Sieve theory and small gaps between primes: Introduction

Andrew V. Sutherland Massachusetts Institute of Technology (on behalf of D.H.J. Polymath)

Explicit Methods in Number Theory Mathematisches Forschungsinstitut Oberwolfach

July 6, 2015

A quick historical overview

$$
\Delta_{m}:=\liminf _{n \rightarrow \infty} \frac{p_{n+m}-p_{n}}{\log p_{n}}
$$

$$
H_{m}:=\liminf _{n \rightarrow \infty}\left(p_{n+m}-p_{n}\right)
$$

Twin Prime Conjecture: $H_{1}=2$
Prime Tuples Conjecture: $H_{m} \sim m \log m$

1896	Hadamard-Vallée Poussin	$\Delta_{1} \leq 1$
1926	Hardy-Littlewood	$\Delta_{1} \leq 2 / 3$ under GRH
1940	Rankin	$\Delta_{1} \leq 3 / 5$ under GRH
1940	Erdős	$\Delta_{1}<1$
1956	Ricci	$\Delta_{1} \leq 15 / 16$
1965	Bombieri-Davenport	$\Delta_{1} \leq 1 / 2, \Delta_{m} \leq m-1 / 2$
\ldots	\ldots	\ldots
1988	Maier	$\Delta_{1}<0.2485$.
2005	Goldston-Pintz-Yıldırım	$\Delta_{1}=0, \Delta_{m} \leq m-1, \mathrm{EH} \Rightarrow H_{1} \leq 16$
2013	Zhang	$H_{1}<70,000,000$
2013	Polymath 8a	$H_{1} \leq 4680$
2013	Maynard-Tao	$H_{1} \leq 600, H_{m} \ll m^{3} e^{4 m}, \mathrm{EH} \Rightarrow H_{1} \leq 12$
2014	Polymath 8b	$H_{1} \leq 246, H_{m} \ll e^{3.815 m}, \mathrm{GEH} \Rightarrow H_{1} \leq 6$
		$H_{2} \leq 398,130, H_{3} \leq 24,797,814, \ldots$

The prime number theorem in arithmetic progressions

Define the weighted prime counting functions ${ }^{1}$

$$
\Theta(x):=\sum_{\text {prime } p \leq x} \log p, \quad \Theta(x ; q, a):=\sum_{\substack{\text { prime } p \leq x \\ p \equiv a \bmod q}} \log p .
$$

Then $\Theta(x) \sim x$ (the prime number theorem), and for $a \perp q$,

$$
\Theta(x ; q, a) \sim \frac{x}{\phi(q)} .
$$

We are interested in the discrepancy between these two quantities. Clearly $\frac{-x}{\phi(q)} \leq \Theta(x ; q, a)-\frac{x}{\phi(q)} \leq\left(\frac{x}{q}+1\right) \log x$, and for any $Q<x$,

$$
\sum_{q \leq Q} \max _{a \perp q}\left|\Theta(x ; q, a)-\frac{x}{\phi(q)}\right| \leq \sum_{q \leq Q}\left(\frac{2 x \log x}{q}+\frac{x}{\phi(q)}\right) \ll x(\log x)^{2}
$$

${ }^{1}$ One can also use $\psi(x):=\sum_{n \leq x} \Lambda(n)$, where $\Lambda(n)$ is the von Mangoldt function.

The Elliott-Halberstam conjecture

For any $0<\theta<1$, let $\mathrm{EH}[\theta]$ denote the claim that for any $A \geq 1$,

$$
\sum_{q \leq x^{\theta}} \max _{a \perp q}\left|\Theta(x ; q, a)-\frac{x}{\phi(q)}\right| \ll \frac{x}{(\log x)^{A}}
$$

1965: Bombieri and Vinogradov prove $\mathrm{EH}[\theta]$ for all $\theta<1 / 2$.

1968: Elliott and Halberstam conjecture $\mathrm{EH}[\theta]$ for all $\theta<1$.

Peter Elliot

Heini Halberstam

Prime tuples

Let $\mathcal{H}=\left\{h_{1}, \ldots h_{k}\right\}$ be a set of k integers. We call \mathcal{H} admissible if it does not form a complete set of residues modulo any prime.
inadmissible: $\{0,1\},\{0,2,4\},\{0,2,6,8,12,14\}$.
admissible: $\{0\},\{0,2\},\{0,2,6\},\{0,4,6\},\{0,4,6,10,12,16\}$.
Let $\pi(n+\mathcal{H})$ count the primes in $n+\mathcal{H}:=\left\{n+h_{1}, \ldots, n+h_{k}\right\}$.

Conjecture (Hardy-Littlewood 1923)

Let \mathcal{H} be an admissible k-tuple. There is an explicit $c_{\mathcal{H}}>0$ for which

$$
\pi_{\mathcal{H}}(x):=\#\{n \leq x: \pi(n+\mathcal{H})=k\} \sim c_{\mathcal{H}} \int_{2}^{x} \frac{d t}{(\log t)^{k}},
$$

Godfrey Hardy

John Littlewood

The GPY Theorem

Let $\operatorname{DHL}[k, r]$ denote the claim that for every admissible k-tuple \mathcal{H}, $\pi(n+\mathcal{H}) \geq r$ for infinitely many n. Put $\operatorname{diam}(\mathcal{H}):=\max (\mathcal{H})-\min (\mathcal{H})$.

Then $\operatorname{DHL}[k, m+1] \Rightarrow H_{m} \leq \operatorname{diam}(\mathcal{H})$ for any admissible k-tuple \mathcal{H}.

Theorem (Goldston-Pintz-Yıldırım 2005)

For $0<\theta<1$, if $k \geq 2$ and $\ell \geq 1$ are integers for which

$$
2 \theta>\left(1+\frac{1}{2 \ell+1}\right)\left(1+\frac{2 \ell+1}{k}\right),
$$

then $\mathrm{EH}[\theta] \Rightarrow \mathrm{DHL}[k, 2]$. In particular, $\mathrm{EH}\left[\frac{1}{2}+\epsilon\right] \Rightarrow H_{1}<\infty$.

János Pintz

Cem Yıldırım

The GPY method

$$
\text { Let } \Theta(n+\mathcal{H}):=\sum_{n+h_{i}} \text { prime } \log \left(n+h_{i}\right) \text {, where } \mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\} .
$$

To prove $\mathrm{DHL}[k, m+1]$ it suffices to show that for any admissible k-tuple \mathcal{H} there exist nonnegative weights w_{n} for which

$$
\begin{equation*}
\sum_{x<n \leq 2 x} w_{n}(\Theta(n+\mathcal{H})-m \log (3 x))>0 \tag{1}
\end{equation*}
$$

holds for all sufficiently large x.

The GPY method

Let $\Theta(n+\mathcal{H}):=\sum_{n+h_{i} \text { prime }} \log \left(n+h_{i}\right)$, where $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$.
To prove $\mathrm{DHL}[k, m+1]$ it suffices to show that for any admissible k-tuple \mathcal{H} there exist nonnegative weights w_{n} for which

$$
\begin{equation*}
\sum_{x<n \leq 2 x} w_{n}(\Theta(n+\mathcal{H})-m \log (3 x))>0 \tag{1}
\end{equation*}
$$

holds for all sufficiently large x. GPY used weights $w(n)$ of the form

$$
w_{n}:=\left(\sum_{\substack{d \mid \prod_{i}\left(n+h_{i}\right) \\ d<R}} \lambda_{d}\right)^{2}, \quad \lambda_{d}:=\mu(d) f(d), \quad R:=x^{\theta / 2}
$$

to establish (1) with $m=1^{*}$ and $\theta>\frac{1}{2}$, using $f(d) \approx\left(\log \frac{R}{d}\right)^{k+\ell}$. (motivation: $\sum_{d \mid n} \mu(d)\left(\log \frac{n}{d}\right)^{k}$ vanishes when $\left.\omega(n)>k\right)$.

* As noted by GPY, their method cannot address $m>1$, even under EH.

Zhang's Theorem

Let $\mathrm{MPZ}[\varpi, \delta]$ denote the claim that for any $A \geq 1$ we have

$$
\sum_{q}\left|\Theta(x ; q, a)-\frac{x}{\phi(q)}\right| \ll \frac{x}{(\log x)^{A}}
$$

where q varies over x^{δ}-smooth squarefree integers up to $x^{1 / 2+2 \varpi}$ and a is a fixed x^{δ}-coarse integer (depending on x but not q).*

Zhang's Theorem

Let $\mathrm{MPZ}[\varpi, \delta]$ denote the claim that for any $A \geq 1$ we have

$$
\sum_{q}\left|\Theta(x ; q, a)-\frac{x}{\phi(q)}\right| \ll \frac{x}{(\log x)^{A}},
$$

where q varies over x^{δ}-smooth squarefree integers up to $x^{1 / 2+2 \varpi}$ and a is a fixed x^{δ}-coarse integer (depending on x but not q).*

Theorem (Zhang 2013)

(1) For any $\varpi, \delta>0$ and all sufficiently large k,

$$
\mathrm{MPZ}[\varpi, \delta] \Rightarrow \mathrm{DHL}[k, 2] .^{\dagger}
$$

(2) $\operatorname{MPZ}[\varpi, \delta]$ holds for all $\varpi, \delta \leq 1 / 1168$.
*Zhang imposes an additional constraint on a that can be eliminated.
${ }^{\dagger}$ A similar (weaker) implication was proved earlier by Motohashi and Pintz (2006).

Zhang's result

Using $\varpi=\delta=1 / 1168$, Zhang proved that $\mathrm{DHL}[k, 2]$ holds for all

$$
k \geq 3.5 \times 10^{6}
$$

For $k=3.5 \times 10^{6}$, taking the first k primes greater than k yields an admissible k-tuple of diameter less than 7×10^{7}.* It follows that

$$
H_{1}=\liminf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right)<7 \times 10^{7}
$$

*In fact, less than 6×10^{7}.

The Polymath project

Goals of Polymath8a:
(1) Improve Zhang's bound on H_{1},
(2) Attempt to better understand and refine Zhang's argument.

Natural sub-projects for addressing the first goal:
(1) Minimizing $H(k)$ by constructing narrow admissible k-tuples.
(2) Minimizing k for which $\operatorname{MPZ}(\varpi, \delta)$ implies $\operatorname{DHL}(k, 2)$.
(3) Maximizing ϖ for which $\mathrm{MPZ}(\varpi, \delta)$ holds.

Questions relevant to the second goal:
(1) What role do the Weil conjectures play?
(2) Can the hypotheses in $\mathrm{MPZ}(\varpi, \delta)$ be usefully modified?

Polymath8 web page.

Polymath 8a results

ϖ, δ	k	H	
$\varpi=\delta=1 / 1168$	3500000	70000000	Zhang's paper
$\varpi=\delta=1 / 1168$	3500000	55233504	Optimize $H=H(k)$
$\varpi=\delta=1 / 1168$	341640	4597926	Optimize $k=k(\varpi, \delta)$
$\varpi=\delta=1 / 1168$	34429	386344	Make $k \propto \varpi^{-3 / 2}$
$828 \varpi+172 \delta<1$	22949	248816	Allow $\varpi \neq \delta$
$280 \varpi+80 \delta<3$	873	6712	Strengthen MPZ (ϖ, δ)
$280 \varpi+80 \delta<3$	720	5414	Make k less sensitive to δ
$600 \varpi+180 \delta<7$	632	4680	Further optimize ϖ, δ

Using only the Riemann hypothesis for curves:

$168 \varpi+48 \delta<1$	1783	14950

A detailed timeline of improvements can be found here.

Optimized GPY Theorem

In the GPY Theorem (and Zhang's result), we have $k \propto \varpi^{-2}$. This can be improved to $k \propto \varpi^{-3 / 2}$.

Theorem (D.H.J. Polymath 2013)
Let $k \geq 2$ and $0<\varpi<1 / 4$ and $0<\delta<1 / 4+\varpi$ satisfy

$$
(1+4 \varpi)(1-\kappa)>\frac{j_{k-2}^{2}}{k(k-1)}
$$

where j_{k} is the first positive zero of the Bessel function J_{k} of the first kind and $\kappa=\kappa(\varpi, \delta, k)$ is an explicit error term.
Then MPZ $[\varpi, \delta] \Rightarrow \mathrm{DHL}[k, 2]$.
Moreover, $\mathrm{EH}[1 / 2+2 \varpi] \Rightarrow \mathrm{DHL}[k, 2]$ with $\kappa=0$. *
We have $j_{n}=n+c n^{1 / 3}+O\left(n^{-1 / 3}\right)$, so $\frac{j_{k-2}^{2}}{k(k-1)} \sim 1+2 c k^{-2 / 3}$.
*The second statement was independently proved by Farkas, Pintz, and Revesz.

Dense divisibility

For each $i \in \mathbb{Z}_{\geq 0}$ and $y \in \mathbb{R}_{\geq 1}$, we define i-tuply y-dense divisibility:
(1) Every natural number n is 0 -tuply y-densely divisible.
(2) n is i-tuply y-densely divisible if for all $j, k \geq 0$ with $j+k=i-1$ and $1 \leq R \leq y n$ we can write $n=q r$ for some j-tuply y-densely divisible q and k-tuply y-densely divisible r with $\frac{1}{y} R \leq r \leq R$.
This can be viewed as a generalization of y-smoothness:
n is y-smooth $\quad \Longleftrightarrow \quad n$ is i-tuply y-densely divisible for all i.
But for any fixed i and y, the largest prime that may divide an i-tuply y-densely divisible integer n is unbounded.

Example (i-tuply 5 -densely divisible but not 5 -smooth $n \leq 100$)

i-tuply but not $(i+1)$-tuply 5 -densely divisible non-5-smooth integers:
$i=1: 14,21,33,35,39,44,52,55,65,66,68,76,78,85,88,95,98$.
$i=2: 28,42,63,70,99$.
$i=3: 56,84$.

A stronger form of MPZ $[\varpi, \delta]$

Let $\mathrm{MPZ}^{(i)}[\varpi, \delta]$ denote MPZ $[\varpi, \delta]$ with the x^{δ}-smoothness constraint on the modulus q replaced by i-tuply x^{δ}-divisibility.

Then $\operatorname{MPZ}^{(i)}[\varpi, \delta] \Rightarrow \operatorname{MPZ}[\varpi, \delta] \Rightarrow \operatorname{DHL}[k, 2]$ for each $i \geq 0$.
But this implication can be proved directly in a way that makes k essentially independent of δ; this lets us increase ϖ and decrease k.

Theorem (D.H.J. Polymath 2013)

(i) $\mathrm{MPZ}^{(4)}[\varpi, \delta]$ holds for all $\varpi, \delta>0$ satisfying $600 \varpi+180 \delta<7$. (ii) $\mathrm{MPZ}^{(2)}[\varpi, \delta]$ holds for all $\varpi, \delta>0$ satisfying $168 \varpi+48 \delta<1$. The proof of (ii) does not require any of Deligne's results.

The Maynard-Tao approach

Recall that in the GPY method we require weights $w_{n} \geq 0$ that satisfy

$$
\sum_{x<n \leq 2 x} w_{n}(\Theta(n+\mathcal{H})-m \log (3 x))>0
$$

for sufficiently large x. GPY achieved this using weights of the form

$$
w_{n}:=\left(\sum_{\substack{d \mid \prod_{i}\left(n+h_{i}\right) \\ d<x^{\theta} / 2}} \lambda_{d}\right)^{2}, \quad \lambda_{d}:=\mu(d) f(d) .
$$

Maynard (and independently, Tao) instead use weights of the form

$$
w_{n}:=\left(\sum_{\substack{d_{i} \mid n_{n}+h_{i} \\ \prod d_{i}<x^{\theta} / 2}} \lambda_{d_{1}, \ldots, d_{k}}\right)^{2}, \quad \lambda_{d_{1}, \ldots, d_{k}}: \approx\left(\prod \mu\left(d_{i}\right)\right) f\left(d_{1}, \ldots, d_{k}\right) .
$$

where f is defined in terms of a smooth F that we are free to choose.

A variational problem

Let $F:[0,1]^{k} \rightarrow \mathbb{R}$ denote a nonzero square-integrable function with support in the simplex $\mathcal{R}_{k}:=\left\{\left(x_{1}, \ldots, x_{k}\right) \in[0,1]^{k}: \sum_{i} x_{i} \leq 1\right\}$.

$$
\begin{aligned}
& I(F):=\int_{0}^{1} \cdots \int_{0}^{1} F\left(t_{1}, \ldots, t_{k}\right)^{2} d t_{1} \ldots d t_{k} \\
& J(F):=\sum_{i=1}^{k} \int_{0}^{1} \cdots \int_{0}^{1}\left(\int_{0}^{1} F\left(t_{1}, \ldots, t_{k}\right) d t_{i}\right)^{2} d t_{1} \ldots d t_{i-1} d t_{i+1} \ldots d t_{k} \\
& \rho(F):=\frac{J(F)}{I(F)}, \quad M_{k}:=\sup _{F} \rho(F)
\end{aligned}
$$

Theorem (Maynard 2013)
For any $0<\theta<1$, if $\mathrm{EH}[\theta]$ and $M_{k}>\frac{2 m}{\theta}$, then $\mathrm{DHL}[k, m+1]$.

Explicitly bounding M_{k}

To prove $M_{k}>\frac{2 m}{\theta}$, it suffices to exhibit an F with $\rho(F)>\frac{2 m}{\theta}$.
Maynard considers functions F defined by a polynomial of the form

$$
P:=\sum_{a+2 b \leq d} c_{a, b}\left(1-P_{1}\right)^{a} P_{2}^{b}
$$

where $P_{1}:=\sum_{i} t_{i}, P_{2}:=\sum_{i} t_{i}^{2}$, with support restricted to \mathcal{R}_{k}.
The function $\rho(F)$ is then a ratio of quadratic forms in the $c_{a, b}$ that are completely determined by our choice of k and d.
If \mathbf{I} and \mathbf{J} are the matrices of these forms (which are real, symmetric, and positive definite), we want to choose k and d so that $\mathbf{I}^{-1} \mathbf{J}$ has an eigenvalue $\lambda>4 m$.
The corresponding eigenvector then determines the coefficients $c_{a, b}$.

Example: With $k=5$ and $d=3$ we can explicitly compute

$$
\begin{aligned}
& \mathbf{I}=\frac{1}{1995840}\left[\begin{array}{cccccc}
16632 & 3960 & 2772 & 495 & 792 & 297 \\
3960 & 1100 & 495 & 110 & 110 & 33 \\
2772 & 495 & 792 & 110 & 297 & 132 \\
495 & 110 & 110 & 20 & 33 & 12 \\
792 & 110 & 297 & 33 & 132 & 66 \\
297 & 33 & 132 & 12 & 66 & 36
\end{array}\right], \\
& \mathbf{J}=\frac{1}{11975040}\left[\begin{array}{cccccc}
166320 & 35640 & 35640 & 5610 & 11880 & 4950 \\
35640 & 8184 & 7260 & 1218 & 2376 & 990 \\
35640 & 7260 & 8910 & 1287 & 3300 & 1485 \\
5610 & 1218 & 1287 & 203 & 450 & 195 \\
11880 & 2376 & 3300 & 450 & 1320 & 630 \\
4950 & 990 & 1485 & 195 & 630 & 315
\end{array}\right],
\end{aligned}
$$

with row/column indexes ordered as $c_{0,0}, c_{0,1}, c_{1,0}, c_{1,1}, c_{2,0}, c_{3,0}$.
The largest eigenvalue of $\mathbf{I}^{-1} \mathbf{J}$ is ≈ 2.0027. An approximate eigenvector is

$$
\mathbf{a}=[0,5,-15,70,49,0], \quad \text { for which } \quad \frac{\mathbf{a}^{\top} \mathbf{J a}}{\mathbf{a}^{\top} \mathbf{I} \mathbf{a}}=\frac{1417255}{708216}>2 .
$$

It follows that $\rho(F)=\frac{J(F)}{I(F)}=\frac{\mathbf{a}^{\top} \mathbf{J a}}{\mathbf{a}^{\top} \mathrm{T} \mathbf{a}}=\frac{1417255}{708216}>2$ for the function F defined by

$$
P=5 P_{2}-15\left(1-P_{1}\right)+70\left(1-P_{1}\right) P_{2}+49\left(1-P_{1}\right)^{2} .
$$

Thus $M_{5}>2$; under EH we get $\operatorname{DHL}[5,2]$ and $H_{1} \leq 12$, using $\{0,4,6,10,12\}$.
Taking $k=105$ and $d=11$ gives $M_{105}>4$, $\operatorname{DHL}[105,2], H_{1} \leq 600$ (unconditionally).

Maynard's results

Theorem (Maynard 2013)

We have $M_{5}>2, M_{105}>4$, and $M_{k}>\log k-2 \log \log k-2$ for all sufficiently large k.* These bounds imply
(1) $H_{1} \leq 12$ under EH ,
(2) $H_{1} \leq 600$,
(3) $H_{m} \leq m^{3} e^{4 m+5}$ for all $m \geq 1$.

The bound $H_{1} \leq 600$ relies only on Bombieri-Vinogradov. In fact, for any $\theta>0$ we have $\mathrm{EH}[\theta] \Rightarrow H_{1}<\infty$.

${ }^{*} k \geq 200$ is sufficiently large (D.H.J. Polymath).

Dickson's conjecture

Conjecture (Dickson 1904)

Every admissible k-tuple has infinitely many translates composed entirely of primes (Dickson k-tuples).

The Maynard-Tao theorem implies that for each $k \geq 2$ a positive proportion of admissible k-tuples are Dickson k-tuples.

Dickson's conjecture

Conjecture (Dickson 1904)

Every admissible k-tuple has infinitely many translates composed entirely of primes (Dickson k-tuples).

The Maynard-Tao theorem implies that for each $k \geq 2$ a positive proportion of admissible k-tuples are Dickson k-tuples.

More precisely, there is a constant $c=c(k)>0$ such that for all sufficiently large x the proportion of k-tuples in $[1, x]$ that are Dickson k-tuples is greater than c. Proof:
(1) Let $m=k-1$ and $K=m^{3} e^{4 m+5}$.

Then every admissible K-tuple contains at least one Dickson k-tuple.
(2) Let $S=\{n \in[1, x]: n \perp p$ for $p \leq K\}$. Every K-tuple in S is admissible.
(3) There are at least $\binom{\# S}{K} /\binom{\# S-k}{K-k}=\binom{\# S}{k} /\binom{K}{k}$ Dickson k-tuples in S. The proportion of k-tuples in $[0, x]$ that lie in S is $\gg(\log K)^{-k}$.

The Polymath project (Polymath8b)

Goals:
(1) Improve Maynard's bounds on H_{1} and asymptotics for H_{m}.
(2) Get explicit bounds on H_{m} for $m=2,3,4, \ldots$

Natural sub-projects:
(1) Constructing narrow admissible k-tuples for large k.
(2) Explicit lower bounds on M_{k}.
(3) Figuring out how to replace $\mathrm{EH}\left[\frac{1}{2}+2 \varpi\right]$ with MPZ $\left.\varpi \varpi, \delta\right]$.

Key questions:
(1) Maynard uses F of a specific form to bound M_{k}, would more complicated choices for F work better?
(2) To what extent can Zhang's work and the Polymath8a results be combined with the Maynard-Tao approach?

Polymath8b results

Bounds that do not use Zhang or Polymath8a results:

k	M_{k}	m	H_{m}	
105	4	1	600	Maynard's paper
102	4	1	576	Optimized Maynard
54	4	1	270	More general F
50	4	1	246	ϵ-enlarged simplex
3	2	1	6	under GEH
51	4	2	252	under GEH
5511	6	3	52116	under EH
41588	8	4	474266	under EH
309661	10	5	4137854	under EH

We also prove

$$
\frac{k}{k-1} \log k-c<M_{k} \leq \frac{k}{k-1} \log k
$$

for an effective constant $c \approx 3$.

Sieving an ϵ-enlarged simplex

Fix $\epsilon \in(0,1)$ and let $F:[0,1+\epsilon)^{k} \rightarrow \mathbb{R}$ denote a square-integrable function with support in $(1+\epsilon) \mathcal{R}_{k}$. Define

$$
\begin{aligned}
J_{1-\epsilon}(F) & :=\sum_{i=1}^{k} \int_{(1-\epsilon) \mathcal{R}_{k-1}}\left(\int_{0}^{1+\epsilon} F\left(t_{1}, \ldots, t_{k}\right) d t_{i}\right)^{2} d t_{1} \ldots d t_{i-1} d t_{i+1} \ldots d t_{k}, \\
M_{k, \epsilon} & :=\sup _{F} \frac{J_{1-\epsilon}(F)}{I(F)} .
\end{aligned}
$$

Theorem (D.H.J. Polymath 2014)

Assume either $\mathrm{EH}[\theta]$ with $1+\epsilon<\frac{1}{\theta}$ or $\mathrm{GEH}[\theta]$ with $\epsilon<\frac{1}{k-1}$. Then $M_{k, \epsilon}>\frac{2 m}{\theta}$ implies DHL $[k, m+1]$.
$M_{50,1 / 25}>4$ proves $H_{1} \leq 246$ and $M_{4,0.168}>2$ gives $H_{1} \leq 8$ under GEH. To get $H_{1} \leq 6$ under GEH we prove a specific result for $k=3$.

Polymath8b results

Bounds that incorporate Polymath8a results:

ϖ, δ	k	m	H_{m}
$600 \varpi+180 \delta<7$	35410	2	398130
$600 \varpi+180 \delta<7$	1649821	3	24797814
$600 \varpi+180 \delta<7$	75845707	4	1431556072
$600 \varpi+180 \delta<7$	3473995908	5	80550202480

For comparison, if we only use Bombieri-Vinogradov we get $H_{2}<474266$ rather than $H_{2}<398130$ (but H_{1} is not improved).

We also prove $H_{m} \ll m e^{\left(4-\frac{28}{157}\right) m}$.
*Sharper bounds on H_{m} are listed on the Polymath8 web page, that use $1080 \varpi+330 \delta<13$, but this constraint has not been rigorously verified.

Sieving a truncated simplex

Fix positive $\varpi, \delta<1 / 4$ such that $\mathrm{MPZ}[\varpi, \delta]$ holds.
For $\alpha>0$, define $M_{k}^{[\alpha]}:=\sup _{F} \rho(F)$, with the supremum over nonzero square-integrable functions with support in $[0, \alpha]^{k} \cap \mathcal{R}_{k}$.

Theorem (D.H.J. Polymath 2014)

Assume MPZ[$\varpi, \delta]$. Then $\mathrm{DHL}[k, m+1]$ holds whenever

$$
M_{k}^{\left[\frac{\delta}{1 / 4+\omega}\right]}>\frac{m}{1 / 4+\varpi} .
$$

Example

$H_{2} \leq 398130$ is proved using an admissible 35410-tuple and showing

$$
M_{35410}^{\left[\frac{\delta}{1 / 4+\varpi}\right]}>\frac{2}{1 / 4+\varpi}
$$

for some $\delta, \varpi>0$ with $600 \varpi+180 \delta<7$ (which implies MPZ[$\varpi, \delta]$).

