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Explicitly proving bounded gaps

Recall that our goal is to prove upper bounds on

Hm := lim inf
n→∞

pn+m − pn.

We do this by establishing DHL[k,m + 1] := ”every admissible k-tuple H
has infinitely many translates n +H that contain at least m + 1 primes.”

The diameter hk − h1 of any admissible k-tuple H = {h1, . . . , hk} is then an
upper bound on Hm, and we can take the minimal such diameter H(k).

To prove DHL[k,m + 1] it suffices to find weights wn ∈ R≥0 such that∑
x<n≤ 2x

wn

(
Θ(n +H)− m log(3x)

)
> 0

for all sufficiently large x. Here Θ(n +H) :=
∑

p=n+hi prime log p.



Picking the weights wn

In the Maynard-Tao approach, for n ∈ (x, 2x] we use weights of the form

wn :=
( ∑

di|n+hi∏
di<R

λd1,...,dk

)2
,

where R := xϑ/2−ε depends on the level of distribution ϑ; any ϑ < 1
2 works,

and we may take ϑ = 1
2 + $

2 if we can prove MPZ[$, δ].

Let Wn be the product of the primes p < log log log x, and define

λd1,...,dk :=
(∏

i

µ(di)di

) ∑
di|ri,ri⊥Wn

µ(
∏

i ri)
2∏

i φ(ri)
F
(

log r1

log R
, . . . ,

log rk

log R

)
,

for any nonzero square-integrable function F : [0, 1]k → R with support in

Rk := {x1, . . . , xk) ∈ [0, 1]k :
∑

i

xi ≤ 1}.



Maynard’s theorem

Define

I(F) :=

∫ 1

0
· · ·
∫ 1

0
F(t1, . . . , tk)2dt1 . . . dtk,

J(F) :=

k∑
i=1

∫ 1

0
· · ·
∫ 1

0

(∫ 1

0
F(t1, . . . , tk)dti

)2

dt1 . . . dti−1dti+1 . . . dtk,

ρ(F) :=
J(F)

I(F)
, Mk := sup

F
ρ(F)

Theorem (Maynard 2013)
For any 0 < ϑ < 1, if EH[ϑ] and Mk >

2m
ϑ , then DHL[k,m + 1].

We thus seek explicit bounds on Mk (and H(k)).
To prove DHL[k,m + 1] we need Mk > 4m (or Mk > 2m under EH).

http://arxiv.org/abs/1311.4600


Polymath Theorems

For α > 0, define M[α]
k := supF ρ(F), with the supremum over nonzero

square-integrable real-valued functions with support in [0, α]k ∩Rk.

Theorem (D.H.J. Polymath 2014)

If MPZ[$, δ] and M
[ δ

1/4+$ ]

k > m
1/4+$ then DHL[k,m + 1].

For ε ∈ (0, 1) and F : [0, 1 + ε)k → R with support in (1 + ε)Rk, define

J1−ε(F) :=

k∑
i=1

∫
(1−ε)R(i)

k−1

(∫ 1+ε

0
F2dti

)2

, Mk,ε := sup
F

J1−ε(F)

I(F)
.

Theorem (D.H.J. Polymath 2014)
Assume either EH[ϑ] with 1 + ε < 1

θ or GEH[ϑ] with ε < 1
k−1 .

Then Mk,ε >
2m
θ implies DHL[k,m + 1].

http://arxiv.org/abs/1407.4897
http://arxiv.org/abs/1407.4897


Cauchy-Schwarz bound

Suppose we can construct functions Gi : Rk → R>0, for 1 ≤ i ≤ k, such that∫ 1

0
Gi(ti, . . . , tk)dti ≤ 1

for all (t1, . . . , tk) ∈ [0, 1]k (extend Gi to [0, 1]k by zero).

By Cauchy-Schwarz, for any F ∈ L2(Rk) and each i, we have(∫ 1

0
F(t1, . . . , tk)dti

)2

≤
∫ 1

0
F(t1, . . . , tk)2dti ≤

∫ 1

0

F(t1, . . . , tk)2

Gi(t1, . . . , tk)
dti.

Thus for F 6= 0 we have

ρ(F) =
J(F)

I(F)
≤
∑

i

∫
(F2/Gi)∫
F2 ≤ sup

Rk

∑ 1
Gi(ti, . . . , tk)

.

The RHS is an upper bound on Mk = sup ρ(F).



Computing Mk with eigenfunctions

Lemma
If there exists a strictly positive F ∈ L2(Rk) satisfying

λF(t1, . . . , tk) =

k∑
i=1

∫ 1

0
F(t1, . . . , ti−1, t, ti+1, . . . tk)dt

for some fixed λ > 0 and all (t1, . . . , tk) in Rk, then Mk = λ.

Proof: Integrating both sides against F yields

λI(F) = J(F),

so Mk = sup J(F)/I(F) ≥ λ. On the other hand, if we put

Gi(t1, . . . , tk) :=
F(t1, . . . , tk)∫ 1

0 F(t1, . . . , ti−1, t, ti+1, . . . , tk)dt
,

then supRk

∑
i

1
Gi(t1,...,tk)

= λ ≥ Mk.



Computation of M2

Recall the Lambert function W : R>0 → R>0, defined by W(x)eW(x) = x.
Let λ := 1

1−W(1/e) and define f : [0, 1]→ R≥0 by

f (x) :=
1

λ− 1 + x
+

1
2λ− 1

log
λ− x

λ− 1 + x
.

One finds that for any x ∈ [0, 1] we have∫ 1−x

0
f (t)dt = (λ− 1 + x)f (x).

Now define F : R2 → R>0 by F(x, y) := f (x) + f (y). For all (x, y) ∈ R2,∫ 1

0
F(t, y)dt +

∫ 1

0
F(x, t)dt =

∫ 1−y

0
F(t, y)dt +

∫ 1−x

0
F(x, t)dt

= λf (y) + λf (x) = λF(x, y).

Therefore M2 = λ = 1.38593 . . ., by the lemma.



An upper bound on Mk

Lemma
Mk ≤ k

k−1 log k for all k ≥ 2.

Proof: Define Gi : Rk → R>0 by

Gi(t1, . . . , tk) :=
k − 1
log k

· 1
1− t1 − · · · − tk + kti

Then
∫ 1

0 Gi(t1, . . . , tk)dti ≤ 1, and
∑

i
1

Gi(t1,...,tk)
= k

k−1 log k ≥ Mk.

One can extend this argument to show Mk,ε ≤ k
k−1 log(2k − 1).

This implies M4 < 2, so M5 ≥ 2 (proved by Maynard) is best possible.
And M50 < 4, which means the ε-trick was necessary to get H1 ≤ 246;
for k > 50 every admissible k-tuple has diameter at least H(51) = 252.



A lower bound on Mk

Maynard proves Mk ≥ log k − 2 log log k − 2 for k� 1 using F ∈ L2(Rk),

F(t1, . . . , tk) := g(t1) · · · g(tk),

where g : [0,T]→ R has the form g(t) = 1
c+dt , for some c, d,T > 0.

We refine this approach by introducing an additional parameter τ > 0 that
allows us to replace the log log k term with a small constant. Explicitly, let

g(t) :=
1

c + (k − 1)t
,

and define

m2 :=

∫ T

0
g(t)2 dt, µ :=

1
m2

∫ T

0
tg(t)2 dt, σ2 :=

1
m2

∫ T

0
t2g(t)2 dt − µ2.

We require τ and T to satisfy

kµ ≤ 1− τ, kµ < 1− T, kσ2 < (1 + τ − kµ)2.



A lower bound on Mk

Theorem (D.H.J. Polymath 2014)
For k ≥ 2 and c,T, τ > 0 satisfying the inequalities above, we have

Mk ≥
k

k − 1
log k − E(k, c, τ, T),

where E(k, c, τ, T) is an explicit function that is bounded as k→∞ for
suitably chosen c,T, τ . Suitable choices include

c :=
1

log k
− 1

log2 k
, T :=

1
log k

, τ :=
1

log k
.

For any α ≥ T this bound also applies to M[α]
k .

For the k of interest we can generally keep E(k, c, τ, T) < 3 by choosing

c :=
a

log k
, T :=

b
log k

, τ := 1− kµ.

with a ≈ 1 and b slightly less than 1.

http://arxiv.org/abs/1407.4897


Explicit lower bounds on Mk for large k
Lower bounds on Mk and M[T]

k given by the theorem with E := E(k, c, t,T)
determined by k and the parameters a, b as above.

k a b E k
k−1 log k − E result

5511 0.965 000 0.973 000 2.616 6.000 048 609 DHL[k, 4]∗

35 410 0.994 790 0.852 130 2.645 7.829 849 259 DHL[k, 3]
41 588 0.978 780 0.943 190 2.636 8.000 001 401 DHL[k, 5]∗

309 661 0.986 270 0.920 910 2.643 10.000 000 320 DHL[k, 6]∗

1 649 821 1.004 220 0.801 480 2.659 11.657 525 560 DHL[k, 4]
75 845 707 1.007 120 0.770 030 2.663 15.481 250 900 DHL[k, 5]

3 473 955 908 1.007 932 0.749 093 2.665 19.303 748 720 DHL[k, 6]

The starred DHL[k,m + 1]∗ use Mk ≥ 2m and are conditional on EH.
The unstarred DHL[k,m + 1] are unconditional via MPZ[$, δ] using

M[T]
k = M

[ δ
1/4+$ ]

k >
m

1/4 +$
,

with $ maximized subject to 600$ + 180δ < 7 with δ = T( 1
4 +$).



Error term in lower bound on Mk
The error term E(k, c, τ, T) is the explicitly computable function

E(k, c, τ, T) :=
k

k − 1
Z + Z3 + WX + VU

(1 + τ/2)(1− kσ2

(1+τ−kµ)2 )
,

Z :=
1
τ

∫ 1+τ

1

(
r

(
log

r − kµ
T

+
kσ2

4(r − kµ)2 log r−kµ
T

)
+

r2

4kT

)
dr,

Z3 :=
1

m2

∫ T

0
kt log

(
1 +

t
T

)
g(t)2 dt,

W :=
1

m2

∫ T

0
log
(

1 +
τ

kt

)
g(t)2 dt,

X :=
log k
τ

c2,

V :=
c

m2

∫ T

0

1
2c + (k − 1)t

g(t)2 dt,

U :=
log k

c

∫ 1

0

(
(1 + uτ − (k − 1)µ− c)2 + (k − 1)σ2) du.



Comparison with upper bounds

Lower and upper bounds on k needed to obtain DHL[k,m + 1]
(or DHL[k,m + 1]∗ under EH) implied by upper and lower bounds on Mk.

claim M[T]
k min k max k

DHL[k, 2] 4.000 51 54†

DHL[k, 4]∗ 6.000 398 5511
DHL[k, 3] 7.830 2508 35 410
DHL[k, 5]∗ 8.000 2973 41 588
DHL[k, 6]∗ 10.000 22 017 309 661
DHL[k, 4] 11.658 115 601 1 649 821
DHL[k, 5] 15.481 5 288 246 75 845 707
DHL[k, 6] 19.304 241 891 521 3 473 955 908

† Obtained using explicitly constructed F(t1, . . . , tk) 6= g(t1) · · · g(tk).



Lower bounds on Mk for small k

Lemma
Mk := sup ρ(F) is unchanged by restricting to symmetric F ∈ L2(Rk).

We thus restrict our attention to functions

F =

n∑
i=1

aibi

that are linear combinations of a fixed set of R-linearly independent
symmetric s bi ∈ L2(Rk). We wish to choose

a :=

a1
...

an

 ∈ Rn

to maximize ρ(F) over the real vector space spanned by b1, . . . , bn.



Reduction to linear algebra

We thus fix b := (b1, . . . , bn) with bi ∈ L2(Rk) linearly independent, and
consider the real, symmetric, positive definite matrices

I :=

[∫
[0,1]k

bi(t1, . . . , tk)bj(t1, . . . , tk)dt1 . . . dtk

]
ij

,

J :=

[
k
∫
[0,1]k+1

bi(t1, . . . , tk)bj(t1, . . . , tk−1, t)dt1 . . . dtk dt

]
ij

,

For F := a · b we may compute

I(F) = aᵀIa, J(F) = aᵀJa, ρ(F) =
aᵀJa
aᵀIa

.

We may rescale a so that I(F) = 1 without changing ρ(F).
We thus wish to maximize aᵀJa subject to aᵀIa = 1.



Reduction to a generalized eigenvalue problem

To maximize aᵀJa subject to aᵀIa = 1 we introduce a Lagrange multiplier λ.
Let f (a) := aᵀJa and g(a) := aᵀIa− 1. We require

∇f − λ∇g = 0.

Since I and J are symmetric, ∇f = 2Ja and ∇g = 2Ia, we thus have

2(J− λI)a = 0.

Equivalently (since I is invertible), I-1Ja = λa. Thus λ is an eigenvalue
of I-1J and a is a corresponding eigenvector (scaled to make aᵀIa = 1).

Note that Ja = λIa implies aᵀJa = λaᵀIa = λ, so we want to maximize λ.
We thus seek a maximal solution to the generalized eigenvalue problem

Ja = λIa.

Fast methods to approximate a and λ are well known.



Symmetric polynomials

The standard monomial basis of symmetric polynomials Pα(t1, . . . , tk) is
indexed by partitions α := (α1, . . . , αr) of weight r ≤ k.

For example, with k = 3 we have,

P(1,1,1) = t1t2t3, P(2,1,1) = t2
1t2t3 + t2

2t1t3 + t2
3t1t2, P(3) = t3

1 + t3
2 + t3

3

The set {P a
(1)Pα : a ≥ 0, 1 6∈ α} is also a basis, as is the set

{(1− P(1))
aPα : a ≥ 0, 1 6∈ α}.

It turns out to be computationally more convenient to work with the subset

B := {(1− P(1))
aPα : a ≥ 0, α ⊆ 2N},

which empirically works nearly as well and is a basis for the subalgebra it
generates (its span is closed under multiplication).



Computing the matrices I and J

To compute I and J we use the finite subset Bd := {b ∈ B : deg b ≤ d} for
some fixed degree d (ideally d ≥ k/2, but this is only feasible for small k).
We view each b ∈ Bd as a function Rk → R by restriction.

We first compute a lookup table of coefficients cα,β,γ ∈ Z defined by

PαPβ =
∑
γ

cα,β,γPγ

indexed by pairs (α, β) with α, β ⊆ 2N and deg(Pα) + deg(Pβ) ≤ d.

To compute the entries of I we use∫
Rk

(1− P(1))
aPα =

k!

r1! · · · rs!(k − r)!
· a!α1! · · ·αr!

(a + α1 + · · ·+ αr + k)!
,

where r1, . . . , rs are the multiplicities of the blocks of α.
Computing J is more work, but it can be reduced to integrals of this form.



I and J as inner products
The quadratic forms I and J both correspond to inner products on L2(Rk).
Indeed, I(F) =

∫
Rk

F2 = 〈F,F〉 is the standard inner product on L2(Rk), and

J(F) =
∑

i

∫
R(i)

k−1

(∫ 1−
∑

j 6=i tj

0
F dt′i

)2

dR(i)
k−1

=

∫
Rk

F
∑

i

(∫ 1−
∑

j 6=i tj

0
F dt′i

)
dRk

= 〈F,LF〉,

where L : L2(Rk)→ L2(Rk) is the self-adjoint linear operator

LF :=

k∑
i=1

∫ 1−
∑

j 6=i tj

0
F dt′i (support truncated to Rk),

For any finite set {b1, . . . , bn} of linearly independent symmetric functions,

I =
[
〈bi, bj〉

]
ij, J =

[
〈Lbi, bj〉

]
ij.



Using a Krylov subspace

For any nonzero F and integer d we may consider the Krylov subpace

span{F,LF,L2F, . . . ,Ld−1F}

of dimension d. With respect to this basis, I and J are Hankel matrices

I =
[
〈Li+j−2F,F〉

]
ij, J =

[
〈Li+j−1F,F〉

]
ij

and we only need to compute the 2d values 〈LnF,F〉 for 0 ≤ n ≤ 2d − 1.

It is convenient to take F = 1, in which case each LnF is a symmetric
polynomial of degree n. For example

L1 = k + (1− k)P(1),

L21 =
k2 + k − (2k2 − 2k)P(1) + (2k2 − 6k + 4)P(1,1) + (k2 − 3)P(2)

2
.



Mk bounds with the Krylov subspace method

k lower upper

2 1.38593 1.38629
3 1.64644 1.64791
4 1.84540 1.84839
5 2.00714 2.01179
· · · · · · · · ·
10 2.54547 2.55842
20 3.12756 3.15340
30 3.48313 3.51848
40 3.73919 3.78346
50 3.93586 3.99186
53 3.98621 4.04664
54 4.00223 4.06424
60 4.09101 4.16374
· · · · · · · · ·
100 4.46424 4.65168



Using a Krylov subspace
The entries 〈Ln1, 1〉 of I and J are rational functions in k with denominator
(k + n)!. The numerators Pn are the polynomials

n Pn

0 1
1 2k
2 5k2 + k
3 14k3 + 10k2

4 42k4 + 69k3 + 10k2 − k
5 132k5 + 406k4 + 196k3 − 14k2

6 429k6 + 2186k5 + 2310k4 + 184k3 − 79k2 + 10k
7 1430k7 + 11124k6 + 21208k5 + 8072k4 − 1654k3 + 124k2 + 16k
8 4862k8 + 54445k7 + 167092k6 + 143156k5 − 1064k4 − 7909k3 + 2558k2 − 260k
...

...

The number of terms in Ln1 grows very rapidly with n, but Wn has only
n + 1 terms, each of which has just O(n log n) bits.

Key question: Is there a recurrence we can use to derive Pn+1 directly
from P0, . . . ,Pn without needing to compute I and J?


