Torsion subgroups of abelian surfaces over \mathbb{Q} (products)

There are 96 distinct products of E/\mathbb{Q} torsion subgroups; of which 21 are maximal:

 $C_{63}, C_{70}, C_{84}, C_{90},$ $C_2 \times C_{42}$, $C_2 \times C_{56}$, $C_2 \times C_{60}$, $C_2 \times C_{72}$, $C_3 \times C_{36}$, $C_6 \times C_{18}$. C_7^2 , C_9^2 , C_{10}^2 , C_{12}^2 $C_2 \times C_2 \times C_{30}, \quad C_2 \times C_2 \times C_{40},$ $C_2 \times C_4 \times C_{24}, \quad C_2 \times C_6 \times C_{12}$ $C_2 \times C_2 \times C_2 \times C_{24}$ $(C_2 \times C_6)^2$, $(C_2 \times C_8)^2$

Every subgroup of these groups occurs (not necessarily in a Jacobian; see Table 1 of Howe-Leprévost-Poonen for examples known to arise in Jacobians).

Torsion subgroups of abelian surfaces over \mathbb{Q} (split)

In addition to torsion subgroups that arise for products of elliptic curves, there are torsion subgroups that arise for abelian surfaces that are geometrically isogenous to a product of elliptic curves but not isomorphic to a product of elliptic curves over \mathbb{Q}

The following groups arise for abelian surfaces (in fact, Jacobians) that are \mathbb{Q} -isogenous to a product of elliptic curves but do not arise in products of elliptic curves:

 $C_{27}, \quad C_{48}, \quad C_2 \times C_{48}, \quad C_3 \times C_{24}, \quad C_4 \times C_{16}, \quad C_2 \times C_2 \times C_{16}$

The following groups arise for \mathbb{Q} -simple, geometrically split abelian surfaces (in fact, Jacobians) defined over \mathbb{Q} , but are not known to arise for \mathbb{Q} -split abelian surfaces:

$$C_{19}, C_{25}$$

Known torsion subgroups of abelian surfaces over \mathbb{Q} (geometrically simple)

There are (at least) 63 torsion subgroups known to arise for geometrically simple abelian surfaces (in fact, Jacobians) defined over \mathbb{Q} , including:

 $C_n ext{ for } 1 \le n \le 30, 32, 33, 34, 36, 39, 40$ $C_2 \times C_{2n} ext{ for } 1 \le n \le 9, 11, 13, 14$ $C_2 \times C_2 \times C_{2n} ext{ for } 1 \le n \le 7$ $C_2 \times C_2 \times C_2 \times C_{2n} ext{ for } 1 \le n \le 3, 5$ $C_3 \times C_{3n} ext{ for } 1 \le n \le 3,$ $C_4 \times C_4$

Generic abelian surfaces (no extra endomorphisms over $\overline{\mathbb{Q}}$) that realize these groups are known in all but possibly two cases: $C_2 \times C_{22}$ and $C_2 \times C_2 \times C_{14}$.

WARNING: This list is provisional and is very likely to be missing some known cases.