
Telescopes for mathematicians

Andrew V. Sutherland
Massachusetts Institute of Technology

January 9, 2019

Simons Collaboration in Arithmetic Geometry, Number Theory, and Computation

What is arithmetic geometry?

Arithmetic geometers study solutions to polynomial equations like

y = 2x + 3, x2 + y2 = 1,

y2 + y = x3 − x2,

y2 + (x3 + x + 1)y = x5 + x4, xy3 + y3z + z3x = 0,

and even “cursed” examples like

y4 + 5x4 − 6x2y2 + 6x3z + 26x2yz + 10xy2z − 10y3z
−32x2z2 − 40xyz2 + 24y2z2 + 32xz3 − 16yz3 = 0.

Balakrishnan et al.
2017

Which solutions?
There is a robust theory (algebraic geometry) that addresses this problem over the
complex numbers.

Number theorists are particularly interested in integer (or rational) solutions to these
equations. These can be very difficult to find.

Indeed, this problem is unsolvable, in general, but it can be solved in many cases.
Even when it cannot, we can simplify the problem by looking at solutions modulo
primes, in other words, we can count points.

These point counts can be used to define an L-function that encodes the fundamental
structure of the equation (or system of equations) in a canonical way.

Counting points modulo p
Let’s count points (x , y) on the curve C : x2 + y2 = 1 modulo primes p:

p 2 3 5 7 11 13 17 19 23 29 . . .

2 4 4 8 12 12 16 20 24 28 p ± 1

Better, count points (x , y , z) ∼ (cx , cy , cz) on x2 + y2 = z2 mod p:

p 2 3 5 7 11 13 17 19 23 29 . . .

3 4 6 8 12 14 18 20 24 30 p + 1

We always get p + 1. The L-function of C is

L(C , s) =
∏

(1− p−s)−1 =
∑

n−s = ζ(s).

We get the same L-function whenever C has genus 0.

Elliptic curves

Let E be an elliptic curve over Q, which we can write as

E : y2 = x3 + ax + b.

Every curve of genus 1 with rational points has this form.
You (via your phone/computer) use elliptic curves every day!

The number of points on E modulo p can be written as

#Ep(Fp) = p + 1− ap,

where the trace of Frobenius ap satisfies |ap| ≤ 2√p. H. Hasse

Let us now consider the sequence or real numbers xp := −tp/
√p ∈ [−2, 2].

Example: y 2 = x 3 + x + 1
p tp xp p tp xp p tp xp
3 0 0.000000 71 13 −1.542816 157 −13 1.037513
5 −3 1.341641 73 2 −0.234082 163 −25 1.958151
7 3 −1.133893 79 −6 0.675053 167 24 −1.857176

11 −2 0.603023 83 −6 0.658586 173 2 −0.152057
13 −4 1.109400 89 −10 1.059998 179 0 0.000000
17 0 0.000000 97 1 −0.101535 181 −8 0.594635
19 −1 0.229416 101 −3 0.298511 191 −25 1.808937
23 −4 0.834058 103 17 −1.675060 193 −7 0.503871
29 −6 1.114172 107 3 −0.290021 197 −24 1.709929
37 −10 1.643990 109 −13 1.245174 199 −18 1.275986
41 7 −1.093216 113 −11 1.034793 211 −11 0.757271
43 10 −1.524986 127 2 −0.177471 223 −20 1.339299
47 −12 1.750380 131 4 −0.349482 227 0 0.000000
53 −4 0.549442 137 12 −1.025229 229 −2 0.132164
59 −3 0.390567 139 14 −1.187465 233 −3 0.196537
61 12 −1.536443 149 14 −1.146925 239 −22 1.423062
67 12 −1.466033 151 −2 0.162758 241 22 −1.417145

click histogram to animate (requires adobe reader)

click histogram to animate (requires adobe reader)

The Sato-Tate conjecture

The Sato-Tate conjecture states that, except for certain families of well understood
exceptions, we will always get the same limiting distribution as p →∞.

Mikio Sato John Tate

Theorem (Taylor et al. 2008)
Let E/Q be an elliptic curve without extra endomorphisms.
The sequence xp converges to the semi-circular distribution. Richard Taylor

Richard Taylor received the 2014 Breakthrough Prize in Mathematics for this work.

click histogram to animate (requires adobe reader)

Modularity

The proof of the Sato-Tate conjecture is built on the Modularity Theorem.

Theorem (Taylor-Wiles 1995, Breuil-Conrad-Diamond-Taylor 2001)
For every elliptic curve E/Q there is a modular form fE for which L(E , s) = L(fE , s).
The q-expansion fE (q) =

∑
anqn of fE is determined by the Frobenius traces ap of E .

Corollary (Wiles 1995)
The equation xn + yn = zn has no nontrivial integer solutions for n > 2.

The L-functions and Modular Forms Database (LMFDB)
The relationship between elliptic curves and modular forms established by the
Modularity Theorem was conjectured fifty years earlier.

Compelling evidence for this conjecture was obtained over many decades by tabulating
elliptic curves and modular forms and computing their L-functions.

Extensive tables of these (and many other mathematical objects) are now available in
the L-functions and Modular Forms Database.

Ranks of elliptic curves
The rational points on an elliptic curve E/Q are generated by a finite set of points.
The minimal number of infinite order generators is the rank r .

There are many things we do not know about r :

I Is there an algorithm that is guaranteed to compute r?
I Which values of r can occur? Is there an upper limit?
I How often does each possible value of r occur, on average?

Theorem (Elkies 1990)
The value of r can be as large as 28.

Theorem (Bhargava-Shankar 2012)
The average value of r lies between 0 and 1.

The Birch and Swinnerton-Dyer conjecture

Based on extensive computer experiments (in the early 1960s!), Bryan Birch and Sir
Peter Swinnerton-Dyer made the following conjecture.

Conjecture (Birch and Swinnerton-Dyer)
Let E/Q be an elliptic curve of rank r . Then L(E , s) = (s − 1)r g(s), for some g(s)
with g(1) 6= 0, in other words, r is the order of vanishing of L(E , s) at 1.

Birch EDSAC-2 Swinnerton-Dyer

They later made a more precise conjecture that gives the leading coefficient of g(s).

The Langlands Program

The L-function of a curve
The L-function of a (nice) curve X/Q can be written as

L(X , s) :=
∏
p

Lp(p−s)−1.

For good primes p the polynomial Lp ∈ Z[T] is the numerator of the zeta function

Z (Xp; T) := exp

∑
r≥1

#Xp(Fpr)T r

r

 = Lp(T)
(1− T)(1− pT) .

Zeta functions can be computed by counting points.

Under the Langlands philosophy, L(X , s) is completely determined by point counts
modulo “sufficiently many” good primes p.

How many we need depends on the conductor of L(X , s).

Algorithms to compute zeta functions
Given X/Q of genus g , we want to compute Lp(T) for all good p ≤ B.

complexity per prime
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3(log p)2

group computation p1/4 log p p3/4 log p p(log p)2

p-adic cohomology p1/2(log p)2 p1/2(log p)2 p1/2(log p)2

CRT (Schoof-Pila) (log p)5 (log p)8 (log p)12

average poly-time (log p)4 (log p)4 (log p)4

The bottom row is due to a 2014 breakthrough by David Harvey,
followed by further refinements [Harvey-S 2016, 2018].

click histogram to animate (requires adobe reader)

click histogram to animate (requires adobe reader)

Exceptional Sato-Tate distributions for genus 2 curves over Q:

click histogram to animate (requires adobe reader)

Timings for genus 3 curves
Time to compute Lp(T) mod p for all good p ≤ B.

B spq-Costa-AKR hyp-Harvey spq-HS hyp-HS

212 18 1.3 1.4 0.1
213 49 2.6 2.4 0.2
214 142 5.4 4.6 0.5
215 475 12 9.4 1.0
216 1,670 29 21 2.1
217 5,880 74 47 5.3
218 22,300 192 112 14
219 78,100 532 241 37
220 297,000 1,480 551 97
221 1,130,000 4,170 1,240 244
222 4,280,000 12,200 2,980 617
223 16,800,000 36,800 6,330 1,500
224 66,800,000 113,000 14,200 3,520
225 244,000,000 395,000 31,900 8,220
226 972,000,000 1,060,000 83,300 19,700

(Intel Xeon E7-8867v3 3.3 GHz CPU seconds).

Building a database of low genus curves
To make it feasible to compute L-functions, and to facilitate investigation of the
Langlands correspondence, we want to tabulate curves by conductor.

No one knows how to do this for curves of genus g > 1, not even in principle!

We instead “sieve the sky”. We enumerate vast numbers of curves with small
coefficients along with their discriminants (which bound the conductor).

In our genus 2 and genus 3 searches we enumerated a total of about 1018 curves.
In each case we kept roughly 105 curves of interest.

To make such a computation feasible requires:
• extremely efficient enumeration algorithms;
• code optimization “down to the metal”;
• massive parallelism.

Parallel computation

The genus 3 computation was parallelized and run on Google’s Cloud Platform.
We spread the load across 24 data centers in nine geographic zones.

For the smooth plane quartic search we used 19, 000 pre-emptible 32-vCPU instances.
At peak usage we had 580,000 vCPUs running at full load (a new record).

This 300 vCPU-year computation took about 10 hours.

https://cloudplatform.googleblog.com/2017/04/220000-cores-and-counting-MIT-math-professor-breaks-record-for-largest-ever-Compute-Engine-job.html

	anm0:
	anm1:
	anm2:
	anm3:
	anm4:
	anm5:

