Sieve theory and small gaps between primes: A variational problem

Andrew V. Sutherland
Massachusetts Institute of Technology
(on behalf of D.H.J. Polymath)

Explicit Methods in Number Theory
Mathematisches Forschungsinstitut Oberwolfach

July 9, 2015

Explicitly proving bounded gaps

Recall that our goal is to prove upper bounds on

$$
H_{m}:=\liminf _{n \rightarrow \infty} p_{n+m}-p_{n} .
$$

We do this by establishing $\operatorname{DHL}[k, m+1]:=$ "every admissible k-tuple \mathcal{H} has infinitely many translates $n+\mathcal{H}$ that contain at least $m+1$ primes."

The diameter $h_{k}-h_{1}$ of any admissible k-tuple $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ is then an upper bound on H_{m}, and we can take the minimal such diameter $H(k)$.

To prove $\mathrm{DHL}[k, m+1]$ it suffices to find weights $w_{n} \in \mathbb{R}_{\geq 0}$ such that

$$
\sum_{x<n \leq 2 x} w_{n}(\Theta(n+\mathcal{H})-m \log (3 x))>0
$$

for all sufficiently large x. Here $\Theta(n+\mathcal{H}):=\sum_{p=n+h_{i} \text { prime }} \log p$.

Picking the weights w_{n}

In the Maynard-Tao approach, for $n \in(x, 2 x]$ we use weights of the form

$$
\begin{gathered}
w_{n}:=\left(\sum_{\substack{d_{i} \mid n+h_{i} \\
\prod d_{i}<R}} \lambda_{d_{1}, \ldots, d_{k}}\right)^{2}, \\
\prod d_{i}<R
\end{gathered}
$$

where $R:=x^{\vartheta / 2-\epsilon}$ depends on the level of distribution ϑ; any $\vartheta<\frac{1}{2}$ works, and we may take $\vartheta=\frac{1}{2}+\frac{\varpi}{2}$ if we can prove MPZ $[\varpi, \delta]$.

Let W_{n} be the product of the primes $p<\log \log \log x$, and define

$$
\lambda_{d_{1}, \ldots, d_{k}}:=\left(\prod_{i} \mu\left(d_{i}\right) d_{i}\right) \sum_{d_{i} \mid r_{i}, r_{i} \perp W_{n}} \frac{\mu\left(\prod_{i} r_{i}\right)^{2}}{\prod_{i} \phi\left(r_{i}\right)} F\left(\frac{\log r_{1}}{\log R}, \ldots, \frac{\log r_{k}}{\log R}\right)
$$

for any nonzero square-integrable function $F:[0,1]^{k} \rightarrow \mathbb{R}$ with support in

$$
\left.\mathcal{R}_{k}:=\left\{x_{1}, \ldots, x_{k}\right) \in[0,1]^{k}: \sum_{i} x_{i} \leq 1\right\}
$$

Maynard's theorem

Define

$$
\begin{aligned}
& I(F):=\int_{0}^{1} \cdots \int_{0}^{1} F\left(t_{1}, \ldots, t_{k}\right)^{2} d t_{1} \ldots d t_{k}, \\
& J(F):=\sum_{i=1}^{k} \int_{0}^{1} \cdots \int_{0}^{1}\left(\int_{0}^{1} F\left(t_{1}, \ldots, t_{k}\right) d t_{i}\right)^{2} d t_{1} \ldots d t_{i-1} d t_{i+1} \ldots d t_{k}, \\
& \rho(F):=\frac{J(F)}{I(F)}, \quad M_{k}:=\sup _{F} \rho(F)
\end{aligned}
$$

Theorem (Maynard 2013)

For any $0<\vartheta<1$, if $\mathrm{EH}[\vartheta]$ and $M_{k}>\frac{2 m}{\vartheta}$, then $\mathrm{DHL}[k, m+1]$.

We thus seek explicit bounds on M_{k} (and $H(k)$). To prove $\mathrm{DHL}[k, m+1]$ we need $M_{k}>4 m$ (or $M_{k}>2 m$ under EH).

Polymath Theorems

For $\alpha>0$, define $M_{k}^{[\alpha]}:=\sup _{F} \rho(F)$, with the supremum over nonzero square-integrable real-valued functions with support in $[0, \alpha]^{k} \cap \mathcal{R}_{k}$.

Theorem (D.H.J. Polymath 2014)

If $\mathrm{MPZ}[\varpi, \delta]$ and $M_{k}^{\left[\frac{\delta}{[/ 4+\omega]}\right]}>\frac{m}{1 / 4+\omega}$ then $\mathrm{DHL}[k, m+1]$.
For $\epsilon \in(0,1)$ and $F:[0,1+\epsilon)^{k} \rightarrow \mathbb{R}$ with support in $(1+\epsilon) \mathcal{R}_{k}$, define

$$
J_{1-\epsilon}(F):=\sum_{i=1}^{k} \int_{(1-\epsilon) \mathcal{R}_{k-1}^{(i)}}\left(\int_{0}^{1+\epsilon} F^{2} d t_{i}\right)^{2}, \quad M_{k, \epsilon}:=\sup _{F} \frac{J_{1-\epsilon}(F)}{I(F)} .
$$

Theorem (D.H.J. Polymath 2014)

Assume either $\mathrm{EH}[\vartheta]$ with $1+\epsilon<\frac{1}{\theta}$ or $\mathrm{GEH}[\vartheta]$ with $\epsilon<\frac{1}{k-1}$. Then $M_{k, \epsilon}>\frac{2 m}{\theta}$ implies DHL $[k, m+1]$.

Cauchy-Schwarz bound

Suppose we can construct functions $G_{i}: \mathcal{R}_{k} \rightarrow \mathbb{R}_{>0}$, for $1 \leq i \leq k$, such that

$$
\int_{0}^{1} G_{i}\left(t_{i}, \ldots, t_{k}\right) d t_{i} \leq 1
$$

for all $\left(t_{1}, \ldots, t_{k}\right) \in[0,1]^{k}$ (extend G_{i} to $[0,1]^{k}$ by zero).
By Cauchy-Schwarz, for any $F \in L^{2}\left(\mathcal{R}^{k}\right)$ and each i, we have

$$
\left(\int_{0}^{1} F\left(t_{1}, \ldots, t_{k}\right) d t_{i}\right)^{2} \leq \int_{0}^{1} F\left(t_{1}, \ldots, t_{k}\right)^{2} d t_{i} \leq \int_{0}^{1} \frac{F\left(t_{1}, \ldots, t_{k}\right)^{2}}{G_{i}\left(t_{1}, \ldots, t_{k}\right)} d t_{i}
$$

Thus for $F \neq 0$ we have

$$
\rho(F)=\frac{J(F)}{I(F)} \leq \frac{\sum_{i} \int\left(F^{2} / G_{i}\right)}{\int F^{2}} \leq \sup _{\mathcal{R}_{k}} \sum \frac{1}{G_{i}\left(t_{i}, \ldots, t_{k}\right)} .
$$

The RHS is an upper bound on $M_{k}=\sup \rho(F)$.

Computing M_{k} with eigenfunctions

Lemma

If there exists a strictly positive $F \in L^{2}\left(\mathcal{R}_{k}\right)$ satisfying

$$
\lambda F\left(t_{1}, \ldots, t_{k}\right)=\sum_{i=1}^{k} \int_{0}^{1} F\left(t_{1}, \ldots, t_{i-1}, t, t_{i+1}, \ldots t_{k}\right) d t
$$

for some fixed $\lambda>0$ and all $\left(t_{1}, \ldots, t_{k}\right)$ in \mathcal{R}_{k}, then $M_{k}=\lambda$.
Proof: Integrating both sides against F yields

$$
\lambda I(F)=J(F),
$$

so $M_{k}=\sup J(F) / I(F) \geq \lambda$. On the other hand, if we put

$$
G_{i}\left(t_{1}, \ldots, t_{k}\right):=\frac{F\left(t_{1}, \ldots, t_{k}\right)}{\int_{0}^{1} F\left(t_{1}, \ldots, t_{i-1}, t, t_{i+1}, \ldots, t_{k}\right) d t},
$$

then $\sup _{\mathcal{R}_{k}} \sum_{i \frac{1}{G_{i}\left(t_{1}, \ldots, t_{k}\right)}}=\lambda \geq M_{k}$.

Computation of M_{2}

Recall the Lambert function $W: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$, defined by $W(x) e^{W(x)}=x$. Let $\lambda:=\frac{1}{1-W(1 / e)}$ and define $f:[0,1] \rightarrow \mathbb{R}_{\geq 0}$ by

$$
f(x):=\frac{1}{\lambda-1+x}+\frac{1}{2 \lambda-1} \log \frac{\lambda-x}{\lambda-1+x} .
$$

One finds that for any $x \in[0,1]$ we have

$$
\int_{0}^{1-x} f(t) d t=(\lambda-1+x) f(x)
$$

Now define $F: \mathcal{R}_{2} \rightarrow \mathbb{R}_{>0}$ by $F(x, y):=f(x)+f(y)$. For all $(x, y) \in \mathcal{R}_{2}$,

$$
\begin{aligned}
\int_{0}^{1} F(t, y) d t+\int_{0}^{1} F(x, t) d t & =\int_{0}^{1-y} F(t, y) d t+\int_{0}^{1-x} F(x, t) d t \\
& =\lambda f(y)+\lambda f(x)=\lambda F(x, y)
\end{aligned}
$$

Therefore $M_{2}=\lambda=1.38593 \ldots$, by the lemma.

An upper bound on M_{k}

Lemma

$M_{k} \leq \frac{k}{k-1} \log k$ for all $k \geq 2$.
Proof: Define $G_{i}: \mathcal{R}_{k} \rightarrow R_{>0}$ by

$$
G_{i}\left(t_{1}, \ldots, t_{k}\right):=\frac{k-1}{\log k} \cdot \frac{1}{1-t_{1}-\cdots-t_{k}+k t_{i}}
$$

Then $\int_{0}^{1} G_{i}\left(t_{1}, \ldots, t_{k}\right) d t_{i} \leq 1$, and $\sum_{i} \frac{1}{G_{i}\left(t_{1}, \ldots, t_{k}\right)}=\frac{k}{k-1} \log k \geq M_{k}$.
One can extend this argument to show $M_{k, \epsilon} \leq \frac{k}{k-1} \log (2 k-1)$.
This implies $M_{4}<2$, so $M_{5} \geq 2$ (proved by Maynard) is best possible. And $M_{50}<4$, which means the ϵ-trick was necessary to get $H_{1} \leq 246$; for $k>50$ every admissible k-tuple has diameter at least $H(51)=252$.

A lower bound on M_{k}

Maynard proves $M_{k} \geq \log k-2 \log \log k-2$ for $k \gg 1$ using $F \in L^{2}\left(\mathcal{R}_{k}\right)$,

$$
F\left(t_{1}, \ldots, t_{k}\right):=g\left(t_{1}\right) \cdots g\left(t_{k}\right),
$$

where $g:[0, T] \rightarrow \mathbb{R}$ has the form $g(t)=\frac{1}{c+d t}$, for some $c, d, T>0$.
We refine this approach by introducing an additional parameter $\tau>0$ that allows us to replace the $\log \log k$ term with a small constant. Explicitly, let

$$
g(t):=\frac{1}{c+(k-1) t},
$$

and define

$$
m_{2}:=\int_{0}^{T} g(t)^{2} d t, \quad \mu:=\frac{1}{m_{2}} \int_{0}^{T} \operatorname{tg}(t)^{2} d t, \quad \sigma^{2}:=\frac{1}{m_{2}} \int_{0}^{T} t^{2} g(t)^{2} d t-\mu^{2} .
$$

We require τ and T to satisfy

$$
k \mu \leq 1-\tau, \quad k \mu<1-T, \quad k \sigma^{2}<(1+\tau-k \mu)^{2} .
$$

A lower bound on M_{k}

Theorem (D.H.J. Polymath 2014)

For $k \geq 2$ and $c, T, \tau>0$ satisfying the inequalities above, we have

$$
M_{k} \geq \frac{k}{k-1} \log k-E(k, c, \tau, T)
$$

where $E(k, c, \tau, T)$ is an explicit function that is bounded as $k \rightarrow \infty$ for suitably chosen c, T, τ. Suitable choices include

$$
c:=\frac{1}{\log k}-\frac{1}{\log ^{2} k}, \quad T:=\frac{1}{\log k}, \quad \tau:=\frac{1}{\log k} .
$$

For any $\alpha \geq T$ this bound also applies to $M_{k}^{[\alpha]}$.
For the k of interest we can generally keep $E(k, c, \tau, T)<3$ by choosing

$$
c:=\frac{a}{\log k}, \quad T:=\frac{b}{\log k}, \quad \tau:=1-k \mu .
$$

with $a \approx 1$ and b slightly less than 1.

Explicit lower bounds on M_{k} for large k

Lower bounds on M_{k} and $M_{k}^{[T]}$ given by the theorem with $E:=E(k, c, t, T)$ determined by k and the parameters a, b as above.

k	a	b	E	$\frac{k}{k-1} \log k-E$	result
5511	0.965000	0.973000	2.616	6.000048609	$\mathrm{DHL}[k, 4]^{*}$
35410	0.994790	0.852130	2.645	7.829849259	$\mathrm{DHL}[k, 3]$
41588	0.978780	0.943190	2.636	8.000001401	$\mathrm{DHL}[k, 5]^{*}$
309661	0.986270	0.920910	2.643	10.000000320	$\mathrm{DHL}[k, 6]^{*}$
1649821	1.004220	0.801480	2.659	11.657525560	$\mathrm{DHL}[k, 4]$
75845707	1.007120	0.770030	2.663	15.481250900	$\mathrm{DHL}[k, 5]$
3473955908	1.007932	0.749093	2.665	19.303748720	$\mathrm{DHL}[k, 6]$

The starred $\mathrm{DHL}[k, m+1]^{*}$ use $M_{k} \geq 2 m$ and are conditional on EH. The unstarred DHL $[k, m+1]$ are unconditional via MPZ $[\varpi, \delta]$ using

$$
M_{k}^{[T]}=M_{k}^{\left[\frac{\delta}{1 / 4+\varpi]}\right]}>\frac{m}{1 / 4+\varpi},
$$

with ϖ maximized subject to $600 \varpi+180 \delta<7$ with $\delta=T\left(\frac{1}{4}+\varpi\right)$.

Error term in lower bound on M_{k}

The error term $E(k, c, \tau, T)$ is the explicitly computable function

$$
\begin{aligned}
E(k, c, \tau, T) & :=\frac{k}{k-1} \frac{Z+Z_{3}+W X+V U}{(1+\tau / 2)\left(1-\frac{k \sigma^{2}}{(1+\tau-k \mu)^{2}}\right)}, \\
Z & :=\frac{1}{\tau} \int_{1}^{1+\tau}\left(r\left(\log \frac{r-k \mu}{T}+\frac{k \sigma^{2}}{4(r-k \mu)^{2} \log \frac{r-k \mu}{T}}\right)+\frac{r^{2}}{4 k T}\right) d r, \\
Z_{3} & :=\frac{1}{m_{2}} \int_{0}^{T} k t \log \left(1+\frac{t}{T}\right) g(t)^{2} d t, \\
W & :=\frac{1}{m_{2}} \int_{0}^{T} \log \left(1+\frac{\tau}{k t}\right) g(t)^{2} d t, \\
X & :=\frac{\log k}{\tau} c^{2} \\
V & :=\frac{c}{m_{2}} \int_{0}^{T} \frac{1}{2 c+(k-1) t} g(t)^{2} d t, \\
U & :=\frac{\log k}{c} \int_{0}^{1}\left((1+u \tau-(k-1) \mu-c)^{2}+(k-1) \sigma^{2}\right) d u .
\end{aligned}
$$

Comparison with upper bounds

Lower and upper bounds on k needed to obtain $\operatorname{DHL}[k, m+1]$ (or $\mathrm{DHL}[k, m+1]^{*}$ under EH) implied by upper and lower bounds on M_{k}.

claim	$M_{k}^{[T]}$	$\min k$	$\max k$
DHL $[k, 2]$	4.000	51	54^{\dagger}
DHL[k,4]	6.000	398	5511
DHL[k,3]	7.830	2508	35410
DHL $^{\dagger}[k, 5]^{*}$	8.000	2973	41588
DHL $[k, 6]^{*}$	10.000	22017	309661
DHL $[k, 4]$	11.658	115601	1649821
DHL $[k, 5]$	15.481	5288246	75845707
$\mathrm{DHL}[k, 6]$	19.304	241891521	3473955908

\dagger Obtained using explicitly constructed $F\left(t_{1}, \ldots, t_{k}\right) \neq g\left(t_{1}\right) \cdots g\left(t_{k}\right)$.

Lower bounds on M_{k} for small k

Lemma

$M_{k}:=\sup \rho(F)$ is unchanged by restricting to symmetric $F \in L^{2}\left(\mathcal{R}_{k}\right)$.
We thus restrict our attention to functions

$$
F=\sum_{i=1}^{n} a_{i} b_{i}
$$

that are linear combinations of a fixed set of \mathbb{R}-linearly independent symmetric s $b_{i} \in L^{2}\left(\mathcal{R}_{k}\right)$. We wish to choose

$$
\mathbf{a}:=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right] \in \mathbb{R}^{n}
$$

to maximize $\rho(F)$ over the real vector space spanned by b_{1}, \ldots, b_{n}.

Reduction to linear algebra

We thus fix $\mathbf{b}:=\left(b_{1}, \ldots, b_{n}\right)$ with $b_{i} \in L^{2}\left(\mathcal{R}_{k}\right)$ linearly independent, and consider the real, symmetric, positive definite matrices

$$
\begin{aligned}
& \mathbf{I}:=\left[\int_{[0,1]^{k}} b_{i}\left(t_{1}, \ldots, t_{k}\right) b_{j}\left(t_{1}, \ldots, t_{k}\right) d t_{1} \ldots d t_{k}\right]_{i j} \\
& \mathbf{J}:=\left[k \int_{[0,1]^{k+1}} b_{i}\left(t_{1}, \ldots, t_{k}\right) b_{j}\left(t_{1}, \ldots, t_{k-1}, t\right) d t_{1} \ldots d t_{k} d t\right]_{i j}
\end{aligned}
$$

For $F:=\mathbf{a} \cdot \mathbf{b}$ we may compute

$$
I(F)=\mathbf{a}^{\top} \mathbf{I} \mathbf{a}, \quad J(F)=\mathbf{a}^{\top} \mathbf{J} \mathbf{a}, \quad \rho(F)=\frac{\mathbf{a}^{\top} \mathbf{J} \mathbf{a}}{\mathbf{a}^{\top} \mathbf{I} \mathbf{a}} .
$$

We may rescale a so that $I(F)=1$ without changing $\rho(F)$.
We thus wish to maximize $\mathbf{a}^{\top} \mathbf{J a}$ subject to $\mathbf{a}^{\top} \mathbf{I} \mathbf{a}=1$.

Reduction to a generalized eigenvalue problem

To maximize $\mathbf{a}^{\top} \mathbf{J a}$ subject to $\mathbf{a}^{\top} \mathbf{I} \mathbf{a}=1$ we introduce a Lagrange multiplier λ. Let $f(\mathbf{a}):=\mathbf{a}^{\top} \mathbf{J} \mathbf{a}$ and $g(\mathbf{a}):=\mathbf{a}^{\top} \mathbf{I} \mathbf{a}-1$. We require

$$
\nabla f-\lambda \nabla g=0
$$

Since \mathbf{I} and \mathbf{J} are symmetric, $\nabla f=2 \mathbf{J a}$ and $\nabla g=2 \mathbf{I}$ a, we thus have

$$
2(\mathbf{J}-\lambda \mathbf{I}) \mathbf{a}=0 .
$$

Equivalently (since \mathbf{I} is invertible), $\mathbf{I}^{\mathbf{1}} \mathbf{J a}=\lambda \mathbf{a}$. Thus λ is an eigenvalue of $\mathbf{I}^{-1} \mathbf{J}$ and \mathbf{a} is a corresponding eigenvector (scaled to make $\mathbf{a}^{\top} \mathbf{I} \mathbf{a}=1$).

Note that $\mathbf{J a}=\lambda \mathbf{I} \mathbf{a}$ implies $\mathbf{a}^{\top} \mathbf{J a}=\lambda \mathbf{a}^{\top} \mathbf{I} \mathbf{a}=\lambda$, so we want to maximize λ. We thus seek a maximal solution to the generalized eigenvalue problem

$$
\mathbf{J a}=\lambda \mathbf{I} \mathbf{a} .
$$

Fast methods to approximate a and λ are well known.

Symmetric polynomials

The standard monomial basis of symmetric polynomials $P_{\alpha}\left(t_{1}, \ldots, t_{k}\right)$ is indexed by partitions $\alpha:=\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ of weight $r \leq k$.

For example, with $k=3$ we have,

$$
P_{(1,1,1)}=t_{1} t_{2} t_{3}, \quad P_{(2,1,1)}=t_{1}^{2} t_{2} t_{3}+t_{2}^{2} t_{1} t_{3}+t_{3}^{2} t_{1} t_{2}, \quad P_{(3)}=t_{1}^{3}+t_{2}^{3}+t_{3}^{3}
$$

The set $\left\{P_{(1)}^{a} P_{\alpha}: a \geq 0,1 \notin \alpha\right\}$ is also a basis, as is the set

$$
\left\{\left(1-P_{(1)}\right)^{a} P_{\alpha}: a \geq 0,1 \notin \alpha\right\} .
$$

It turns out to be computationally more convenient to work with the subset

$$
\mathcal{B}:=\left\{\left(1-P_{(1)}\right)^{a} P_{\alpha}: a \geq 0, \alpha \subseteq 2 \mathbb{N}\right\},
$$

which empirically works nearly as well and is a basis for the subalgebra it generates (its span is closed under multiplication).

Computing the matrices I and \mathbf{J}

To compute \mathbf{I} and \mathbf{J} we use the finite subset $\mathcal{B}_{d}:=\{b \in \mathcal{B}: \operatorname{deg} b \leq d\}$ for some fixed degree d (ideally $d \geq k / 2$, but this is only feasible for small k). We view each $b \in \mathcal{B}_{d}$ as a function $\mathcal{R}_{k} \rightarrow \mathbb{R}$ by restriction.

We first compute a lookup table of coefficients $c_{\alpha, \beta, \gamma} \in \mathbb{Z}$ defined by

$$
P_{\alpha} P_{\beta}=\sum_{\gamma} c_{\alpha, \beta, \gamma} P_{\gamma}
$$

indexed by pairs (α, β) with $\alpha, \beta \subseteq 2 \mathbb{N}$ and $\operatorname{deg}\left(P_{\alpha}\right)+\operatorname{deg}\left(P_{\beta}\right) \leq d$.
To compute the entries of I we use

$$
\int_{\mathcal{R}_{k}}\left(1-P_{(1)}\right)^{a} P_{\alpha}=\frac{k!}{r_{1}!\cdots r_{s}!(k-r)!} \cdot \frac{a!\alpha_{1}!\cdots \alpha_{r}!}{\left(a+\alpha_{1}+\cdots+\alpha_{r}+k\right)!},
$$

where r_{1}, \ldots, r_{s} are the multiplicities of the blocks of α.
Computing \mathbf{J} is more work, but it can be reduced to integrals of this form.

I and J as inner products

The quadratic forms I and J both correspond to inner products on $L^{2}\left(\mathcal{R}_{k}\right)$. Indeed, $I(F)=\int_{\mathcal{R}_{k}} F^{2}=\langle F, F\rangle$ is the standard inner product on $L^{2}\left(\mathcal{R}_{k}\right)$, and

$$
\begin{aligned}
J(F) & =\sum_{i} \int_{\mathcal{R}_{k-1}^{(i)}}\left(\int_{0}^{1-\sum_{j \neq i} t_{j}} F d t_{i}^{\prime}\right)^{2} d \mathcal{R}_{k-1}^{(i)} \\
& =\int_{\mathcal{R}_{k}} F \sum_{i}\left(\int_{0}^{1-\sum_{j \neq i} t_{j}} F d t_{i}^{\prime}\right) d \mathcal{R}_{k} \\
& =\langle F, \mathcal{L} F\rangle,
\end{aligned}
$$

where $\mathcal{L}: L^{2}\left(\mathcal{R}_{k}\right) \rightarrow L^{2}\left(\mathcal{R}_{k}\right)$ is the self-adjoint linear operator

$$
\mathcal{L} F:=\sum_{i=1}^{k} \int_{0}^{1-\sum_{j \neq i} t_{j}} F d t_{i}^{\prime} \quad\left(\text { support truncated to } \mathcal{R}_{k}\right),
$$

For any finite set $\left\{b_{1}, \ldots, b_{n}\right\}$ of linearly independent symmetric functions,

$$
\mathbf{I}=\left[\left\langle b_{i}, b_{j}\right\rangle\right]_{i j}, \quad \mathbf{J}=\left[\left\langle\mathcal{L} b_{i}, b_{j}\right\rangle\right]_{i j}
$$

Using a Krylov subspace

For any nonzero F and integer d we may consider the Krylov subpace

$$
\operatorname{span}\left\{F, \mathcal{L} F, \mathcal{L}^{2} F, \ldots, \mathcal{L}^{d-1} F\right\}
$$

of dimension d. With respect to this basis, I and \mathbf{J} are Hankel matrices

$$
\mathbf{I}=\left[\left\langle\mathcal{L}^{i+j-2} F, F\right\rangle\right]_{i j}, \quad \mathbf{J}=\left[\left\langle\mathcal{L}^{i+j-1} F, F\right\rangle\right]_{i j}
$$

and we only need to compute the $2 d$ values $\left\langle\mathcal{L}^{n} F, F\right\rangle$ for $0 \leq n \leq 2 d-1$.
It is convenient to take $F=1$, in which case each $\mathcal{L}^{n} F$ is a symmetric polynomial of degree n. For example

$$
\begin{aligned}
\mathcal{L} 1 & =k+(1-k) P_{(1)} \\
\mathcal{L}^{2} 1 & =\frac{k^{2}+k-\left(2 k^{2}-2 k\right) P_{(1)}+\left(2 k^{2}-6 k+4\right) P_{(1,1)}+\left(k^{2}-3\right) P_{(2)}}{2}
\end{aligned}
$$

M_{k} bounds with the Krylov subspace method

k	lower	upper
2	1.38593	1.38629
3	1.64644	1.64791
4	1.84540	1.84839
5	2.00714	2.01179
\ldots	\cdots	\cdots
10	2.54547	2.55842
20	3.12756	3.15340
30	3.48313	3.51848
40	3.73919	3.78346
50	3.93586	3.99186
53	3.98621	4.04664
54	4.00223	4.06424
60	4.09101	4.16374
\cdots	\cdots	\cdots
100	4.46424	4.65168

Using a Krylov subspace

The entries $\left\langle\mathcal{L}^{n} 1,1\right\rangle$ of \mathbf{I} and \mathbf{J} are rational functions in k with denominator $(k+n)$!. The numerators P_{n} are the polynomials

n	P_{n}
0	1
1	$2 k$
2	$5 k^{2}+k$
3	$14 k^{3}+10 k^{2}$
4	$42 k^{4}+69 k^{3}+10 k^{2}-k$
5	$132 k^{5}+406 k^{4}+196 k^{3}-14 k^{2}$
6	$429 k^{6}+2186 k^{5}+2310 k^{4}+184 k^{3}-79 k^{2}+10 k$
7	$1430 k^{7}+11124 k^{6}+21208 k^{5}+8072 k^{4}-1654 k^{3}+124 k^{2}+16 k$
8	$4862 k^{8}+54445 k^{7}+167092 k^{6}+143156 k^{5}-1064 k^{4}-7909 k^{3}+2558 k^{2}-260 k$

The number of terms in $\mathcal{L}^{n} 1$ grows very rapidly with n, but W_{n} has only $n+1$ terms, each of which has just $O(n \log n)$ bits.

Key question: Is there a recurrence we can use to derive P_{n+1} directly from P_{0}, \ldots, P_{n} without needing to compute \mathbf{I} and \mathbf{J} ?

