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Sato
As explained by Ihara, in 1962 Mikio Sato returned to the University of Tokyo after
visiting IAS with an interest in the following question about the sequence of Frobenius
eigenangles ϑp associated to an elliptic curve E/Q at primes p of good reduction.

How is ϑp distributed on [0, π] as p varies over primes?

The university had recently installed a HIPAC 103 computer, and several young
researchers and students had started “playing” with it, including Kanji Namba.

. . . on a nice summer evening, Sato and some of his colleagues, including
Namba, instead of parting at the Ikebukuro suburban train terminal were drawn
to a roof beer garden on a department store. Then Sato, explaining the beauty
of arithmetic of elliptic curves and modular forms, said to Namba something
like “why not use the new computer for something more worthwhile than
examining the Goldbach conjecture; for example, for collecting data for this
question”.



HIPAC 103
The HItachi Parametron Automatic Computer used 48-bit
words and had a 13-bit address space. It came equipped
with 1024 words of core memory (6KB) and 8192 words of
magnetic drum storage (48KB). It used resonant circuits
(“parametrons”) rather than vacuum tubes or transistors.

As explained by Namba, Mr. Nagashima, a staff member in the department of
mathematics, ran a computer program that computed the q-expansion of the weight-2
Hecke eigenform f (z) of level 20 (20.2.a.a) using the product formula

f (z) = η(2z)2η(10z)2 =
∑
n≥1

anqn = q
∞∏

n=1
(1 − q2n)2(1 − q10n)2.

Since an = 0 for n even, they could store 7000 odd values of an, including ap at 1650
primes of good reduction (they needed the other 1192 words of storage for the code).

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/20/2/a/a/


The sin2 ϑ-law (May 15, 1963 letter from Sato to Namba)



The sin2 ϑ-law

In the letter Sato wrote to Namba in May, 1963 (as translated by Namba in a March
2007 letter to Ralf Schmidt)

. . . according to the figure and table, it is estimated that the angular distribu-
tion of αp is proportional to sin2 ϑ. It could be said that the above hypothesis
is very plausible.

Here αp = √peiϑp and ᾱp = √pe−iϑp are p-Weil numbers with ap = αp + ᾱp.
Sato continued

This fact is, I think, probably, if we spend sufficiently long time and deep
conversation, even under our present knowledge, it would be possible to explain
theoretically, but now, I would like to postpone such heavy brain work, and
instead, collect experimental muscular obtainable data.



Tate

Let k be a finitely generated field, X/k a nice variety, and ℓ ̸= char(k) a prime.
In his 1964 Woods Hole lectures Tate presented several conjectures, including those
denoted T r , E r , I r , Sr in Poonen’s talk, as well as

Pr : ζ2r
X (s) has a pole of order dimQℓ

H2r (X ,Qℓ(r))Galk at s = r .

In his August 1963 letters to Serre, Tate explains that under Pr , if E/Q is a non-CM
elliptic curve, then its Frobenius eigenangles ϑp have a 2

π sin2 ϑ distribution. He writes
Mumford tells me that Sato has found c sin2 ϑ experimentally by machine on
one curve with thousands of p — many more p than your computation. Did
you ever have your distribution analyzed and do they all look like sin2 ϑ????

https://math.mit.edu/~poonen/slides/tate2025.pdf


The Sato-Tate distribution

Fix an elliptic curve E/Q. For each good prime p the trace of Frobenius

ap := p + 1 − #Ep(Fp)

satisfies |ap| ≤ 2√p. Let xp := −ap/
√p ∈ [−2, 2]. If E does not have CM then

(x2, x3, x5, x7, x11, . . .) should be equidistributed with respect to the measure

2
π

√
4 − x2dx

If we construct a histogram of xp-values for p ≤ B and rescale by π
2 , as B tends to

infinity our histogram should converge to a semicircle of radius 2.

Mikio Sato John Tate







Sato–Tate theorems

Theorem (Barnet–Lamb, Clozel, Gee, Geraghty, Harris, Shepherd–Barron, Taylor
2008, 2010, 2011)
Let E be an elliptic curve without complex multiplication over a totally real field.
The sequence xp converges to the semi-circular distribution.

Theorem (Allen, Calegari, Caraiani, Gee, Helm, Le Hung, Newton, Scholze,
Taylor, Thorne 2022)
Let E be an elliptic curve without complex multiplication over a CM field.
The sequence xp converges to the semi-circular distribution.

The Sato–Tate conjecture remains open for elliptic curves over number fields that are
neither totally real nor CM. The first such field (ordered by |Dk |) is Q[x ]/(x3 − x2 + 1).



Sato-Tate groups in dimension 1
The Sato-Tate group of E is a closed subgroup G of SU(2) = USp(2) that is
determined by the ℓ-adic Galois representation attached to E (as we will explain).

G G/G0 E k M2n[tr(g)]n≥0

SU(2) C1 y2 = x3 + x + 1 Q 1, 1, 2, 5, 14, 42, . . .
N(U(1)) C2 y2 = x3 + 1 Q 1, 1, 3, 10, 35, 126, . . .
U(1) C1 y2 = x3 + 1 Q(ζ3) 1, 2, 6, 20, 70, 252, . . .

Fun fact:
∫

SU(2)
tr(g)ndg = 1

2π

∫ π

0
(2 cos ϑ)n sin2 ϑ dϑ is the n

2 th Catalan number!



Zeta functions and L-polynomials

For a nice curve X/Q of genus g and each good prime p we have the zeta function

Z (Xp/Fp; T ) := E
( ∞∑

k=1
#Xp(Fpk )T k/k

)
= Lp(T )

(1 − T )(1 − pT ) ,

where Lp ∈ Z[T ] has degree 2g . The normalized L-polynomial

L̄p(T ) := Lp(T/
√p) =

2g∑
i=0

aiT i ∈ R[T ]

is monic, reciprocal, and unitary, with |ai | ≤
(2g

i
)

(better bounds hold for even i).

Now consider the limiting distribution of a1, a2, . . . , ag over good primes p ≤ B → ∞.



Sato-Tate trace distributions of genus 2 curves





The Sato-Tate group of an abelian variety

Let A be an abelian variety over a number field k. The Zariski closure of the image of

ρℓ : Galk → AutQℓ
(Vℓ(A)) ≃ GSp2g(Qℓ)

is a Qℓ-algebraic group Gzar
ℓ ⊆ GSp2g , and we let G1,zar

ℓ := Gzar
ℓ ∩ Sp2g .

Now fix ι : Qℓ ↪→ C, and let Gzar
ℓ,ι and G1,zar

ℓ,ι denote base changes to C.

Definition
ST(A) ⊆ USp(2g) is a maximal compact subgroup of G1,zar

ℓ,ι (C) equipped with the
map s : p 7→ conj(∥p∥−1/2ρℓ,ι(Frobp)) ∈ conj(ST(A)).

• ST(A) is unique up to conjugacy and conjecturally independent of ι and ℓ.
• s(p) is the normalized L-polynomial L̄p(T ).
• ρℓ,ι(Frobp) is semisimple (by a theorem of Tate), so conjugate to a g ∈ ST(A).



The Sato-Tate conjecture for abelian varieties

Algebraic Sato–Tate Conjecture
(Gzar

ℓ )0 = MT(A) ⊗Q Qℓ, equivalently, (G1,zar
ℓ )0 = Hg(A) ⊗Q Qℓ.

More generally, (Gzar
ℓ ) = AST(A) ⊗Q Qℓ.

The algebraic Sato-Tate conjecture is known for g ≤ 3 [Banaszak–Kedlaya 2015].
It follows from the Mumford–Tate conjecture [Cantoral-Farfán–Commelin 2022].

Sato-Tate conjecture for abelian varieties
The conjugacy classes s(p) are equidistributed with respect to µST(A).

The Sato-Tate conjecture implies that the distribution of normalized L-polynomials
converges to the distribution of characteristic polynomials in ST(A).



Sato-Tate axioms for abelian varieties

G ⊆ USp(2g) satisfies the Sato-Tate axioms (for abelian varieties of dimension g) if:
1. Compact: G is closed;
2. Hodge: G contains a Hodge circle ϑ : U(1) → G0 whose elements ϑ(u) have

eigenvalues u, 1/u with multiplicity g , such that the conjugates of ϑ generate a
dense subset of G ;

3. Rationality: For each component H of G and each irreducible character χ of
GL2g(C) we have E[χ(γ) : γ ∈ H] ∈ Z;

4. Lefschetz: The subgroup of USp(2g) fixing End(C2g)G0 is G0.

Theorem (FKRS 2012, FKS 2019)
Sato-Tate groups of abelian varieties of dimension ≤ 3 satisfy the Sato-Tate axioms.

Axioms 1-3 are expected to hold in general, but Axiom 4 fails for g = 4.
For any g , the set of G satisfying axioms 1-3 is finite.



Galois endomorphism types

Let A be an abelian variety defined over a number field k.
Let K be the minimal extension of k for which End(AK ) = End(Ak̄).
Gal(K/k) acts on the R-algebra End(AK )R = End(AK ) ⊗Z R.

Definition
The Galois endomorphism type of A is the isomorphism class of [Gal(K/k), End(AK )R],
where [G , E ] ≃ [G ′, E ′] iff we have compatible isomorphisms G ≃ G ′ and E ≃ E ′.

Theorem (FKRS 2012)
For abelian varieties A/k of dimension ≤ 3 there is a one-to-one correspondence
between Sato-Tate groups and Galois endomorphism types.

More precisely, the identity component G0 is uniquely determined by End(AK )R,
and we have G/G0 ≃ Gal(K/k) (with compatible actions).



Real endomorphism algebras of abelian surfaces

abelian surface End(AK )R ST(A)0

square of CM elliptic curve M2(C) U(1)2

• QM abelian surface M2(R) SU(2)2

• square of non-CM elliptic curve
• CM abelian surface C × C U(1) × U(1)
• product of CM elliptic curves
product of CM and non-CM elliptic curves C × R U(1) × SU(2)
• RM abelian surface R × R SU(2) × SU(2)
• product of non-CM elliptic curves
generic abelian surface R USp(4)

(factors in products are assumed to be non-isogenous)



Real endomorphism algebras of abelian threefolds
abelian threefold End(AK )R ST(A)0

cube of a CM elliptic curve M3(C) U(1)3
cube of a non-CM elliptic curve M3(R) SU(2)3
product of CM elliptic curve and square of CM elliptic curve C × M2(C) U(1) × U(1)2
product of non-CM elliptic curve and square of CM elliptic curve R × M2(C) SU(2) × U(1)2
• product of CM elliptic curve and QM abelian surface C × M2(R) U(1) × SU(2)2
• product of CM elliptic curve and square of non-CM elliptic curve
• product of non-CM elliptic curve and QM abelian surface R × M2(R) SU(2) × SU(2)2
• product of non-CM elliptic curve and square of non-CM elliptic curve
• CM abelian threefold C × C × C U(1) × U(1) × U(1)
• product of CM elliptic curve and CM abelian surface
• product of three CM elliptic curves
• product of non-CM elliptic curve and CM abelian surface C × C × R U(1) × U(1) × SU(2)
• product of non-CM elliptic curve and two CM elliptic curves
• product of CM elliptic curve and RM abelian surface C × R × R U(1) × SU(2) × SU(2)
• product of CM elliptic curve and two non-CM elliptic curves
• RM abelian threefold R × R × R SU(2) × SU(3) × SU(3)
• product of non-CM elliptic curve and RM abelian surface
• product of 3 non-CM elliptic curves
product of CM elliptic curve and abelian surface C × R U(1) × USp(4)
product of non-CM elliptic curve and abelian surface R × R SU(2) × USp(4)
quadratic CM abelian threefold C U(3)
generic abelian threefold R USp(6)



Connected Sato-Tate groups of abelian threefolds:

U(1)3 SU(2)3 U(1) × U(1)2 SU(2) × U(1)2

U(1) × SU(2)2 SU(2) × SU(2)2 U(1) × U(1) × U(1) U(1) × U(1) × SU(2)

U(1) × SU(2) × U(1) SU(2) × SU(2) × SU(2) U(1) × USp(4) SU(2) × USp(4)

U(3) USp(6)



Classification of Sato-Tate groups of abelian varieties over number fields

Theorem (FKRS 2012, FKS 2019)
For g = 1, 2, 3 the table below lists the number of subgroups of USp(2g) that satisfy
the Sato-Tate axioms, and the subset of these that arise as ST(A) for an abelian
variety A over a number field k. Among those that arise as ST(A), it lists the number
that are connected, the number that are maximal, the number that arise over Q, and
the size of the largest component group.
g axioms #{ST(A)} #{ST0(A)} maximal over Q max{ST(A)/ ST0(A)}

1 3 3 2 2 2 2
2 55 53 6 9 34 48
3 433 410 14 33 ? 432

See the LMFDB for more details, including generators, moments, and other invariants.

This theorem says nothing about the Sato–Tate conjecture. For abelian surfaces A/Q
the Sato–Tate conjecture is known for ST(A) ̸= USp(4) [Johansson 2017, Taylor 2020].

https://www.lmfdb.org/SatoTateGroup/


Mumford exceptional abelian varieties

Things are much harder for g > 3 because MT(A), and therefore ST(A), is no longer
determined by endomorphisms. Mumford proved the existence of abelian fourfolds A/k
with End(Ak) = Z for which MT(A) ̸= GSp2g , and Shioda showed that the Jacobian of
the curve y2 = x9 − 1 (isogenous to the product of a CM threefold and a CM elliptic
curve) admits an algebraic cycle that makes its Mumford–Tate group exceptional.

It has been challenging to find a similarly explicit example of a generic abelian fourfold
of Mumford type, ideally one that arises as the Jacobian of a genus 4 curve over Q.

Bouchet–Hanselman–Pieper–Schiavone have constructed a one-parameter family of
hyperelliptic genus 4 curves whose Jacobians are generically expected to be of
Mumford type (this is work in progress). This includes the example

X : y2 = 7x9 +63x8 +36x7 −252x6 +1890x5 −1134x4 +756x3 +6804x2 +5103x +3591

with End(Jac(XQ)) = Z, whose Sato–Tate group does not appear to be USp(8).



Conjectures of Birch and Swinnerton-Dyer

Based on early computer experiments Birch and Swinnerton-Dyer conjectured that

lim
x→∞

∏
p≤x

#E (Fp)
p = cE (log x)r

for some constant cE , where r is the analytic rank. This implies

lim
x→∞

1
log x

∑
p≤x

ap log p
p = −r + 1

2 ,

and suggests that one can compute (or at least predict) r by counting points.

Birch and Swinnerton-Dyer eventually formulated a more precise (weaker!) conjecture
that became more well known (the conjecture above implies RH for LE (s), in fact this
must hold if the limit on the LHS exists [Kim–Murty 2023]).
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Murmurations of elliptic curves

In 2022, He, Lee, Oliver, and Pozdnyakov ran a series of machine learning experiments
in an attempt to predict ranks of elliptic curves over Q using Frobenius traces.

Their efforts to predict ranks worked for curves of small conductor, but not in general.
However, they noticed a previously unobserved oscillation in average Frobenius traces
in families of elliptic curves ordered by conductor when separated by rank.

You can read more about their discovery in this 2024 Quanta article.

https://www.quantamagazine.org/elliptic-curve-murmurations-found-with-ai-take-flight-20240305/


Murmurations of elliptic curves

Elliptic curves of conductor N ∈ (2n, 2n+1] for 11 ≤ n ≤ 18. Blue/red/purple dots at
(p, āp or m̄p) are averages of ap or mp := (−1)r ap(E ) over even/odd/all E/Q.



Murmurations of elliptic curves

Elliptic curves of conductor N ∈ (2n, 2n+1] for 11 ≤ n ≤ 18. Blue/red/purple dots at
(p, āp or m̄p) are averages of ap or mp := (−1)r ap(E ) over even/odd/all E/Q.



Ordering by naive height

Elliptic curves with ht(E ) := max(4|A|3, 27B2) in (M, 2M] for M = 216, . . . , 225.
The x -axis range is [0, 2M]. A blue/red or purple dot at (p, āp or m̄p) shows the
average of ap or mp over even/odd or all E/Q with NE ∈ (M, 2M].
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The x -axis range is [0, 2M]. A blue/red or purple dot at (p, āp or m̄p) shows the
average of ap or mp over even/odd or all E/Q with NE ∈ (M, 2M].



Newforms for Γ0(N) of weight k = 2, 4, 6, 8.



Newforms for Γ0(N) of weight k = 2, 4, 6, 8.



Zubrilina’s theorem
Definition. Let Un ∈ Z[x ] denote the Chebyshev polynomial defined by
Un(cos ϑ) sin ϑ = sin((n + 1)ϑ). The murmuration density function is

Mk(y) := Dk
(
Ay − (−1)k/2B

∑
1≤r≤2y

c(r)
√

4y2 − r2 Uk−2( r
2y ) − πy2δk=2

)
,

A :=
∏

p

(
1 + p

(p+1)2(p−1)

)
, B :=

∏
p

p4−2p2−p+1
(p2−1)2 , c(r) :=

∏
p|r

(
1 + p2

p4−2p2−p+1

)
, Dk := 12

(k−1)π
∏

p
(1− 1

p2+p
) .

Theorem (Zubrilina 2023)
Let

∑
an(f )qn denote a weight-k newform for Γ0(N) with root number w(f ). Let

X , Y , P → ∞ with P prime, Y ∼ X 1−δ, P ≪ X 1+δ1 , δ, δ1 > 0 and 2δ1 < δ < 1, and
put y :=

√
P/X. Then for every ε > 0 we have∑□-free
N∈[X ,X+Y ]

∑
f w(f )aP(f )P(1−k/2)∑□-free

N∈[X ,X+Y ]
∑

f 1
= Mk(y) + Oε(X−δ′+ε + P−1)

where δ′ := max(δ/2 − δ1, (δ + 1)/9 − δ1); for δ1 < 2/9 we can choose δ so δ′ > 0.



Zubrilina’s theorem for k = 2, 14, 32 (click here for other k)

https://math.mit.edu/~drew/murm/zub.html


Zubrilina’s theorem for k = 2, 14, 32 (click here for other k)
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A murmuration theorem for elliptic curves
Let E(X ) :=

{
y2 = x3 + ax + b : a, b ∈ Z, p4|a ⇒ p6 ∤ b, max(4|a|3, 27b2) ≤ X

}
be the set of isomorphism classes of elliptic curves over Q of naive height at most X .

Theorem (S–Sawin 2025)
For any smooth W : R>0 → R with compact support, the limit

lim
X→∞

1
#E(X )

∑
E∈E(X)

ε(E )
NE

∑
n≥1

W (n/NE )an(E )

exists and is equal to∫ ∞

0
2πW (u)

∞∑
n=1

∏
p|n ℓpνp (n)

√
n

√
uJ1(4π

√
un)du,

with ℓ2ν = t2(ν+2)
1023 , ℓ3ν = · · · , ℓpν = p9−p8

p10−1 tp(ν + 2), where tp(k) = tr(Tp) on Sk(1).



A murmuration theorem for elliptic curves
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L-functions of genus 2 curves over Q with Sato-Tate group USp(4).

Before and after genus 2 murmuration plots (top LMFDB, bottom new dataset).



L-functions of genus 2 curves over Q with Sato-Tate group USp(4).

Before and after genus 2 murmuration plots (top LMFDB, bottom new dataset).



Thank you!


