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Reasonable projects for the near future? (circa 1996)

Poonen’s list of proposed projects for genus 2 curves X presented at ANTS II:

• Implement a polynomial-time algorithm to compute #X (Fq).
(Gaudry-Harley ANTS IV, Gaudry-Schost 2012)

• Devise and implement an algorithm to compute End(Jac(X )) for X/Q.
(Costa-Mascot-Sijsling-Voight 2019)

• Devise and implement an algorithm to compute Jac(X )tor for X/Q.
(Stoll 1999, . . ., Müller-Stoll 2024)

• Devise and implement algorithms to compute bounds on rk Jac(X )(Q).
(Stoll 2001, . . .)

• Automate the method of Chabauty–Coleman to compute X (Q).
(Balakrishnan 2006, . . .)

https://math.mit.edu/~poonen/papers/ants2.pdf
https://link.springer.com/chapter/10.1007/10722028_18
https://doi.org/10.1016/j.jsc.2011.09.003
https://www.ams.org/journals/mcom/2019-88-317/S0025-5718-2018-03373-7/
https://eudml.org/doc/207322
http://magma.maths.usyd.edu.au/magma/releasenotes/2/28/9/
https://doi.org/10.4064/aa98-3-4
https://dspace.mit.edu/handle/1721.1/67785


Reasonable projects for the near future?

Poonen’s proposed projects for genus 2 curves X (continued):

• Extend Liu’s conductor/reduction-type algorithm for X/Q to p = 2.
(Rüth-Wewers 2015, Bouw-Wewers 2017, Dokchitser-Doris 2018)

• Given X/Q, enumerate X ′/Q with Jac(X ′) ∼ Jac(C).
(van Bommel-Chidambaram-Costa-Kieffer 2023 and work in progress)

• List all X/Q for which Jac(X ) has good reduction away from 2.
(not yet, but recent progress by Visser 2024)

and finally...

• Assemble a list of genus 2 curves over Q of small conductor analogous to
ellitpc curve tables compiled by Birch, Swinnerton-Dyer, and Cremona.

https://mclf.readthedocs.io/en/latest/index.html
https://doi.org/10.1017/S0017089516000057
https://www.ams.org/journals/mcom/2019-88-318/S0025-5718-2018-03387-7/
https://github.com/cjdoris/Genus2Conductor/issues/6
https://www.ams.org/books/conm/796/16002/conm796-16002.pdf
https://warwick.ac.uk/fac/sci/maths/people/staff/visser/yrant2023_slides.pdf


Reasonable questions before embarking on such a project

Q: Why conductors?
A: The conductor is the fundamental invariant of the L-function L(X , s); it measures
its complexity and is the key parameter in its (conjectured) functional equation.

Q: Why L-functions?
A: Riemann, Birch and Swinnerton-Dyer, Sato-Tate, Lang-Trotter, Brumer-Stark,
Brumer-Kramer, Langlands, murmurations, . . . , these are all about L-functions.

Q: Why small conductors?
A: Only L-functions of small conductor are computationally accessible.

Q: Doesn’t the LMFDB already have a database of genus 2 curves of small conductor?
A: Only those with small discriminant (Booker-Sijsling-S-Yasaki-Voight ANTS XII).

https://www.quantamagazine.org/elliptic-curve-murmurations-found-with-ai-take-flight-20240305/
https://www.lmfdb.org/Genus2Curve/Q/
https://doi.org/10.1112/S146115701600019X


Elliptic curves and their L-functions

Theorem (Eichler-Shimura, Langlands-Tunnell, Serre, Ribet, Wiles, Taylor-Wiles,
Breuil-Conrad-Diamond-Taylor)
For each positive integer N, the set of L-functions L(E , s) of elliptic curves E/Q of
conductor N is equal to the set of L-functions L(f , s) of newforms f ∈ Snew

2 (Γ0(N)) of
weight 2 and level N with rational q-expansions.



Automorphic forms associated to abelian surfaces
Type Conductor Curve Equation Motive Modular form

A[C1 ](s) 277 = 2771 y2 +(x3 +x2 +x +1)y =−x2−x typical surface paramodular form
B[C1 ]s 529 = 232 y2 +(x3 +x +1)y =−x5 surface with RM by Q(

√
5) over Q CMF 23.2.1.a

B[C1 ]ns 294 = 213172 y2 +(x3 +1) = x4 +x2 product of ECs 14a4 and 21a4 over Q CMFs 14.2.1.a and 21.2.1.a
B[C2 ]s 10368 = 2734 y2 +x2y = 3x5−4x4 +6x3−3x2 +1 surface with RM by Q(

√
2) over Q(

√
2) HMF 162.1-a over Q(

√
2)

B[C2 ]ngs 1088 = 26171 y2 +(x3 +x2 +x +1)y = x4 +x3 +2x2 +x +1 Weil restriction of 17.1-a1 over Q(
√

2) HMF 17.1-a over Q(
√

2)
C[C2 ](ns) 448 = 2671 y2 +(x3 +x)y = x4−7 product of PCM EC 32a3 and EC 14a6 over Q CMFs 32.2.1.a and 14.2.1.a
D[C4 ](s) 3125 = 55 y2 +y = x5 surface with CM by Q(ζ5) over Q(ζ5) CM HMF 125.1-a over Q(

√
5)

D[D2 ](ns) 8192 = 213 y2 = x6−9x4 +16x2−8 product of PCM ECs 32a3 and 256d1 over Q CMFs 32.2.1.a and 256.2.1.d
E[C1 ](ns) 196 = 2272 y2 +(x2 +x)y = x6 +3x5 +6x4 +7x3 +6x2 +3x +1 square of EC 14a1 over Q CMF 14.2.1.a
E[C2, C](ngs) 576 = 2632 y2 +(x3 +x2 +x +1)y =−x3−x square of EC 9.1-a3 over Q(

√
2) CMF 24.2.13.a

E[C3 ](ngs) 324 = 2234 y2 +(x3 +x +1)y = x5 +2x4 +2x3 +x2 square of EC 8.1-a1 over 3.3.81.1 CMF 18.2.13.a
E[C4 ](ngs) 256 = 28 y2 +y = 2x5−3x4 +x3 +x2−x square of EC 1.1-a5 over 4.4.2048.1 CMF 16.2.5.a
E[C6 ](ngs) 169 = 132 y2 +(x3 +x +1)y = x5 +x4 square of EC 1.1-a3 over 6.6.371293.1 CMF 13.2.4.a
E[C2, R × R]s 455625 = 3654 y2 +(x3 +x2 +x +1)y = x5 − 3x4−2x−1 surface with QM (D = 6) over 2.0.3.1 BMF over 2.0.3.1 of level 50625
E[C2, R × R]ngs 3969 = 3472 y2 +(x2 +x +1)y = −3x5 +5x4−4x3 +x Weil restriction of 441.2-a over 2.0.3.1 BMF 2.0.3.1-441.2-a
E[C2, R × R]ns 675 = 3352 y2 =−x6−14x5−44x4 +28x3−44x2−14x−1 product of ECs 15a2 and 45a2 over Q CMFs 15.2.1.a and 45.2.1.a
E[D2 ]s 20736 = 2834 y2 =−27x6−54x5−27x4 +18x3 +18x2−2 surface with QM (D = 6) over 4.0.576.2 HMF 324.1-b over Q(

√
2)

E[D3 ]s 34992 = 2437 y2 =−2x6−6x5 +10x3 +9x2−18x +6 surface with QM (D = 6) over 6.0.2834352.2 BMF over 2.0.3.1 of level 3888
E[D4 ]s 20736 = 2834 y2 +y = 6x5 +9x4−x3−3x2 surface with QM (D = 6) over 8.0.339738624.10 BMF over 2.0.3.1 of level 2304
E[D6 ]s 8100 = 223452 y2 +x3y = x6 +3x5−42x4 +43x3 +21x2−60x−28 surface with QM (D = 6) over degree 12 field BMF over 2.0.3.1 of level 900
E[D2 ]ngs 6400 = 2852 y2 = 2x5 +5x4 +8x3 +7x2 +6x +2 square of EC 256.1-a1 over Q(

√
5) HMF 2.2.5.1-256.1-a

E[D3 ]ngs 2187 = 37 y2 +(x3 +1)y = −1 square of EC over 6.0.177147.2 BMF over 2..0.3.1 of level 243
E[D4 ]ngs 3600 = 243252 y2 +x2y = x5−3x4 +11x2−16x square of EC over 4.0.13500.2 BMF over Q(i) of level 225
E[D6 ]ngs 3600 = 243252 y2 +x3y = 14x3− 20 square of EC over 6.0.7200000.1 BMF over 2.0.3.1 of level 400
F[D2,C2,H]ngs 576 = 2632 y2 +x3y = 5x3−2 square of PCM EC 1.1-a2 over Q(

√
6) CM HMF 1.1-a over Q(

√
6)

F[C2,C1,M2(R)]ns 729 = 36 y2 +y =−48x6 +15x3−1 square of PCM EC 27.a4 over Q CM CMF 27.2.1.a

One page of the “giant table” [Booker-Sijsling-S-Voight-Yasaki 2024?]

http://lmfdb.org/Genus2Curve/Q/277.a.277.1
http://lmfdb.org/Genus2Curve/Q/529.a.529.1
http://www.lmfdb.org/NumberField/2.2.5.1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/23/2/1/a/
http://lmfdb.org/Genus2Curve/Q/294.a.294.1
http://lmfdb.org/EllipticCurve/Q/14a4
http://lmfdb.org/EllipticCurve/Q/21a4
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/14/2/1/a/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/21/2/1/a/
http://www.lmfdb.org/NumberField/2.2.8.1
http://www.lmfdb.org/NumberField/2.2.8.1
http://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.8.1/holomorphic/2.2.8.1-162.1-a
http://lmfdb.org/Genus2Curve/Q/1088.a.1088.1
http://www.lmfdb.org/EllipticCurve/2.2.8.1/17.1/a/1
http://www.lmfdb.org/NumberField/2.2.8.1
http://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.8.1/holomorphic/2.2.8.1-17.1-a
http://lmfdb.org/Genus2Curve/Q/448.a.448.1
http://lmfdb.org/EllipticCurve/Q/32a3
http://lmfdb.org/EllipticCurve/Q/14a6
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/32/2/1/a/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/14/2/1/a/
http://lmfdb.org/Genus2Curve/Q/3125.a.3125.1
http://www.lmfdb.org/NumberField/4.0.125.1
http://www.lmfdb.org/NumberField/4.0.125.1
http://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.5.1/holomorphic/2.2.5.1-125.1-a
http://lmfdb.org/EllipticCurve/Q/32a3
http://lmfdb.org/EllipticCurve/Q/256d1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/32/2/1/a/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/256/2/1/d/
http://lmfdb.org/Genus2Curve/Q/196.a.21952.1
http://lmfdb.org/EllipticCurve/Q/14a1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/14/2/1/a/
http://lmfdb.org/Genus2Curve/Q/576.a.576.1
http://lmfdb.org/EllipticCurve/2.2.8.1/9.1/a/3
http://www.lmfdb.org/NumberField/2.2.8.1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/24/2/13/a/
http://lmfdb.org/Genus2Curve/Q/324.a.648.1
http://lmfdb.org/EllipticCurve/3.3.81.1/8.1/a/1
http://www.lmfdb.org/NumberField/3.3.81.1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/18/2/13/a/
http://lmfdb.org/Genus2Curve/Q/256.a.512.1
http://www.lmfdb.org/EllipticCurve/4.4.2048.1/1.1/a/5
http://www.lmfdb.org/NumberField/4.4.2048.1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/16/2/5/a/
http://lmfdb.org/Genus2Curve/Q/169.a.169.1
http://www.lmfdb.org/EllipticCurve/6.6.371293.1/1.1/a/3
http://www.lmfdb.org/NumberField/4.4.2048.1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/13/2/4/a/
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/NumberField/2.0.3.1
http://lmfdb.org/Genus2Curve/Q/3969.d.250047.1
http://www.lmfdb.org/EllipticCurve/2.0.3.1/[441,0,21]/a/3
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/EllipticCurve/Q/15a2
http://www.lmfdb.org/EllipticCurve/Q/45a2
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/15/2/1/a/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/45/2/1/a/
http://www.lmfdb.org/NumberField/4.0.576.2
http://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.8.1/holomorphic/2.2.8.1-324.1-b
http://www.lmfdb.org/NumberField/6.0.2834352.2
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/Genus2Curve/Q/20736.l.373248.1
http://www.lmfdb.org/NumberField/8.0.339738624.10
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/EllipticCurve/2.2.5.1/256.1/a/1
http://www.lmfdb.org/NumberField/2.2.5.1
http://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.5.1/holomorphic/2.2.5.1-256.1-a
http://www.lmfdb.org/Genus2Curve/Q/2187.a.6561.1
http://www.lmfdb.org/NumberField/6.0.177147.2
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/NumberField/4.0.13500.2
http://www.lmfdb.org/NumberField/2.0.4.1
http://www.lmfdb.org/NumberField/6.0.7200000.1
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/EllipticCurve/2.2.24.1/1.1/a/2
http://www.lmfdb.org/NumberField/2.2.24.1
http://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.24.1/holomorphic/2.2.24.1-1.1-a
http://www.lmfdb.org/EllipticCurve/Q/27/a/4
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/27/2/1/a/


Enumerating elliptic curves by conductor
To enumerate E/Q by conductor we may proceed as follows:
1. Prove modularity (this step is optional and may be (was) deferred).
2. Enumerate rational newforms f ∈ Snew

2 (Γ0(N)) for N = 1, 2, 3, . . .
3. Use Eichler-Shimura to get an isogeny class representative Af for each f .
4. Fill out isogeny classes by finding all the elliptic curves E/Q isogenous to Ef .

For N ≤ 500000 this yields 3064705 elliptic curves with 2164260 distinct L-functions.

Each one of these steps is substantially more difficult for g > 1, even for g = 2.
Lots of recent progress on steps 1 (BGCP) and 4 (vBCCK), we seem to be stuck on
step 2. And even if we were to get unstuck, there is no step 3 (not even in principle).

Alternatively, one can use fast Thué-Mahler solvers (BGR, GS) to enumerate all elliptic
curves with discriminant supported on a given set of primes: N ≤ 106 coming soon!
But this approach is particular to equations of degree 3 and 4, and even if we could
extend them to degrees 5 and 6, enumerating curves by discriminant won’t work.

https://link.springer.com/article/10.1007/s10240-021-00128-2
https://www.ams.org/books/conm/796/16002/conm796-16002.pdf
https://www.ams.org/journals/mcom/2019-88-317/S0025-5718-2018-03370-1/
https://arxiv.org/abs/2207.14492


Challenges in dimension two
We currently have nothing close to the abelian surface equivalent of even the 1972
Antwerp tables of elliptic curves. We know only the first 36 modular abelian surface
L-functions unconditionally, of which 5 are typical (the 1972 Antwerp tables had 749).

• Enumerating paramodular forms of a given level is very difficult; even counting
them is hard, due to the lack of dimension formulae. We have provably complete
lists of paramodular forms only up to level 353 (five of them).
• Computing the L-function of a given paramodular form is very difficult; it is
typically only feasible to compute a handful of Hecke eigenvalues (not enough!).
• There is no analog of Eichler-Shimura for paramodular forms.
• Not all abelian surfaces over Q are Jacobians of genus 2 curves over Q.

One can generically represent an abelian surface as a projective variety in P15

defined by 72 quadratic forms, but this is not a particular pleasant thing to do.
• There is no algorithm known to enumerate all genus 2 curves over Q of a given

conductor. Even computing the conductor of a given curve is hard!

https://link.springer.com/chapter/10.1007/BFb0097586


An axiomatic approach to arithmetic L-functions (FPRS)
An arithmetic L-function of motivic weight w ∈ Z≥0 with field of coefficients K is a
Dirichlet series L(s) =

∑
n≥1 ann−s with a1 = 1, an ∈ OK , Q(an) = K such that:

• Analytic continuation: Lan(s) := L(s + w/2) converges absolutely on Re(s) > 1
and has a meromorphic continuation with finitely many poles, all on Re(s) = 1.
• Functional equation: For some N ∈ Z<0, ε ∈ C and µi , νj ∈ Z or µi , νj ∈ 1

2 + Z,

Λan(s) := ΓR(s + µ1) · · · ΓR(s + µd1)ΓC(s + ν1) · · · ΓC(s + νd2)Lan(s)

is bounded in vertical strips away from Re(s) = 1 with Λ(s) = εN1−s Λ̄(1 − s).
Here ε is the root number, N is the conductor, and d = d1 + 2d2 is the degree.
• Euler product: Lan(s) =

∏
p Fp(p−s)−1 where Fp(z) = (1− α1,pz) · · · (1− αdp ,pz)

with dp ≤ d (dp = p if p - N) and |αj,p| = p−mj/2 with mj ∈ Z≥0,
∑

mj ≤ d − dp.
• Central character: There is a Dirichlet character χ of modulus N for which
Fp(z) = 1− apZ + · · ·+ (−1)dχ(p)zd and χ(−1) = (−1)

∑
µj +

∑
(2νk+1).

https://arxiv.org/abs/1711.10375


An axiomatic approach to L-functions of abelian varieties over Q

Fix a positive integer g . We shall consider arithmetic L-functions of degree 2g , motivic
weight 1, field of coefficients Q, defined by an Euler product

L(s) :=
∑

n
ann−s =

∏
p
Lp(p−s)−1,

with Lp ∈ Z[T ]. We further assume that
• Λ(s) := ΓC(s)gL(s) is holomorphic on C and satisfies the functional equation

Λ(s) = εN1−sΛ(2− s)

with root number ε = ±1 and conductor N.

• the an are integers that satisfy |an| ≤ d2g (n)
√
n, where dr (n) =

∑
n1···nr =n 1.

Under the Hasse–Weil conjecture, every A/Q of dimension g has such an L-function.



Conductor bounds for abelian varieties over Q

The Brumer–Kramer formula gives explicit bounds on the conductor exponents of
abelian varieties A/Q as a function of the dimension g :

vp(N) ≤ 2g + pd + (p − 1)λp(d),

where d = b 2g
p−1c and λp(d) =

∑
idipi , with d =

∑
dipi with 0 ≤ di < p.

g p = 2 p = 3 p = 5 p = 7 p > 7
1 8 5 2 2 2
2 20 10 9 4 4
3 28 21 11 13 6

For g ≤ 2 these bounds are tight (see www.lmfdb.org for examples).

http://www.numdam.org/item/CM_1994__92_2_227_0/
www.lmfdb.org


An integral converse theorem for GL2

Theorem (Dimitrov 2023)
Let K be a number field, k, q ∈ Z>0, L(s) =

∑
n≥1 ann−s be an L-function with a1 = 1,

qan ∈ Z for n ≥ 1, an = O(nk−1), and L̃(s) any L-function. Suppose L(s) and L̃(s)
admit a holomorphic continuation to C that is bounded on vertical strips such that

Λ(s) = ikNk/2−s Λ̃(k − s)

for some N ∈ Z>0, with Λ(s) := ΓC(s)L(s) and Λ̃(s) := ΓC(s)L̃(s).
Then L(s) = L(f , s) and L̃(s) = L(f |WN , s) for some f ∈ Sk(Γ0(N)).

Corollary
Every rational L-function of degree 2, conductor N, and motivic weight w with
L∞(s) = ΓC(s) is the L-function of a newform in Snew

k (Γ0(N)) with k = w + 1.
If w = 1, it is also the L-function of an elliptic curve of conductor N.

Remark: The analogue for degree 4 L-functions with w = 1 is false (but almost true).



A finite problem
Let S(g ,N, ε) denote the set of L-functions L(s) that satisfy our axioms for a
particular choice of g ,N ∈ Z>0 and ε = ±1.

We expect every L ∈ S(g ,N, ε) to be the L-function of a g-dimensional A/Q
(this is far beyond anything we can currently hope to prove, but we don’t need to).

Shafarevich’s conjecture (proved by Faltings), then implies that S(g ,N, ε) is finite.
Moreover there is an effectively computable n0 = O(

√
N) for which the coefficients

a1, . . . , an0 uniquely determine each L ∈ S(g ,N, ε) (and n0 = O(log2N) under GRH).

We seek an algorithm that takes inputs g , N, ε, determines a suitable n0, and then
outputs a list of distinct tuples (a1, . . . , an0), one for each L ∈ S(g ,N, ε).
See Booker and Farmer–Koutsoliotas–Lemurell for prior work in this direction.

Our plan: Compute S(g ,N, ε) via linear algebra, then search for corresponding A/Q.

Our plan depends crucially on being able to compute S(g ,N, ε) exactly.
This not only tells us when to stop searching, knowing a1, . . . , an0 helps us search.

https://people.maths.bris.ac.uk/~maarb/public/papers/modularity.pdf
https://doi.org/10.1016/j.jnt.2018.01.019


The approximate functional equation
Fix g ,N, ε. For each nonnegative integer k we define Sk(x) :=

∑
n fk(n/x)an/n, where

fk(x) := 1
2πi

∫ c+i∞

c−i∞
(s − 1)kΓC(s)gx1−s ds.

The functional equation then implies the identity

Sk(x) = ε(−1)kSk(N/x),

valid for all x > 0; this is the approximate functional equation.If we choose k so that
(−1)k = −ε and put x =

√
N we obtain a nontrivial linear constraint on the an:∑

n

an
n fk(n/

√
N) = 0. (1)

The O(
√
n) bounds on an and rapid decay of fk(x) allows us to compute an interval

Ik,m containing the truncated sum in (1) for n ≤ m that does not depend on the an.



A system of linear constraints
For each k ≥ 0 of the correct parity (meaning (−1)k = −ε), we have linear constraints∑

n≤m
fk(n/

√
N)an/n ∈ Ik,m.

These become less useful as k grows, so we restrict to k = O(N1/4).
We also have the constraints |an| ≤ d2g (n)

√
n for n ≥ 1.

If we further assume that the L ∈ S(g ,N, ε) are automorphic (which we do), we can
obtain additional constraints by twisting L(s) by a Dirichlet character χ : Z→ C,
equivalently, taking the Rankin-Selberg convolution of L(s) with L(χ, s).

This generally increases the conductor and widens the corresponding interval Iχ,k,m,
but for χ of small conductor q and small k we obtain useful constraints∑

n≤m
fk(n/

√
q4N)χ(n)an/n ∈ Iχ,k,m.



Solving the system rigorously using the simplex method

The Euler product for L(s) implies that the an are determined by the aq for prime
powers q = pe with e ≤ 2g . In order to take advantage of this, and to obtain rigorous
results using off-the-shelf simplex solvers with fixed precision, we proceed as follows.

Let q ≤ n0 < m be a prime power. Assume we have recursively fixed values for
a1, . . . , aq−1 that we cannot rule out this sequence as a prefix of a feasible solution.

We now apply the simplex method to a system of linear constraints on variables aq′ ,
with q′ ranging over prime powers q ≤ q′ ≤ m, using the objective functions ±aq.

The dual solution yields a linear combination of constraints we can compute using
interval arithmetic. Plugging in bounds on aq′ yields an interval Iq containing aq.

If Iq ∩ Z is empty, then a1, . . . , aq−1 is not the prefix of any L ∈ S(g ,N, ε). Otherwise,
for each a ∈ Iq we add the tuple (a1, . . . , aq−1, a) to our list of feasible tuples.

We continue in this fashion until we run out of feasible prefixes or reach q = n0.



L-functions from nothing

Show, don’t tell.



Timings



Proving completeness
If our algorithm outputs a nonempty list of feasible tuples (a1, . . . , an0),
the next step is to show there is at most one L-function in S(g ,N, ε) for each prefix.

For this step, if we suppose that (a1, . . . , an0) is the prefix of two distinct L-functions
L(s, π1) and L(s, π2) of isobaric cuspidal automorphic representations of GL2g (AQ)
whose L-functions lie in S(g ,N, ε). Using the Rankin–Selberg convolution L-function
L(s, π1�π2) we construct an inequality which will be violated if n0 is sufficiently large.

If it is not violated, we increase n0, extend our tuples, and try again.

Eventually we obtain a list of distinct tuples (a1, . . . , an0), each of which is provably
the prefix of at most one automorphic L-function in S(g ,N, ε).

This gives us an upper bound for our search that we expect to be tight.
Finding an abelian variety for each prefix proves completeness subject to modularity.

We then use Faltings-Serre, Boxer-Calegari-Gee-Pilloni, Calegari-Chidambaram-Ghitza,
or other methods to prove modularity for individual abelian varieties.



Searching for genus 2 curves
Over the past several years we have conducted several searches for genus 2 curves of
small conductor (including one last week!). Below is CPU histogram from a
computation we ran in 2022 that enumerated more than 1019 genus 2 curves using a
large parallel computation running on Google cloud platform.

We used a total of 4,034,560 Intel/AMD vCPUs in 73 data centers across the globe.



How much carbon does a 300 vCPU-year computation emit?
This is a question http://www.green-algorithms.org/ can help answer.
300 vCPU-years is about 1 314 900 core-hours (2 vCPUs per core).

CPU cores platform location energy carbon
i9-9900K (64GB) 1 desktop Massachusetts 46.99 MWh 19 750 Kg
i9-9900K (64GB) 16 desktop Massachusetts 17,61 MWh 7 400 Kg
Ryzen 3990X (256GB) 64 desktop Massachusetts 7.44 MWh 3 260 Kg
Ryzen 3990X (256GB) 64 cloud Virginia 8.60 MWh 2 650 Kg
Ryzen 3990X (256GB) 64 cloud Montreal 8.60 MWh 13 Kg

http://www.green-algorithms.org/


Searching for genus 2 curves
We found millions of genus 2 curves of small conductor, including the curve

C903 : y2 + (x2 + 1)y = x5 + 3x4 − 13x3 − 25x2 + 61x − 28

of conductor 903 whose L-function coefficients match those of the paramodular form
of level 903 computed by Poor–Yuen that had not previously been matched.
We also found curves of conductor 657, 760, 775, 924 not previously known to occur,
and many new genus-2 L-functions of small conductor:

conductor bound 1000 10000 100000 1000000
curves in LMFDB 159 3069 20265 66158
curves found 807 25438 447507 5151208

L-functions in LMFDB 109 2807 19775 65534
L-functions found 200 9409 212890 2426708



A provisional result

Provisional Theorem (proof in progress)
Assume the paramodular conjecture.
There are 456 L-functions of abelian surfaces A/Q with conductor N ≤ 1000, of which
• 360 arise from products of elliptic curves over Q;

• 17 arise from weight-2 newforms with quadratic coefficients;

• 2 arise from the Weil restriction of an elliptic curve over a quadratic field;

• 77 arise from generic abelian surfaces, of which at least 67 are Jacobians.

It may be feasible to remove the paramodular hypothesis (but that will depend largely
on work by others, it is not a problem we are working on).

In addition to proving this theorem, we hope to extend it well beyond N ≤ 1000.



Exploiting Galois representations

Let A/Q be an abelian surface of conductor N. For each m ∈ Z>1 we have a mod-m
Galois representation

ρA,m : Gal(Q(A[m])/Q)→ GSp4(Z/mZ).

For p - mN the charpoly χp ∈ (Z/mZ)[T ] of ρA,m(Frobp) ∈ GSp4(Z/mZ) satisfies

χp(T ) ≡ T 2gLp(T−1) mod `.

The m-torsion field Q(A[m]) is unramified away from p|mN and of degree at most
# GSp4(Z/mZ). For small m and N it is feasible to enumerate all such fields K and
their associated mod-m GSp4-representations, especially m = 2 and N a prime power.

Each representation yields mod-m congruence constraints on Lp(T ) for primes p - mN.
This dramatically reduces the amount of branching in our algorithm.



What I did over (the first few weeks of) my summer vacation

Last week we ran another search using completely new (128-bit) code that uses our
L-functions-from-nothing approach to efficiently compute/bound conductors.

• We enumerated integral models X : y2 + h(x)y = f (x) with hi ∈ {0, 1} and
‖f ‖ ≤ 90 for which ∆min(X ) is compatible with cond Jac(X ) ≤ 220, ignoring
prime-power factors of the form p12a+10b compatible with almost good reduction.
• Liu’s genus2red algorithm (Pari/GP) to compute odd(Nmin) ≤ Nmax = 220.
• Allombert’s lfungenus2 algorithm (Pari/GP) to compute degree-3 Euler factors

with conductor exponent 1 and discriminant exponent at most 12.
• Maistret-S for Euler factors at primes of almost good reduction.
• Harvey-S average poly-time for Euler factors at good p ≤ C

√
Nmax ≈ 12, 000.

• Fast (milliseconds) heuristic L-function test iterating over v2(Nmin).
• Slower (minutes) rigorous L-function test to rigorously compute v2(Nmin) via arb.



Some highlights

• About 250 nanoseconds per curve to enumerate ≈ 4× 1016 smooth curves
(covering 1017) and test their discriminants for compatibility with small conductor.

• Of these, roughly 5× 109 (about 1/107) have sufficiently smooth discriminants.

• Of these, roughly 7× 108 (about 1/10) have odd(Nmin) ≤ 220.

• Of these, roughly 6× 107 (about 1/10) have Nmin ≤ Nmax.

• ≈ 7 million quadratic-twist-minimal curves (some are twists).

• ≈ 1.3 million twist-minimal isogeny classes.

• Twisting yields about 1.8 million isogeny classes, of which at least 200, 000 are
new (smallest new conductor is 1343).

• Even using minimal twists, about 250,000 have a prime of almost good reduction
that cannot be removed (this proportion will grow as we expand isogeny classes).



L-functions of genus 2 curves over Q with Sato-Tate group USp(4).

Before and after genus 2 murmuration plots (top LMFDB, bottom new dataset).



L-functions of genus 2 curves over Q with Sato-Tate group USp(4).

Before and after genus 2 murmuration plots (top LMFDB, bottom new dataset).
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Also check out The Mordell conjecture 100 years later the week before, July 8–12.

https://antsmath.org/ANTSXVI/
https://mordell.org

