
Computing Hasse-Witt matrices of hyperelliptic
curves in average polynomial time

David Harvey and Andrew Sutherland

ANTS XI — August 9, 2014

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 1 / 21

Motivation

Let C/Q be a smooth projective curve of genus g.

For each prime p of good reduction we have the trace of Frobenius

tp = p + 1− Np ∈ [−2g
√

p, 2g
√

p],

where Np = #C(Fp), and the normalized trace

xp = tp/
√

p ∈ [−2g, 2g].

What is the distribution of xp?

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 2 / 21

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 3 / 21

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 4 / 21

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 5 / 21

Exceptional trace distributions of genus 2 curves C/Q

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 6 / 21

L-polynomial distributions

For a smooth projective curve C/Q of genus g and a prime p of good
reduction for C we have the zeta function

Zp(T) := exp

(∞∑
k=1

NkTk/k

)
=

Lp(T)

(1− T)(1− pT)
,

where Lp ∈ Z[T] has degree 2g. The normalized L-polynomial

L̄p(T) := Lp(T/
√

p) =

2g∑
i=0

aiT i ∈ R[T]

is monic, reciprocal (ai = a2g−i), and unitary (roots on the unit circle).
The coefficients ai satisfy the Weil bounds |ai| ≤

(2g
i

)
.

We may now consider the distribution of a1, a2, . . . , ag as p varies.

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 7 / 21

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 8 / 21

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 9 / 21

Computing zeta functions

Algorithms to compute Lp(T) for low genus hyperelliptic curves

complexity
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3 log p
group computation p1/4 log p p3/4 log p p5/4 log p
p-adic cohomology p1/2 log2 p p1/2 log2 p p1/2 log2 p
CRT (Schoof-Pila) log5 p log8 p log12 p

(see [Kedlaya-S, ANTS VIII]).

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 10 / 21

Computing zeta functions

Algorithms to compute Lp(T) for low genus hyperelliptic curves

complexity
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3 log p
group computation p1/4 log p p3/4 log p p5/4 log p
p-adic cohomology p1/2 log2 p p1/2 log2 p p1/2 log2 p
CRT (Schoof-Pila) log5 p log8 p log12 p

(see [Kedlaya-S, ANTS VIII]).

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 10 / 21

An average polynomial-time algorithm

All of these methods perform separate computations for each p.
But we want to compute Lp(T) for all good p ≤ N using reductions of
the same curve in each case. Can we take advantage of this?

Theorem (H 2012)
There exists a deterministic algorithm that, given a hyperelliptic curve
y2 = f (x) of genus g with a rational Weierstrass point and an integer N,
computes Lp(T) for all good primes p ≤ N in time

O
(
g8+εN log3+ε N

)
,

assuming the coefficients of f ∈ Z[x] have size bounded by O(log N).

Average time is O
(
g8+ε log4+ε N

)
per prime, polynomial in g and log p.

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 11 / 21

An average polynomial-time algorithm

All of these methods perform separate computations for each p.
But we want to compute Lp(T) for all good p ≤ N using reductions of
the same curve in each case. Can we take advantage of this?

Theorem (H 2012)
There exists a deterministic algorithm that, given a hyperelliptic curve
y2 = f (x) of genus g with a rational Weierstrass point and an integer N,
computes Lp(T) for all good primes p ≤ N in time

O
(
g8+εN log3+ε N

)
,

assuming the coefficients of f ∈ Z[x] have size bounded by O(log N).

Average time is O
(
g8+ε log4+ε N

)
per prime, polynomial in g and log p.

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 11 / 21

An average polynomial-time algorithm

complexity
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3 log p
group computation p1/4 log p p3/4 log p p5/4 log p
p-adic cohomology p1/2 log2 p p1/2 log2 p p1/2 log2 p
CRT (Schoof-Pila) log5 p log8 p log12 p
Average polytime log4 p log4 p log4 p

But is it practical?

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 12 / 21

genus 2 genus 3

N smalljac paper current hypellfrob paper current

214 0.2 0.4 0.1 6.8 2.0 0.3
215 0.6 1.1 0.3 15.6 5.5 1.0
216 1.7 2.8 0.8 37.6 13.6 2.7
217 5.6 6.8 1.8 95.0 33.3 7.0
218 20.2 16.8 4.7 250 80.4 16.3
219 76.4 39.7 11.1 681 192 38.7
220 257 94.4 26.0 1920 459 91.7
221 828 227 61.4 5460 1090 212
222 2630 534 142 16300 2540 489
223 8570 1240 321 49400 5940 1120
224 28000 2920 729 152000 13800 2540
225 92300 6740 1660 467000 31800 6510
226 316000 15800 3800 1490000 72900 16600

Comparison of average polynomial time algorithm (as in the paper and currently)
to smalljac in genus 2 and hypellfrob in genus 3.

(Intel Xeon E5-2670 2.6 GHz CPU seconds).

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 13 / 21

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 14 / 21

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 15 / 21

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 16 / 21

The algorithm in genus 1

The Hasse invariant hp of an elliptic curve y2 = f (x) = x3 + ax + b
over Fp is the coefficient of xp−1 in the polynomial f (x)(p−1)/2.

We have hp ≡ tp mod p, which uniquely determines tp for p > 13.

Naı̈ve approach: iteratively compute f , f 2, f 3, . . . , f (N−1)/2 in Z[x] and
reduce the xp−1 coefficient of f (x)(p−1)/2 mod p for each prime p ≤ N.

But the polynomials f n are huge, each has Ω(n2) bits.
It would take Ω(N3) time to compute f , . . . , f (N−1)/2 in Z[x].

So this is a terrible idea...

But we don’t need all the coefficients of f n, we only need one,
and we only need to know its value modulo p = 2n + 1.

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 17 / 21

The algorithm in genus 1

The Hasse invariant hp of an elliptic curve y2 = f (x) = x3 + ax + b
over Fp is the coefficient of xp−1 in the polynomial f (x)(p−1)/2.

We have hp ≡ tp mod p, which uniquely determines tp for p > 13.

Naı̈ve approach: iteratively compute f , f 2, f 3, . . . , f (N−1)/2 in Z[x] and
reduce the xp−1 coefficient of f (x)(p−1)/2 mod p for each prime p ≤ N.

But the polynomials f n are huge, each has Ω(n2) bits.
It would take Ω(N3) time to compute f , . . . , f (N−1)/2 in Z[x].

So this is a terrible idea...

But we don’t need all the coefficients of f n, we only need one,
and we only need to know its value modulo p = 2n + 1.

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 17 / 21

The algorithm in genus 1

The Hasse invariant hp of an elliptic curve y2 = f (x) = x3 + ax + b
over Fp is the coefficient of xp−1 in the polynomial f (x)(p−1)/2.

We have hp ≡ tp mod p, which uniquely determines tp for p > 13.

Naı̈ve approach: iteratively compute f , f 2, f 3, . . . , f (N−1)/2 in Z[x] and
reduce the xp−1 coefficient of f (x)(p−1)/2 mod p for each prime p ≤ N.

But the polynomials f n are huge, each has Ω(n2) bits.
It would take Ω(N3) time to compute f , . . . , f (N−1)/2 in Z[x].

So this is a terrible idea...

But we don’t need all the coefficients of f n, we only need one,
and we only need to know its value modulo p = 2n + 1.

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 17 / 21

A better approach

Let f (x) = x3 + ax + b, and let f n
k denote the coefficient of xk in f (x)n.

Using f n = f · f n−1 and (f n)′ = nf ′f n−1, one obtains linear relations

(n + 2)f n
2n−2 = n

(
2af n−1

2n−3 + 3bf n−1
2n−2

)
,

(2n− 1)f n
2n−1 = n

(
3f n−1

2n−4 + af n−1
2n−2

)
,

2(2n− 1)bf n
2n = (n + 1)af n−1

2n−4 + 3(2n− 1)bf n−1
2n−3 − (n− 1)a2f n−1

2n−2.

These allow us to compute the vector vn = [f n
2n−2, f n

2n−1, f n
2n] from the

vector vn−1 = [f n−1
2n−4, f n−1

2n−3, f n−1
2n−2] via multiplication by a 3× 3 matrix Mn:

vn = v0M1M2 · · ·Mn.

For n = (p− 1)/2, the Hasse invariant of the elliptic curve y2 = f (x)
over Fp is obtained by reducing the third entry f 2n

n of vn modulo p.

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 18 / 21

Computing tp mod p

To compute tp mod p for all odd primes p ≤ N it suffices to compute

M1 mod 3

M1M2 mod 5

M1M2M3 mod 7
...

M1M2M3 · · ·M(N−1)/2 mod N

Doing this naı̈vely would take O
(
N2+ε

)
time.

But it can be done in O
(
N1+ε

)
time using a remainder tree.

For best results, use a remainder forest.

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 19 / 21

The algorithm in genus g.

The Hasse-Witt matrix of a hyperelliptic curve y2 = f (x) over Fp of
genus g is the g× g matrix Wp = [wij] with entries

wij = f (p−1)/2
pi−j mod p (1 ≤ i, j ≤ g).

The wij can each be computed using recurrence relations between
the coefficients of f n and those of f n−1, as in genus 1.

The congruence
LP(T) ≡ det(I − TWp) mod p

allows us to determine the coefficients a1, . . . , ag of Lp(T) modulo p.

The algorithm can be extended to compute Lp(T) modulo higher
powers of p (and thereby obtain Lp ∈ Z[T]), but for g ≤ 3 it is faster in
practice to derive Lp(T) from Lp(T) mod p using computations in Jac(C).

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 20 / 21

The algorithm in genus g.

The Hasse-Witt matrix of a hyperelliptic curve y2 = f (x) over Fp of
genus g is the g× g matrix Wp = [wij] with entries

wij = f (p−1)/2
pi−j mod p (1 ≤ i, j ≤ g).

The wij can each be computed using recurrence relations between
the coefficients of f n and those of f n−1, as in genus 1.

The congruence
LP(T) ≡ det(I − TWp) mod p

allows us to determine the coefficients a1, . . . , ag of Lp(T) modulo p.

The algorithm can be extended to compute Lp(T) modulo higher
powers of p (and thereby obtain Lp ∈ Z[T]), but for g ≤ 3 it is faster in
practice to derive Lp(T) from Lp(T) mod p using computations in Jac(C).

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 20 / 21

Complexity

Theorem (HS 2014)

Given a hyperelliptic curve y2 = f (x) of genus g, and an integer N, one
can compute the Hasse-Witt matrices Wp for all good primes p ≤ N in

O
(
g2+ε N log3+ε N

)
time and O(g2N) space,

provided that g and log ‖f‖ are sufficiently small relative to N.

The time bound has improved by a factor of g3−ε since the paper.
The complexity is quasi-linear in the output size.

This should extend to computing Lp ∈ Z[T] in O(g4+εN log3+ε N) time.

In progress: generalize to non-hyperelliptic curves.

Harvey (UNSW) and Sutherland (MIT) Computing Hasse–Witt matrices ANTS XI — August 9, 2014 21 / 21

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	anm2:
	3.0:
	3.1:
	3.2:
	3.3:
	3.4:
	3.5:
	3.6:
	3.7:
	3.8:
	3.9:
	3.10:
	3.11:
	3.12:
	3.13:
	3.14:
	3.15:
	3.16:
	3.17:
	3.18:
	3.19:
	3.20:
	3.21:
	3.22:
	anm3:
	4.0:
	4.1:
	4.2:
	4.3:
	4.4:
	4.5:
	4.6:
	4.7:
	4.8:
	4.9:
	4.10:
	4.11:
	4.12:
	4.13:
	4.14:
	4.15:
	4.16:
	4.17:
	4.18:
	4.19:
	4.20:
	anm4:
	5.0:
	5.1:
	5.2:
	5.3:
	5.4:
	5.5:
	5.6:
	5.7:
	5.8:
	5.9:
	5.10:
	5.11:
	5.12:
	5.13:
	5.14:
	5.15:
	5.16:
	5.17:
	5.18:
	5.19:
	5.20:
	anm5:
	6.0:
	6.1:
	6.2:
	6.3:
	6.4:
	6.5:
	6.6:
	6.7:
	6.8:
	6.9:
	6.10:
	6.11:
	6.12:
	6.13:
	6.14:
	6.15:
	6.16:
	6.17:
	6.18:
	6.19:
	6.20:
	anm6:

