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Enumerating elliptic curves by conductor

To enumerate abelian varieties of dimension g = 1 over Q one may proceed as follows:

1. Prove the modularity conjecture for g =1 and k = Q.

2. Enumerate rational modular forms f € S3¢V(Io(N)) for N =1,2,3,...
3. Use Eichler-Shimura to get an isogeny class representative E; for each f.
4,

Fill out isogeny classes by finding all the elliptic curves E/Q isogenous to Er.

For N < 500000 this yields 3064 705 elliptic curves and 2164 260 L-functions.
Each of these steps is substantially more difficult for g > 1, even for g = 2.

There has been major recent progress on step 1 [Boxer-Calegari-Gee-Pilloni 2025],
and on step 4 [van Bommel-Chidambaram-Costa-Kieffer 2023].

But step 2 is currently impractical, and even if this changes, step 3 is impossible,
so we cannot apply this strategy for g > 1.


https://arxiv.org/abs/2502.20645
https://arxiv.org/abs/2301.10118

Challenges in dimension two

We have nothing close to a g = 2 version of the 1972 Antwerp tables. Current tables
of rational weight-2 paramodular forms are provably complete only up to level 251
(Poor-Yuen 2025). This includes only one generic case (level 249), and we have yet to
prove the existence of an abelian surface with the same L-function. Current tables of
abelian surfaces over Q include only Jacobians and omit the very first case (level 121).

e Enumerating weight-2 paramodular forms is very difficult (no dimension formulas).
Computing the L-function of a paramodular form is also very difficult.

e There is no analog of the Eichler-Shimura construction for paramodular forms
(the converse of the modularity conjecture is false for g =2 and k = Q).

e Not all abelian surfaces over Q are Jacobians of genus 2 curves over Q
(one can generically represent an abelian surface as a projective variety in P15
defined by 72 quadratic forms, but this is not a very pleasant thing to do).

e No algorithm is known to enumerate genus 2 curves over Q of a given conductor.
Even computing the conductor of a given genus 2 curve can be very difficult.



Abelian surfaces over QQ

Abelian varieties of dimension g = 2 are abelian surfaces. Examples over QQ include:

1. A= E; x Ey is a product of elliptic curves over Q: L(A,s) = L(E1, s)L(Ey, s).

2. A= Ar is the Eichler=Shimura image of a newform f € S}V (I'o(N)) with
quadratic Hecke field: L(A,s) = L(s — /2, f)L(s — 1/2,f7).

3. A =Res E is the Weil restriction of E/K with [K : Q] =2: L(A,s) = L(E,s).

4. A = Jac C is the Jacobian of a genus 2 curve C/Q: L(A,s) = L(C,s).

5. A=Prym(C; — &) is a Prym variety: L(A,s) = L(Cy,s)/L(Cy, s).

These options are not mutually exclusive (especially at the level of isogeny classes).

A admits a principal polarization (A ~ AY) in cases 1,3,4, and usually in case 2, but
usually not in case 5 (which is necessary; not all A/Q admit a principal polarization).

Modularity is known in cases 1 and 2, in case 3 when K is totally real (and for some
imaginary K), and for a positive proportion of case 4 (when C are ordered by height).



Automorphic forms associated to abelian surfaces over Q (BSSVY)

Type | Conductor |_Curve Equation | Motive | Modular form

Al 277 = 2771 V243452t xF1)y = X2 —x typical surface paramodular form

B[G]s 529 = 237 y +(x3+x+l)y — surface with RM by Q(/5) over Q CMF 23.2.1.a

B[Ci]ns 204 = 213172 Y +(x3+l)y = x¥1x2 product of ECs 14a4 and 21a4 over Q CMFs 14.2.1.a and 21.2.1.a

BIC — T — a5 ah a3 32 : (V2 A3 . V2
2ls 10368 = 2'3 Yo 4+xy = 3x° —4x"4+6x> —3x“ 41 surface with RM by Q(+/2) over Q(+/'2) HMF 162.1-a over Q(Vv/2)

B[Cplngs 1088 = 20171 V24 (S X2t x4 1)y = X 4x3 F2x% 4 x+1 Weil restriction of 17.1-at over Q(~/2) HMF 17.1-a over Q(v/2)

ClG(ns) 448 = 2671 V23 4x)y = x5 —7 product of PCM EC 32a3 and EC 14a6 over Q CMFs 32.2.1.a and 14.2.1.a

D[C4](s) 3125 = 50 Yy =x° surface with CM by Q(C5) over Q(C5) CM HMF 125.1-a over Q(+/5)

D[D2](ns) 8192 = 213 y2 =xP 9t 116x2 —8 product of PCM ECs 32a3 and 256d1 over Q CMFs 32.2.1.a and 256.2.1.d

E[Cll(ns) 196 = 2272 Y +(x2+><)y = x0 1+ 3x5 £ 6x7 + x5 +6x2 +3x+1 square of EC 14al over Q CMF 14.2.1.a

E[C2) Cl(ngs) 576 — 2032 Y2+ (X2 xt+1)y = =3 —x square of EC 9.1-a3 over Q(1/2) CMF 24.2.13.a

E[C3)(ngs) 324 = 223% Y2+ (3 Fx+1)y = xP+2xF +2x3 +x2 square of EC 8.1-al over 3.3.81.1 CMF 18.2.13.a

E[Ca](ngs) 256 = 28 V2 iy =28 =3P 3% —x square of EC 1.1-a5 over 4.4.2048.1 CMF 16.2.5.a

E[Ce](ngs) 169 = 132 Y2403t xt1)y = X0 X7 square of EC 1.1-a3 over 6.6.371293.1 CMF 13.2.4.a

E[Cy, R X R]s 455625 = 3057 | 424+ (x34x24xt1)y = x° — 3T —2x—1 surface with QM (D =6) over 2.0.3.1 BMF over 2.0.3.1 of level 50625

E[Cy, R X Rlngs | 3969 = 3%7° V2 (2t x+1)y = —3x2 +5xF — 4x3 +x Weil restriction of 441.2-a over 2.0.3.1 BMF 2.0.3.1-441.2-a

E[Cy, R X R]ps 675 — 3352 y2 — % _14x° 744X4+28X3 —24x2 —14x—1 product of ECs 15a2 and 45a2 over Q CMFs 15.2.1.a and 45.2.1.a

E[Dy]s 20736 = 2837 y2 = 27x% —54x% —27x% +18x3 +18x2 —2 surface with QM (D =6) over 4.0.576.2 HMF 324.1-b over Q(+/2)

E[D3]s 34992 = 2%37 12 = 2x% —6x° +10x3 +9x% — 18x+6 surface with QM (D =6) over 6.0.2834352.2 BMF over 2.0.3.1 of level 3888

E[Dy]s 20736 = 2837 Y2 hy = 60 +9x7 —x3 —3x2 surface with QM (D =6) over 8.0.339738624.10 | BMF over 2.0.3.1 of level 2304

E[Dg]s 8100 = 223752 | 42153y = x0 135 —42x% +43x3 4+ 21xZ —60x —28_| surface with QM (D =6) over degree 12 field BMF over 2.0.3.1 of level 900

E[Dy]ngs 6400 = 2552 yZ = 20 +5x% £ 83 + 7x2 +6x+2 square of EC 256.1-a1 over Q(v/5) HMF 2.2.5.1-256.1-a

E[D3]ngs 2187 = 37 V23 41)y = —1 square of EC over 6.0.177147.2 BMF over 2.0.3.1 of level 243

E[Dy]ngs 3600 = 273752 | 2%y = X0 — 3P 411x% —16x square of EC over 4.0.13500.2 BMF over Q(i) of level 225

E[Dglngs 3600 = 273757 | 7153y = 143 —20 square of EC over 6.0.7200000. 1 BMF over 2.0.3.1 of level 400

F[Dy,Cp,H]ngs | 576 = 2032 V2 4x3y = 5x3 —2 square of PCM EC 1.1-a2 over Q(1/6) CM HMF 1.1-a over Q(1/6)

F[Cy,Cp,Ma(R)lns| 729 = 3° Y24y =—a8x0 4153 —1 square of PCM EC 27.a4 over Q CM CMF 27.2.1.a



http://lmfdb.org/Genus2Curve/Q/277.a.277.1
http://lmfdb.org/Genus2Curve/Q/529.a.529.1
http://www.lmfdb.org/NumberField/2.2.5.1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/23/2/1/a/
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http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/14/2/1/a/
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http://www.lmfdb.org/NumberField/2.2.8.1
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http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/256/2/1/d/
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http://www.lmfdb.org/NumberField/2.2.8.1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/24/2/13/a/
http://lmfdb.org/Genus2Curve/Q/324.a.648.1
http://lmfdb.org/EllipticCurve/3.3.81.1/8.1/a/1
http://www.lmfdb.org/NumberField/3.3.81.1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/18/2/13/a/
http://lmfdb.org/Genus2Curve/Q/256.a.512.1
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http://www.lmfdb.org/NumberField/4.4.2048.1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/16/2/5/a/
http://lmfdb.org/Genus2Curve/Q/169.a.169.1
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http://www.lmfdb.org/NumberField/6.6.371293.1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/13/2/4/a/
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/NumberField/2.0.3.1
http://lmfdb.org/Genus2Curve/Q/3969.d.250047.1
http://www.lmfdb.org/EllipticCurve/2.0.3.1/[441,0,21]/a/3
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/EllipticCurve/Q/15a2
http://www.lmfdb.org/EllipticCurve/Q/45a2
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/15/2/1/a/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/45/2/1/a/
http://www.lmfdb.org/NumberField/4.0.576.2
http://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.8.1/holomorphic/2.2.8.1-324.1-b
http://www.lmfdb.org/NumberField/6.0.2834352.2
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/Genus2Curve/Q/20736.l.373248.1
http://www.lmfdb.org/NumberField/8.0.339738624.10
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/EllipticCurve/2.2.5.1/256.1/a/1
http://www.lmfdb.org/NumberField/2.2.5.1
http://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.5.1/holomorphic/2.2.5.1-256.1-a
http://www.lmfdb.org/Genus2Curve/Q/2187.a.6561.1
http://www.lmfdb.org/NumberField/6.0.177147.2
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/NumberField/4.0.13500.2
http://www.lmfdb.org/NumberField/2.0.4.1
http://www.lmfdb.org/NumberField/6.0.7200000.1
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/EllipticCurve/2.2.24.1/1.1/a/2
http://www.lmfdb.org/NumberField/2.2.24.1
http://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.24.1/holomorphic/2.2.24.1-1.1-a
http://www.lmfdb.org/EllipticCurve/Q/27/a/4
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/27/2/1/a/

Provisional result (proof in progress)

Theorem (Booker-S)

Assuming modularity of abelian surfaces and GRH for Rankin—Selberg L-functions,
there are (at most) 1059 (and at least 1057) isogeny classes of abelian surfaces over Q
of conductor < 1500. Among these

e 818 arise from products of elliptic curves over QQ;
e 28 arise from weight-2 newforms with quadratic Hecke field;
e 7 arise from the Weil restriction of an elliptic curve over a quadratic field;

e (at most) 206 (and at least 204) arise from generic abelian surfaces,
of which at least 193 include a Jacobian.

(Of the 13 generic abelian surfaces not known to arise as Jacobians, 11 arise as Prym
varieties associated to a genus 3 cover of a genus 1 curve. We are currently searching
for the other 2, which have conductors 969 and 1274. Finding them would allow us to
remove everything in parentheses on this slide.)



Some non-provisional results
Theorem (Booker-S)

There are exactly two isogeny classes of modular abelian surfaces over Q with good
reduction away from 7.

The set S = {7} is the unique nonempty set of primes for which we currently know all
isogeny classes of modular abelian surfaces over Q with good reduction away from S.

Theorem (Booker-S)

There are exactly three isogeny classes of modular abelian surfaces over Q with
conductor dividing 2.

Conductor 28 29 210 211 212 213 214 215 216 217 218 219 220

Num curves 2 0 4 10 33 62 65 72 68 64 38 40 54
Num isog classes 1 0 1 1 7 10 19 22 19 24 19 20 32

(Table 6.6 in Robin Visser's PhD thesis)


https://warwick.ac.uk/fac/sci/maths/people/staff/visser/thesis.pdf

An axiomatic approach to L-functions of abelian varieties over QQ

Fix a positive integer g. We shall consider arithmetic L-functions of degree 2g,
motivic weight 1, field of coefficients @, and an Euler product

L(s) =D ann~* =] Lp(p™) ",

with a, € Z and L, € Z[T] of degree < 2g. We further assume that
A(s) :=T¢(s)8L(s) is holomorphic on C and satisfies the functional equation

A(s) = eN*SA(2 — )

with root number € = &1 and conductor N (with deg L, = 2g iff p{ N),
and that |a,| < dog(n)y/n, where d,(n) = > 1

nye-ng=n =
Under the modularity conjecture, every abelian variety A/Q of dimension g has such
an L-function (whose root number and conductor can be defined arithmetically).

Conversely, if we assume L(s) = L(A,s) for some A/Q we can impose additional
constraints on L,(s) for a particular choice of local root numbers ¢, for p|N.



A finite problem

Let 8(g, N, ) denote the set of L-functions L(s) that satisfy our axioms for a
particular choice of g, N € Z~¢ and € = +1.

The set 8(g, N, ¢) is conjectural finite. Moreover there is an effectively computable
ng = O(\/N) for which the coefficients ay, ..., ap, uniquely determine each
L e 8(g,N,e) (with ng = O(log? N) under GRH).

We seek an algorithm that takes inputs g, N, ¢, determines a suitable ng, and then
outputs a list of distinct tuples (a1, ..., an,), one for each L € 8(g, N, ).
See Booker and Farmer—Koutsoliotas—Lemurell for prior work in this direction.

Our plan: Compute 8(g, N, €) using linear algebra (and lattice reduction),
then search for A/Q with L(A,s) € 8(g, N, ¢).

Our plan depends crucially on being able to compute 8(g, N, ) explicitly.
This not only tells us when to stop searching, knowing ai, ..., ap, helps us search.


https://people.maths.bris.ac.uk/~maarb/public/papers/modularity.pdf
https://doi.org/10.1016/j.jnt.2018.01.019

A brief digression

Conjecture (Shafarevich, proved by Faltings)

Let K be a number field and let S be a finite set of primes of K. The set of abelian
varieties of dimension g over K with good reduction away from S is finite.

Conjecture (Mordell, proved by Faltings)
Let C be a nice curve of genus g > 2 over a number field K. The set C(K) is finite.

Faltings' proofs are ineffective: they do not provide a way to enumerate (or even
bound the size of ) these sets and no such methods are currently known.

Alpoge and Lawrence recently proved under the Hodge, Tate, and Fontaine-Mazur
conjectures, the existence of (hopelessly impractical) algorithms to do this.

Our results imply that under modularity and an integral converse theorem for GL4
(with character twists), similar algorithms exist. They are also hopelessly impractical
(but arguably less hopelessly impractical).


https://arxiv.org/pdf/2408.11653

The approximate functional equation

Fix g, N,e. For each nonnegative integer k we define Si(x) := >, fk(7/x)an/n, where

1 c+ioco
fu(x) - / (s — 1)KTc(s)8x1~5 ds.

B 277” —ioo
The functional equation then implies the identity
Sk(x) = e(=1)*Sk(N/x),

valid for all x > 0; this is an approximate functional equation. If we choose k so that
(—1)% = —¢ and put x = v/N we obtain a nontrivial linear constraint on the a,:

> 2 f(n/VN) = 0. (1)

n

The O(y/n) bounds on a, and rapid decay of fx(x) allow us to compute an interval
Ik, m containing the truncated sum in (1) for n < m that does not depend on the aj,.



A system of linear constraints

For each k > 0 of the correct parity (meaning (—1)¥ = —¢), we have linear constraints
Z fx (n/\/>) — € lkm
n<m

We restrict to k = O(N'/*) and orthogonalize the f, with respect to the inner product
(u,v)y = [5° ”(X)V(X) dx. We also have the constraints |a,| < dog(n)+/n for n > 1.

We now assume the L € 8(g, N, ¢) are automorphic, and obtain additional constraints
by twisting L(s) by a Dirichlet character x4: Z — C.

This generally increases the conductor and widens the corresponding interval I, y m,
but for x of small conductor g and small k we obtain useful constraints

(Xq n)/y/(-1) €Axx>fk(n/\/m> € lg k,m-

By fixing local root numbers at primes dividing N we can sharpen these constraints.

n<m



Example computation with N =249 =3-83, 63 =¢cg3 = —1,m = 64

We want to compute bounds on a, € Z satisfying the constraints below.
We know a priori (via the Weil bounds) that a, € [—4,4].

q k a a3 as as ae ar ag e a4 lg.k.64

1 1 1 0.446 0.216 0.112 0.0613 0.0349 0.0206 --- 3.10x1079 —2.424+9.00x 106
1 3 -0.226 0.853 1 0.862 0.674 0.506 0.373 ... 856x1077 42.85+2.76x 1073
1 5 0.854 -0.864 -1 -0.572 -0.112 0.223 0.421 ... 6.78x107% —1.754+0.212

1 7 -1 0.153 0.570 0.366 0.0354 0.202 0.308 ... 859x10~* —1.09+3.70

3 1 -0.891 0 1 -0.866 0 0.618 -0.520 ... 9.62x107% 0.748 +5.88

e The solution dual to maximizing ap is (0.969, —0.0859,0.0124, —0.00332, 0.0027).
We don’t care if this is slightly incorrect (e.g. due to precision loss or bugs).

e Computing this linear combination of constraints using interval arithmetic and
worst case bounds on as, a4, ..., ass we can prove a; < —0.929.

e Rounding to integers, we deduce ap € [—4, —1], eliminating 5 of 9 possibilities.
Minimizing a; may eliminate more possibilities (but not in this example).



Example computation with N =249 =3-83, 63 =¢cg3 = —1,m = 64

We now suppose ap = —4.

This forces a; = 8,a3 = —8, ..., ags = —64 which we move to the RHS.

For odd n we can express ax, = —4a, in terms of a, and remove it from the system.
qg k as ay as ae ar ag a9 e 363 lq.k 64
11 1 0 0366 0 0131 0 00499 --- 1.67x10~8 0.0853 +3.99 x 105
1 3 -1 0 0146 0 0279 0 0198 --- 1.00x1075 —2.91+271x 1073
1 5 1 0 -0590 0 -0353 0 -0.0653 --- 2.36x 1075 4.76 +7.38 x 1072
1 7 -0675 0 1 0 0111 0 -0284 ... 357x107*% —4.90+135
31 0 0 -1 0 0540 0 0 0 —4.45 4+ 1.90

e The dual solutions for minimizing and maximizing a3 are
(0.484,—0.352,0.131, —0.0486,0) and (0.595, —0.27,0.105, —0.0434,0.0732).

e This allows us to prove a3 € [0.264,2.41] (given a, = —4).

e We deduce that [1,—4,1] and [1, —4, 2] are the only possible extensions of [1, —4]
(for our fixed choice of conductor and local root numbers).



Example computation with N =249 =3-83, 63 =¢cg3 = —1,m = 64

We now suppose a; = —3 (this constrains but does not fix a4, ag, . .., 364).

As above, for n odd we have ay, = —3a, and remove ap, from the system.
q k as ay as ES ar ag ag ) lg. k.64
1 1 1 0827 0340 0 0118 0.0786 0.0441 1.18 x 1078 2.23+2.58 x 10~5
1 3 -1 085 0226 0 0283 0319 0.187 7321077  1.86+1.77 x 1073
1 5 -0243 -0459 -1 0 -0.402 0.193 -0.0235 2.66 x 10~5 0.373+7.30 x 102
1 7 0042 0506 1 0 -0367 -0274 -0.788 7.64 x 1074 —3.64 +2.47
3 1 0 0506 -1 0 0610 -0.263 0 4.86 x 104 —0.973 £ 2.22

e Using the dual solutions we are able to prove a3 € [—1.55,1.51] (given a» = —3).

e We find that [1, -3, —1],[1, —3,0],[1, —3, 1] are the possible extensions of [1, —3].



Example computation with N =249 =3-83, 63 =¢cg3 = —1,m = 64

We now suppose ap = —2.

q k a3 ag as ag a7 ag ag ag4 lg. k.64
1 1 1 0.670 0.300 O 0.0995 0.0637  0.0367 9.60 x 1079 —1.2941.39 x 10~5
1 3 -0.495 1 0.464 O 0.390 0.373 0.236 8.56 x 10~7 2.40 +£1.38 x 1073
1 5 -0.390 -0.609 -1 0 -0.310 0.256 0.0834 3.53 x 107> —0.0259 £ 6.45 x 1072
1 7 00947 0653 1 0 -0393 -0353 -0.797 9.85x 1074  —3.54+2.12
31 0 062 -1 0 0629 -0.324 0 598 x 1074  —0.643 + 1.82

e We find that [1, -2, —2],[1, —2, —1] are the possible extensions of [1, —2].



Example computation with N =249 =3-83, 63 =¢cg3 = —1,m = 64

We now suppose a, = —1.
qg k a ay as ag a7 ag ag E ag4 lg. k.64
1 1 1 0.563 0.272 0 0.0873 0.0535 0.0316 --- 8.07x1079 —3.69+£1.17 x 10~°
1 3 0.179 1 0.663 0 0.448 0.373 0.255 ... 8.56x 1077 2.63+1.38 x 1073
1 5 -0679 -0.903 -1 0 -0130 0380 0294 --- 524x107% —0.810+9.57 x 1072
1 7 0191 0920 1 0 -0.440 -0.498 -0.813 --- 139x10"3 —3.384299
3 1 0 0809 -1 0 0659 -0.421 0 S. 7.78x107% —0.115+2.37

e Using the dual solutions we prove a3z € [—7.14, —2.44] (given ap = —1).

e »3(N) =1 and e3 = —1 force a3 > —2, so [1, —1] cannot be extended.



Example computation with N =249 =3-83, 63 =¢cg3 = —1,m = 64

At this point we have determined that if L(A,s) =Y a,n~* is the L-function of a
modular abelian surface of conductor 249 with €3 = £g3 = —1 we must have

[ala a, 83] S {[15 747 1]7 [17 743 2]5 [17 737 71]5 [1a 73) 0]7 [17 73’ 1]’ [1) 727 72]5 [1) 727 *1]}
Continuing in this fashion we find
e 11 possibilities for [a1, a2, a3, a4);

e 7 possibilities for [a1, a2, a3, aa, as];
e 1 possibility for [a1, ap, a3, aa, as, ae, a7], which determines [ag, a9, a10]-
We now switch strategies and use LLL rather than linear programming.

We are searching for integer lattice points contained in a parallelepiped of small
volume that we expect to contain at most one such point.



Example computation with N =249 =3-83, 63 =cg3 = —1,m = 64

T2 8 -5 -8
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Example computation with N =249 =3-83, 63 =¢cg3 = —1,m = 64

At this point we know that the L-function L(A,s) =3 a,n—° of every modular abelian
surface A/Q with conductor 249 and local root numbers €3 = £g3 = —1 satisfies

(ala dap, a3, d4, as, de, 47, dg, 49, 210) - (17 _27 _27 17 07 47 _17 07 47 0)

Increasing m to 3000 yields a system with 738 unknown a, and 219 constraints, with k
ranging up to 77 and g up to 24. Using LLL (16 times) we are able to extend our
unique prefix of length 10 to a unique prefix of length 1000.

This determines the L-polynomials L,(T) for p < 31, which is more than enough to
prove that any A/Q with this L-function prefix is generic (meaning End(Ag) = Z), and
to prove (via the Rankin-Selberg inequality) that there is at most one isogeny class of
abelian surfaces of conductor 249 (it is not hard to rule out other local root numbers).

The Jacobian of the genus 2 curve y? + (x3 + 1)y = x? + x is an obvious candidate
(conductor and ay, . .., aipop match), but it is (still) not known to be modular.


https://www.lmfdb.org/Genus2Curve/Q/249/a/249/1
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Proving completeness

If our algorithm outputs a nonempty list of feasible tuples (a1, ..., an,),
the next step is to show there is at most one L-function in 8(g, N, ) for each prefix.

For this step, we suppose that (ai, ..., an,) is the prefix of two distinct automorphic
L-functions L(s,71) and L(s,m2) in 8(g, N,e). The Rankin—Selberg convolution
L-function L(s,m; X ) is entire unless L(s,71) and L(s,m,) have a common factor.

If they do, we reduce to the g = 1 case where everything is known. Otherwise, we
construct an inequality the coefficients of L(s,m; X m2) must satisfy and show that
they do not (after increasing ng if necessary), proving that no such 71 and m, exist.

We eventually obtain a list of distinct tuples (a1, ..., an,), each of which is the prefix
of at most one automorphic L-function in 8(g, N, ¢).

This gives us an upper bound for our search that we expect to be tight.
Finding an abelian variety for each prefix proves completeness subject to modularity.



What | did over my (2024) summer vacation

Last summer we ran a search using completely new (128-bit AVX-512 based) code that
uses our L-functions-from-nothing approach to efficiently compute/bound conductors.

We enumerated integral models X: y? + h(x)y = f(x) with h; € {0,1} and
|1 £]| < 99 for which Amin(X) is compatible with cond Jac(X) < 229, ignoring
prime-power factors of the form p22t100 compatible with almost good reduction.

Liu's genus2red algorithm (Pari/GP) to compute odd(Nmin) < Nmax = 2%°.

Allombert’'s 1fungenus?2 algorithm (Pari/GP) to compute degree-3 Euler factors
with conductor exponent 1 and discriminant exponent at most 12.

Maistret-S for Euler factors at primes of almost good reduction.
Harvey-S average poly-time for Euler factors at good p < C+/Nnax = 12,000.
Fast (milliseconds) heuristic L-function test iterating over va(Npin).

Slower (minutes) rigorous L-function test to rigorously compute va(/Nmin) via arb.



Smoothness testing

220

Given a roughly 100-bit integer n we want to determine whether it is 2°°-smooth,

and if so, compute its prime factorization. Our strategy is as follows:
e Test divisibility by the 172 primes p < 210.
e Remove all powers of these primes from n.

e Test if what remains is a power of a prime p € (210, 220),

A straight-forward low-level implementation in C will take several thousand clock
cycles (on the order of a microsecond) to do this. Divisibility testing and perfect-power
testing are the two main bottlenecks. Some timings

Standard divisibility test for p < 210 ~ 2700 clock cycles
Montgomery divisibility test for p < 210 ~ 960 clock cycles
AVX-512FMA divisiblity test for p < 210 ~ 120 clock cycles

AVX-512FMA prime power testing (using mod-p tests) ~ 20 clock cycles



Some highlights

e About 80 nanoseconds per curve to enumerate =~ 1017) curves together with their
discriminants, which we test for compatibility with small conductor.

Of these, close to 1010 (about 1 in 107) have sufficiently smooth discriminants.

Of these, roughly 10° have odd(Nmin) < 2%.

Of these, roughly 108 have Nmin < Nimax.
e =~ 2 million twist-minimal curves in &~ 1.5 million isogeny classes.

e Twisting yields nearly 3 million curves in more than 2 million isogeny classes.

Filling out isogeny classes brings the total close to 4 million, combining with curves
found in previous searches and gluing elliptic curves brings the total over 6 million, of
which slightly more than 3 million have Jacobians Q-isogenous to products of elliptic
curves.



Searching for genus 2 curves

Over the past five years we have conducted several searches for genus 2 curves of small
conductor. Below is a vCPU histogram from a computation we ran in 2022 that
enumerated over 102 genus 2 curves in a large parallel computation run in the cloud.
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This computation used 4,034,560 vCPUs in 73 data centers across the globe,
performing more than 300 vCPU years of computation in a few hours of real time.



Searching for genus 2 curves

Our searches found 1927 Jacobians of conductor < 1500 with 451 distinct L-functions,
including many not previously known to arise for Jacobians (or even abelian surfaces).

We also found more than 6.2 million genus 2 curves of conductor < 220 with more than

2.5 million distinct L-functions, which will be added to the LMFDB later this summer.

conductor bound 1000 10000 100000 1000000
curves in LMFDB 159 3069 20265 66 158
curves found 042 29514 493899 6075571

L-functions in LMFDB 109 2807 19775 65534
L-functions found 201 9534 194612 2559187




L-functions of genus 2 curves over QQ with Sato-Tate group USp(4).

Before and after genus 2 murmuration plots (top LMFDB, bottom new dataset).
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How much carbon does a 300 vCPU-year computation emit?

This is a question http://www.green-algorithms.org/ can help answer.
300 vCPU-years is about 1314900 core-hours (2 vCPUs per core).

CPU cores platform location energy carbon
i9-9900K (64GB) 1 desktop Massachusetts 46.99 MWh 19750 Kg
i9-9900K (64GB) 16 desktop Massachusetts 17,61 MWh 7400 Kg
Ryzen 3990X (256GB) 64 desktop Massachusetts 7.44 MWh 3260 Kg
Ryzen 3990X (256GB) 64 cloud Virginia 8.60 MWh 2650 Kg
Ryzen 3990X (256GB) 64 cloud Montreal 8.60 MWh 13 Kg

¥



http://www.green-algorithms.org/

Thank you!
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