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Tables of elliptic curves over Q have a rich history...



The L-functions and modular forms database (LMFDB)

www.lmfdb.org

www.lmfdb.org


A quick genus 2 update

Some (very recent) updates to the genus 2 database:

I Tamagawa numbers for 99.99 percent of curves (van Bommel).
I Proved Mordell-Weil ranks for 99 percent of curves (Stoll).

Matches the analytic rank bound in each case.
I Explicit Mordell-Weil generators for 98 percent of curves (Stoll).
I Complete rational point data up to height bound 106.
I All rational points now known for 60 percent of the curves.
I Arithmetic conductors computed for 77 percent of the curves

(Dokchitser–Doris 2017). All match analytic conductors.

We hope to add real periods and regulators in the near(ish) future.



Building a database of genus 1 curves over Q

1. Prove modularity

2. Enumerate weight 2 newforms with coefficients in Z by conductor

3. Construct corresponding elliptic curves

4. Walk the isogeny graph

5. Compute L-functions
6. Test BSD (well, mostly)

7. Find integer and rational points (in most cases)



Building a database of genus 2 curves over Q

1. Prove modularity ×

2. Enumerate Siegel modular forms by conductor ×

3. Construct corresponding genus 2 curves ×

4. Walk the isogeny graph × (not yet, but some progress)

5. Compute L-functions (this is very feasible!)

6. Test BSD (this is feasible!)

7. Find integer and rational points (so is this, in many cases)

How do we organize curves if we can’t enumerate them by conductor?

We need small conductors to compute L-functions.



Discriminants

Every hyperelliptic curve X/Q of genus g has a minimal Weierstrass model

y2 + h(x)y = f (x)

with deg f ≤ 2g + 2 and deg h ≤ g + 1. The discriminant of X is then

∆(X ) = 24g disc2g+2(f + h2/4) ∈ Z

The curve X has bad reduction at a prime p if and only if p|∆(X ).

This needn’t apply to Jac(X ), but if p|N(Jac(X )) =: N(X ), then p|∆(X ).

In general, one expects N(X )|∆(X ); this is known for g = 2 (Liu 1994), and for curves
with a rational Weierstrass point (Srinivasan 2015).



Finding genus 2 curves of small discriminant
We searched for curves in boxes of various shapes, including

S1(B) = {(f , h) : |fi | ≤ B, hi = 0, 1} (“flat”)
S2(a, b) = {(f , h) : |fi | ≤ ab6−i , hi = 0, 1} (“weighted”)
S3(b) = {(f , h) : |fi | ≤ b4−|i−3|, hi = 0, 1} (“crested”)

S4(b, d) = {(f , h) :
∑

idlogb(|fi |+ 1)e ≤ d , hi = 0, 1} (“weird”)

In the end we used

S1(90) ∪ S2(2, 3.51) ∪ S3(7.14) ∪ S4(10, 10).

This includes more than 3× 1017 (not necessarily minimal) equations of (not
necessarily smooth) curves.

Many of these define isomorphic curves, so we also need an efficient way to reduce to
isomorphism class representatives.



Monomial trees
For hyperelliptic curves of genus g , the discriminant polynomial D(hi , fi ) has 3g + 5
(or 2g + 3 variables for any fixed choice of hi).

Suppose we want to evaluate a polynomial p(x1, . . . , xn) at every point in a box
A1 × · · · × An ⊂ Zn. We use a monomial tree with
I nodes at level n (leaves): monomials in xi of p(x1, . . . , xn).
I nodes at level n − 1: monomials in xi of p(x1, . . . , xn−1, an).
I . . .
I nodes at level 1: monomials in x1 of p(x1, a2, . . . , an) = p1(x).

Nodes at level m + 1 are connected to those at level m via an edge corresponding to
the substitution xm+1 = am+1.

At level 1 we only need to evaluate a univariate polynomial in x1.

For g = 2, with hi fixed, D(f0, . . . , f6) has 246 terms and 703 nodes in its monomial
tree. For g = 3, we have 5247 terms and 19916 nodes.



Computing 1017 discriminants

We enumerate values (a1, . . . , an) in A1 × · · · ×An in reverse lexicographic order (so a1
changes most frequently), updating the nodes at level i of the tree each time ai
changes.

The computation is dominated by the evaluation of at univariate polynomial along an
arithmetic progression, to which very fast finite difference methods can be applied (as
in Kedlaya-S 2008).

For genus 3 hyperelliptic curves the inner loop consists of 7 word size additions and
takes only a few nanoseconds.

All arithmetic is performed modulo 264; provided our discriminant bound
is substantially less than this, almost all discriminants that are “small" in Z/264Z are
small in Z.



Smooth plane curves
The discriminant of a smooth plane curve f (x , y , z) = 0 of degree d is the resultant of
the three partial derivatives fx , fy , fz , with suitable powers of p|d removed so that
discriminants are integers and generate the unit ideal.
(divide by the GCD of the coefficients of the discriminant polynomial).

For d = 4 the discriminant can be computed as the determinant of a 15× 15 matrix
whose entries are homogeneous polynomials in 15 variables (corresponding to the 15
homogeneous monomials of degree 4).

The discriminant polynomial for d = 4 is a homogeneous polynomial of degree 27 in 15
variables with 50, 767, 957 terms. With a suitable ordering of variables the monomial
tree has 246, 798, 254 nodes.

Remarkably, using a monomial tree is not only feasible, but dramatically faster than
computing discriminants individually (for a big enough box).

The inner loop boils down to 10 word-size additions.



Parallel computation
The computation was parallelized by dividing boxes into sub-boxes then run on
Google’s Cloud Platform. We spread the load across multiple data-centers in ten
geographic zones.

For the smooth plane quartic search we used a total of approximately 19,000
pre-emptible 32-core compute instances. At peak usage we had 580,000 cores running
at full load (a new record).

This 300 core-year computation took about 10 hours.

https://cloudplatform.googleblog.com/2017/04/220000-cores-and-counting-MIT-math-professor-breaks-record-for-largest-ever-Compute-Engine-job.html


The boxes we searched and what we found therein
For genus 3 hyperelliptic curves y2 + h(x)y = f (x) we used a flat box with hi ∈ {0, 1}
and |fi | ≤ 31, approximately 3× 1017 equations, as in genus 2.

For smooth plane quartics f (x , y , z) = 0 we used a flat box with |fi | ≤ 9, more than
1019 equations, but after taking advantage of the 48 symmetries the number we
considered was approximately 3× 1017.

In both cases we used a discriminant bound of 107 (versus 106 in genus 2). We found
about two million hyperelliptic and ten million non-hyperelliptic equations meeting this
bound.

Among the hyperelliptic curves we found 67,879 non-isomorphic curves in (at least)
67,830 isogeny classes of Jacobians.

Among the non-hyperelliptic curves we have at least 82,011 isogeny classes of
Jacobians (isomorphism testing is still in progress).



Some hyperelliptic highlights
I 65,272 conductors, including 10 below 10,000, and 6992 primes.
I Smallest conductor found is 3993 for the Jacobian of the curve:

y2 + (x4 + x2 + 1)y = x7 + x6 + x5 + x3 + x2 + x

which is isogenous (but not isomorphic) to X0(33).
I Analytic rank bounds (conditional on Selberg class assumption):

rank count proportion
0 7,700 11%
1 30,840 46%
2 25,486 37%
3 3,723 5%
4 8 0%

I Rank computations for 52 curves still in progress.



A few non-hyperelliptic highlights

I Smallest conductor is 2940, for the Jacobian of the curve

−x3y + x2y2 + 5x2yz − x2z2 + 4xy3 + 5xy2z + xyz2 + 4xz3 + 2y4 + y2z2 + 3z4 = 0

I 7056 prime conductors, smallest of which, 8233, arising for the curve

x3z − x2y2 + 2x2yz − x2z2 − xy3 + 2xy2z − yz3.

This is also the conductor of the Jacobian of the hyperelliptic curve

y2 + (x4 + x3 + x2 + 1)y = x7 − 8x5 − 4x4 + 18x3 − 3x2 − 16x + 8.

In fact, the two Jacobians are isogenous.

I Conductor computations and isomorphism testing still in progress, rank
computations to follow.



The L-function of a curve
Let X be a nice (smooth, projective, geometrically integral) curve of genus g over Q.
The L-series of X is the Dirichlet series

L(X , s) = L(Jac(X ), s) :=
∑
n≥1

ann−s :=
∏
p
Lp(p−s)−1.

For primes p of good reduction for X we have the zeta function

Z (Xp; s) := exp

∑
r≥1

#X (Fpr )T
r

r

 = Lp(T )
(1− T )(1− pT ) ,

and the L-polynomial Lp ∈ Z[T ] in the numerator satisfies

Lp(T ) = T 2gχp(1/T ) = 1− apT + · · ·+ pgT 2g

where χp(T ) is the charpoly of the Frobenius endomorphism of Jac(Xp).



The Selberg class with polynomial Euler factors
The Selberg class Spoly consists of Dirichlet series L(s) =

∑
n≥1 ann−s :

1. L(s) has an analytic continuation that is holomorphic at s 6= 1;

2. For some γ(s) = Qs ∏r
i=1 Γ(λis + µi ) and ε, the completed L-function

Λ(s) := γ(s)L(s) satisfies the functional equation

Λ(s) = εΛ(1− s̄),

where Q > 0, λi > 0, Re(µi ) ≥ 0, |ε| = 1. Define deg L := 2
∑r

i λi .

3. a1 = 1 and an = O(nε) for all ε > 0 (Ramanujan conjecture).

4. L(s) =
∏

p Lp(p−s)−1 for some Lp ∈ Z[T ] with deg Lp ≤ deg L
(has an Euler product).

The Dirichlet series Lan(s,X ) := L(X , s + 1
2) satisfies (3) and (4),

and conjecturally lies in Spoly; for g = 1 this is known (via modularity).



Strong multiplicity one

Theorem (Kaczorowski-Perelli 2001)
If A(s) =

∑
n≥1 ann−s and B(s) =

∑
n≥1 bnn−s lie in Spoly and ap = bp for all but

finitely many primes p, then A(s) = B(s).

Corollary
If Lan(s,X ) lies in Spoly then it is completely determined by (any choice of) all but
finitely many coefficients ap.
Henceforth we assume that Lan(s,X ) ∈ Spoly.

Let ΓC(s) = 2(2π)sΓ(s) and define Λ(X , s) := ΓC(s)gL(X , s). Then

Λ(X , s) = εN1−sΛ(X , 2− s).

where the analytic root number ε = ±1 and the analytic conductor N ∈ Z≥1 are
determined by the ap values (take these as definitions).



Testing the functional equation

Let G(x) be the inverse Mellin transform of ΓC(s)g =
∫∞

0 G(x)x s−1dx ,
and define

S(x) := 1
x

∑
anG(n/x),

so that Λ(X , s) =
∫∞

0 S(x)x−sdx , and for all x > 0 we have

S(x) = εS(N/x).

The function G(x) decays rapidly, and for sufficiently large c0 we have

S(x) ≈ S0(x) := 1
x

∑
n≤c0x

anG(n/x),

with an explicit bound on the error |S(x)− S0(x)|.



Effective strong multiplicity one
Fix a finite set of small primes S (e.g. S = {2}) and an integer M that we know is a
multiple of the conductor N (e.g. M = ∆(X )).

There is a finite set of possibilities for ε = ±1, N|M, and the Euler factors Lp ∈ Z[T ]
for p ∈ S (the coefficients of Lp(T ) are bounded).

Suppose we can compute an for n ≤ c1
√
M whenever p - n for p ∈ S.

We now compute δ(x) := |S0(x)− εS0(N/x)| with x = c1
√
N) for every possible

choice of ε, N, and Lp(T ) for p ∈ S. If all but one choice makes δ(x) larger than our
explicit error bound, we know the correct choice.

For a suitable choice of c1 this is guaranteed to happen.1 One can explicitly determine
a set of O(Nε) candidate values of c1, one of which is guaranteed to work; in practice
the first one usually works.

1Subject to our assumptions; if it does not happen then we have found an explicit counterexample
to the conjectured Langlands correspondence.



Algorithms to compute zeta functions
Given X/Q of genus g , we want to compute Lp(T ) for all good p ≤ B.

complexity per prime
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3(log p)2

group computation p1/4 log p p3/4 log p p(log p)2

p-adic cohomology p1/2(log p)2 p1/2(log p)2 p1/2(log p)2

CRT (Schoof-Pila) (log p)5 (log p)8 (log p)12?

average poly-time (log p)4 (log p)4 (log p)4

For L(X , s) =
∑

ann−s , we only need ap2 for p2 ≤ B, and ap3 for p3 ≤ B. For
1 < r ≤ g we can compute all apr with pr ≤ B in time O(B logB).

The bottom line: it boils down to efficiently computing lots of ap’s.



Genus 3 curves
The canonical embedding of a genus 3 curve into P2 is either
1. a degree-2 cover of a smooth conic (hyperelliptic case)

I conic has a rational point (rationally hyperelliptic);
I conic has no rational points (only geometrically hyperelliptic).

2. a smooth plane quartic (generic case).
Average polynomial-time implementations are available for the first case:
I rational hyperelliptic model [Harvey-S 2014];
I no rational hyperelliptic model [Harvey-Massierer-S 2016].

And now for the second case as well:
I smooth plane quartics [Harvey-S 2017].

Prior work has all been based on p-adic cohomology:

[Lauder 2004], [Castryck-Denef-Vercauteren 2006], [Abott-Kedlaya-Roe 2006],
[Harvey 2010], [Tuitman-Pancrantz 2013], [Tuitman 2015], [Costa 2015],

[Tuitman-Castryck 2016], [Shieh 2016]



Cumulative timings for genus 3 curves
Time to compute Lp(T ) mod p for all good p ≤ B.

B spq-Costa-AKR spq-HS ghyp-MHS hyp-HS hyp-Harvey

212 18 1.4 0.3 0.1 1.3
213 49 2.4 0.7 0.2 2.6
214 142 4.6 1.7 0.5 5.4
215 475 9.4 4.6 1.0 12
216 1,670 21 11 2.1 29
217 5,880 47 27 5.3 74
218 22,300 112 62 14 192
219 78,100 241 153 37 532
220 297,000 551 370 97 1,480
221 1,130,000 1,240 891 244 4,170
222 4,280,000 2,980 2,190 617 12,200
223 16,800,000 6,330 5,110 1,500 36,800
224 66,800,000 14,200 11,750 3,520 113,000
225 244,000,000 31,900 28,200 8,220 395,000
226 972,000,000 83,300 62,700 19,700 1,060,000

(Intel Xeon E7-8867v3 3.3 GHz CPU seconds).



Computing endomorphism rings and algebras

Given a curve X/Q one can explicitly compute End(Jac(X )Q)⊗R, End(Jac(X )Q)⊗Q,
and even the endomorphism ring End(Jac(X )):
I Choose a symplectic basis γ1, . . . , γ2g of H1(X ,Z) and a basis ω1, . . . , ωg of

H0(X , ωX ) over Q;
I Realize Jac(X )(C) as a complex torus Cg/Λ by computing the period matrix

Π = (
∫
γj
ωi )i ,j ;

I Use LLL to determine a basis of the Z-module of matrices R ∈ M2g (Z) such that
ΛR = R;

I Determine the matrices M ∈ M2(Q) in the equality MΠ = ΠR to obtain the
representation of End(Jac(X )Q) on the tangent space
at 0 of Jac(X )Q.

This can be made entirely rigorous (Costa-Mascot-Sijsling-Voight 2017).



Real endomorphism algebras of abelian threefolds
abelian threefold End(AK )R ST(A)0

cube of a CM elliptic curve M3(C) U(1)3
cube of a non-CM elliptic curve M3(R) SU(2)3
product of CM elliptic curve and square of CM elliptic curve C × M2(C) U(1) × U(1)2
• product of CM elliptic curve and QM abelian surface C × M2(R) U(1) × SU(2)2
• product of CM elliptic curve and square of non-CM elliptic curve
product of non-CM elliptic curve and square of CM elliptic curve R × M2(C) SU(2) × U(1)2
• product of non-CM elliptic curve and QM abelian surface R × M2(R) SU(2) × SU(2)2
• product of non-CM elliptic curve and square of non-CM elliptic curve
• CM abelian threefold C × C × C U(1) × U(1) × U(1)
• product of CM elliptic curve and CM abelian surface
• product of three CM elliptic curves
• product of non-CM elliptic curve and CM abelian surface C × C × R U(1) × U(1) × SU(2)
• product of non-CM elliptic curve and two CM elliptic curves
• product of CM elliptic curve and RM abelian surface C × R × R U(1) × SU(2) × SU(2)
• product of CM elliptic curve and two non-CM elliptic curves
• RM abelian threefold R × R × R SU(2) × SU(2) × SU(2)
• product of non-CM elliptic curve and RM abelian surface
• product of 3 non-CM elliptic curves
product of CM elliptic curve and abelian surface C × R U(1) × USp(4)
product of non-CM elliptic curve and abelian surface R × R SU(2) × USp(4)
quadratic CM abelian threefold C U(3)
generic abelian threefold R USp(6)





Thank you!
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