], when that general formula is specialized to
the case of elliptic curves; cf. also [Cl, §3,§4]7

N. Katz, Lang—Trotter Revisited, 2008.
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Main result

One answer

Theorem (AAGG)

(X, A] € A¢(Fy) a principally polarized abelian variety over F; with
commutative endomorphism ring. Suppose X is ordinary or that IF; = IF,.
Then

dim(Ag)

#I([X, A, F)) =q 2 TTVOO([X,A],IFq)IZIVg([X,)\],IFq).

Proof is close to pure thought:
@ No actual calculation of local terms.

@ No appeal to analytic class number formula.

(j .achter@colostate.edu)
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Main result

Theorem (Remix)

8(3g—1)

(2m)8

disc(f)

disc(f+) B([X,A]) lim Gk (s)

s—1+ €K+ (S)

FI([X, AL F,) = 77

where

B(x A= T Wy, x ).

£]2p disc(f) gK/g (1)

Class numbers emerge, but we never used the class number formula.
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Proof strategy ~ Kottwitz formula

Weil polynomials and isogeny classes

o (X, N)/ IF; a g-dimensional principally polarized abelian variety.
o Frobenius Fry f, ¢ actson V)X = T)X ® Q.
e Tate: (unpolarized) isogeny class determined by charpoly of

FI‘X/I[: ,g:
q fx/¥,(T) € Z[T].

e Ainduces (-,-), : Vi X x V;X — Q/.
o (X, A) determines
> 70 = Tx/F,¢ € GSp(Vi, (-, -)1) = GSp,,(Qr), up to conjugacy.
> S0 = 0x/F, € GSp(HL (X), (-, ) = GSng(Qq) up to o-conjugacy.
If ¢ =1, A unique, (-, -) unique, GSp, = GL,,
conjugacy determined by charpoly.
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Proofstrategy | Kothwitzformala
Groups attached to (X, A)

o G= GSp2g, g = dimX;
@ Y € G(Afin), do € G(Qy);

@ » Polarization induces involution (1) on End(X).
> Define group scheme T = Tx »):

Toon (R) = {a € (Bnd(X) @ R)* s aal? € R*}.

T(Q) = GSp(V,X) N (End(X) ® Q)
To, = (G5p2g>7x/1Fq,e (Tate)

(j-achter@colostate.edu)



Proof strategy ~ Kottwitz formula

Orbital integrals

Theorem (Kottwitz)
We have

#I([X,A],Fy) = vol(Tix ) (Q)\T(x 1) (Agin))

% O( 71,)/0 d can
/G (LG Po(g™ 108) Au"(g)

fin )

X (K 180h%) du™(h)
/c(soa(Qp)\c@q) Yar ) ax

where the measure on the orbit is the canonical measure.

Proof is elementary; count sub-lattices of H'(X) stable under
Frobenius.
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Proof strategy ~ Local terms

Towards local terms

Want natural local factors v,(X, A) which compute

1 ) _17 dycan )
‘/G70(Qé’)\G(Qf) G(Zé)(g Og) U (g)

G(Qy) vs. G(Qy) Can'tuse fx/F, (T); conjugacy and stable conjugacy
are different.

G(Qy) vs. G(Zy) Can’tuse G(Z;)-conjugacy;

{g‘lvog 18 € G(Zz)} - {g‘lvog '8 € G(Qg)} NG(Zy).

(j .achter@colostate.edu) Vantage 2022 24 /45



Proof strategy ~ Local terms
Local terms
The key definition is:

#C(an,0)(70)
- . (dnl)
ve([XA) = Jim i e 0 #AZ 07)

If ¢ + disc(f(T)), then

_ #{y€G(Z/0) v ~ 0}
(A = LR DT

Y U=



Proof strategy = Measures

Strategy

Rewrite Kottwitz formula as Gekeler-type product.

But for the unquiet heart and brain
A use in measured language lies;
The sad mechanic exercise

Like dull narcotics numbing pain.

Alfred, Lord Tennyson
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Proof strategy = Measures

Serre—Oesterlé measure (on analytic sets)
1150 is essentially a point-counting measure on ¢-adic analytic sets.
Itz cCAy,

 #Z(Z)0)
SO _ SO _ 4
ROE@)) = [, @ = lim T

If Z smooth, then

WOz = 2D

YU



Proof strategy = Measures

Gauge measures (on groups)

G/Qy an algebraic group.
@ w¢ an invariant top-degree form; then

pe(5) = [ lwel.

G split, wg Gross’s canonical form; then

HG@) = [ el = 10(6(20) = Tt

o Y T



Proof strategy = Measures

Canonical measure (on groups)

e Normalize Haar measure so a certain maximal compact subgroup
has volume 1.

G/ Z., smooth; choose Haar measure with

ner(9(Zy)) = 1.

Y T



Proofstraegy | Measares |

Geometric measure (on orbit)

Use Steinberg fibration (“characteristic polynomial map”) to define a
measure on the orbit of 7yg:

orbit of g

geom

G | 910 |we=wag Ay,

m o geom
§8eom(G) = fs‘wc(%)

(j-achter@colostate.edu)



Proofstraegy | Measares |

Tamagawa measure (on orbit)

@ 5/Q atorus, w a gauge form on S.

4
wTama = Weo HLg(l, 0’5)(4)5.
L

@ Define Tamagawa measure on orbit of y:

Tama __ |wccan|

(j .achter@colostate.edu)



Proof strategy ~ Proof

Key observation

Recall:

#Cano (70)
o (dn,0)
ve([X,A]) = lim lim #G(Z,/ (") [#A(Z,] ")

Let C(gn,0)(70) = {’Y € 70 : (ymod (") € C(d,n,z)(’ro)}-
#C(an,e)(10) = L™ S5O (C i) (10)) 970 | Cpi(y0)
= gndimGy el (Clane)(70))

Use this to relate v, to O8°™. ——e—— Uy,(c(70))
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Proof strategy ~ Proof

Main result

Theorem (AAGG)

(X, A] € Aq(IF,) a principally polarized abelian variety, End (X)
commutative. Suppose X is ordinary or that F; = F,,. Then

dim(Ag)

#(X, A F) =q 2 TTVOO([X,/\],IFQ)IZIW([X,/\],IFQ).

v

va s (D8Com OTama ~ LHS
l

Kottwitz formula
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Example

A numerical example
@ Consider the 3-Weil polynomial

f(T) = T8 —6T” +13T® — 10T° + T* — 30T° + 117T% — 162T + 81.

Isogeny class is ordinary, contains principally polarized
(X,A)/Fs.

e K:=Q[T]/f(T); Gal(K/Q) = Z/4 B Z/2.

o 17 = 2 [Rud]

@ Since

disc(f(T))/ disc(K) = 3**1),
for all finite /, including ¢ = p,

(j .achter@colostate.edu) Vantage 2022 35/45


https://www.lmfdb.org/Variety/Abelian/Fq/4/3/ag_n_ak_b
https://arxiv.org/abs/2009.04431

Bample [

A numerical example

e Evaluate numerically:

3 _ 33(3+1)/  Cx(s)
#1([X, A],F3) = 3B 40 ([X, A], F3) lim 0

~ 3%.2-.0.000111808 - 0.871253

which of course is

~ 0.0500000.

@ Check LMFDB: (X, A) is unique in I([X, A],F3), and

#AUt([X,A]) & (O tors = Z/20.

(j-achter@colostate.edu)



merple |

Questions?
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And now for something ~ completely different

Putting the p back in Prym’

Credit: BBC Two

* Joint work with S. Casalaina-Martin (Boulder)
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https://www.bbc.co.uk/programmes/b00n7sf5
https://www.bbc.co.uk/bbctwo

Prym varieties ~ Setup

Inclusions of abelian schemes

@ S reduced, connected, locally Noetherian

oY ‘l—Y> X an inclusion of abelian schemes over S
o A: X — X apolarization of X.

@ : C — C’ a finite morphism of curves over S.
Then @* : Pic%, /s = Pic% /s has finite kernel, and factors as

. 0 * -0
Picer g — Piceys

| ~
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Prym varieties = Setup

Complements
@ The exponent e = eycx,) is the exponent of /jA:
y "y
b
X2, X

@ Define a norm endomorphism Ny : X — X with image Y.
@ Let Z = im([e]x — Ny).

When does A induce a principal polarization on Y? \

Y 7




Prym varieties ~ Setup

Definition (Prym-Tyurin)

A Prym-Tyurin scheme of exponent e is:
@ (Z,¢)/S aprincipally polarized abelian scheme;
@ C/S a smooth projective curve; and

Z—= Pic) ¢

@ such that
LyAc = é€g.

Definition (Prym)

(Z,¢) is further a Prym scheme if there is a finite separable @ : C — C/,
and Z is the complement of im Picl, /s in Bict /s

Y 7=



Prym varieties = Results

Welters’ Criterion

Welters’ Criterion (proved for varieties over an algebraically closed
field of characteristic zero) holds over an arbitrary field:

e (Z,8)/KPPAV, E C Z adivisor, = = C;

o C/K a smooth projective curve, ® C PicX /K @ divisor, pe = 0.
Suppose there is a morphism B : C — Z such that:

°0 7 PicX sk is an inclusion; and

° ﬁ*[C] = (gze_l)! [E]gz—l'
Then there is a morphism Z < Picl , making (Z, &) a Prym-Tyurin
variety of exponent e.

If C(K) # @, then the converse holds.

Y 7=



Prym varieties = Results

Everything is a Prym-Tyurin

Let (Z,&)/K be a principally polarized abelian variety.

Then (Z, &) is a Prym-Tyurin variety of exponent n8~1(g — 1)! for infinitely
many n.

If char(K) = 0, this holds for all n > 3.

Y 7



Prym varieties = Results

Classification of Prym varieties

@ @ : C — C'/K finite separable morphism of degree d
o Z the complement of @* Pic2, /K in PicX /K
Then Z is a Prym variety of exponent e and dimension f if and only if one of:
Q d =2and wis étale; then (e, f) = (2,¢' —1);
Q d =2, deg ram(@) = 2; then (e, f) = (2,¢);
Q d = 3, @ étale noncyclic, and §' = 2; then (e, f) = (3,2);
Q@ ¢=2andg =1 then (e, f) = (d,1).

In case (b), either
@ char(K) # 2, @ is tamely ramified at exactly two points; or
@ char(K) = 2, and f is weakly wildly ramified at exactly one point.
K[x] = K[x][y]/(v* =y — %)
Vantage 2022 44 /45



Thanks!
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