Sieve theory and small gaps between primes: Introduction

Andrew V. Sutherland MASSACHUSETTS INSTITUTE OF TECHNOLOGY (on behalf of D.H.J. Polymath)

Explicit Methods in Number Theory MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

July 6, 2015

A quick historical overview

$$\Delta_m \coloneqq \liminf_{n \to \infty} \frac{p_{n+m} - p_n}{\log p_n}$$

 $H_m \coloneqq \liminf_{n \to \infty} \left(p_{n+m} - p_n \right)$

Twin Prime Conjecture: $H_1 = 2$

Prime Tuples Conjecture: $H_m \sim m \log m$

1896	Hadamard–Vallée Poussin	$\Delta_1 \leq 1$
1926	Hardy–Littlewood	$\Delta_1 \leq 2/3$ under GRH
1940	Rankin	$\Delta_1 \leq 3/5$ under GRH
1940	Erdős	$\Delta_1 < 1$
1956	Ricci	$\Delta_1 \le 15/16$
1965	Bombieri–Davenport	$\Delta_1 \leq 1/2, \Delta_m \leq m-1/2$
•••		••••
1988	Maier	$\Delta_1 < 0.2485.$
2005	Goldston-Pintz-Yıldırım	$\Delta_1 = 0, \Delta_m \leq m - 1, EH \Rightarrow H_1 \leq 16$
2013	Zhang	$H_1 < 70,000,000$
2013	Polymath 8a	$H_1 \leq 4680$
2013	Maynard-Tao	$H_1 \leq 600, H_m \ll m^3 e^{4m}, EH \Rightarrow H_1 \leq 12$
2014	Polymath 8b	$H_1 \leq 246, H_m \ll e^{3.815m}, GEH \Rightarrow H_1 \leq 6$
	-	$H_2 \leq 398, 130, H_3 \leq 24, 797, 814, \ldots$

The prime number theorem in arithmetic progressions

Define the weighted prime counting functions¹

$$\Theta(x) \coloneqq \sum_{\substack{\text{prime } p \leq x}} \log p, \qquad \Theta(x;q,a) \coloneqq \sum_{\substack{\text{prime } p \leq x \\ p \equiv a \bmod q}} \log p.$$

Then $\Theta(x) \sim x$ (the prime number theorem), and for $a \perp q$,

$$\Theta(x;q,a) \sim \frac{x}{\phi(q)}.$$

We are interested in the discrepancy between these two quantities. Clearly $\frac{-x}{\phi(q)} \le \Theta(x;q,a) - \frac{x}{\phi(q)} \le \left(\frac{x}{q} + 1\right) \log x$, and for any Q < x, $\sum_{q \le Q} \max_{a \perp q} \left| \Theta(x;q,a) - \frac{x}{\phi(q)} \right| \le \sum_{q \le Q} \left(\frac{2x \log x}{q} + \frac{x}{\phi(q)} \right) \ll x (\log x)^2.$

¹One can also use $\psi(x) := \sum_{n < x} \Lambda(n)$, where $\Lambda(n)$ is the von Mangoldt function.

The Elliott-Halberstam conjecture

For any $0 < \theta < 1$, let $EH[\theta]$ denote the claim that for any $A \ge 1$,

$$\sum_{q \le x^{\theta}} \max_{a \perp q} \left| \Theta(x; q, a) - \frac{x}{\phi(q)} \right| \ll \frac{x}{(\log x)^A}.$$

1965: Bombieri and Vinogradov prove $EH[\theta]$ for all $\theta < 1/2$.

Enrico Bombieri

Ivan Vinogradov

1968: Elliott and Halberstam conjecture $EH[\theta]$ for all $\theta < 1$.

Peter Elliot

Heini Halberstam

Prime tuples

Let $\mathcal{H} = \{h_1, \dots, h_k\}$ be a set of *k* integers. We call \mathcal{H} admissible if it does not form a complete set of residues modulo any prime.

Let $\pi(n + \mathcal{H})$ count the primes in $n + \mathcal{H} \coloneqq \{n + h_1, \dots, n + h_k\}$.

Conjecture (Hardy-Littlewood 1923)

Let \mathcal{H} be an admissible *k*-tuple. There is an explicit $c_{\mathcal{H}} > 0$ for which

$$\pi_{\mathcal{H}}(x) \coloneqq \#\{n \le x : \pi(n + \mathcal{H}) = k\} \sim c_{\mathcal{H}} \int_2^x \frac{dt}{(\log t)^k},$$

Godfrey Hardy

John Littlewood

The GPY Theorem

Let DHL[k, r] denote the claim that for every admissible *k*-tuple \mathcal{H} , $\pi(n + \mathcal{H}) \ge r$ for infinitely many *n*. Put $\text{diam}(\mathcal{H}) \coloneqq \max(\mathcal{H}) - \min(\mathcal{H})$.

Then $DHL[k, m + 1] \Rightarrow H_m \leq diam(\mathcal{H})$ for any admissible *k*-tuple \mathcal{H} .

Theorem (Goldston-Pintz-Yıldırım 2005) For $0 < \theta < 1$, if $k \ge 2$ and $\ell \ge 1$ are integers for which

$$2\theta > \left(1 + \frac{1}{2\ell + 1}\right) \left(1 + \frac{2\ell + 1}{k}\right)$$

then $\mathsf{EH}[\theta] \Rightarrow \mathsf{DHL}[k, 2]$. In particular, $\mathsf{EH}[\frac{1}{2} + \epsilon] \Rightarrow H_1 < \infty$.

Daniel Goldston

János Pintz

Cem Yıldırım

The GPY method

Let
$$\Theta(n + \mathcal{H}) \coloneqq \sum_{n+h_i \text{ prime}} \log(n + h_i)$$
, where $\mathcal{H} = \{h_1, \dots, h_k\}$.

To prove DHL[k, m + 1] it suffices to show that for any admissible *k*-tuple H there exist nonnegative weights w_n for which

$$\sum_{x < n \le 2x} w_n \big(\Theta(n + \mathcal{H}) - m \log(3x) \big) > 0 \tag{1}$$

holds for all sufficiently large x.

The GPY method

Let
$$\Theta(n + \mathcal{H}) \coloneqq \sum_{n+h_i \text{ prime}} \log(n + h_i)$$
, where $\mathcal{H} = \{h_1, \dots, h_k\}$.

To prove DHL[k, m + 1] it suffices to show that for any admissible *k*-tuple \mathcal{H} there exist nonnegative weights w_n for which

$$\sum_{x < n \le 2x} w_n \big(\Theta(n + \mathcal{H}) - m\log(3x)\big) > 0 \tag{1}$$

holds for all sufficiently large x. GPY used weights w(n) of the form

$$w_n \coloneqq \left(\sum_{\substack{d \mid \prod_i (n+h_i) \\ d < R}} \lambda_d\right)^2, \qquad \lambda_d \coloneqq \mu(d) f(d), \qquad R \coloneqq x^{\theta/2}$$

to establish (1) with $m = 1^*$ and $\theta > \frac{1}{2}$, using $f(d) \approx \left(\log \frac{R}{d}\right)^{k+\ell}$. (motivation: $\sum_{d|n} \mu(d) \left(\log \frac{n}{d}\right)^k$ vanishes when $\omega(n) > k$).

* As noted by GPY, their method cannot address m > 1, even under EH.

Zhang's Theorem

Let $MPZ[\varpi, \delta]$ denote the claim that for any $A \ge 1$ we have

$$\sum_{q} \left| \Theta(x;q,a) - \frac{x}{\phi(q)} \right| \ll \frac{x}{(\log x)^{A}},$$

where *q* varies over x^{δ} -smooth squarefree integers up to $x^{1/2+2\omega}$ and *a* is a fixed x^{δ} -coarse integer (depending on *x* but not *q*).*

Zhang's Theorem

Let $MPZ[\varpi, \delta]$ denote the claim that for any $A \ge 1$ we have

$$\sum_{q} \left| \Theta(x;q,a) - \frac{x}{\phi(q)} \right| \ll \frac{x}{(\log x)^{A}},$$

where *q* varies over x^{δ} -smooth squarefree integers up to $x^{1/2+2\omega}$ and *a* is a fixed x^{δ} -coarse integer (depending on *x* but not *q*).*

Theorem (Zhang 2013)

• For any $\varpi, \delta > 0$ and all sufficiently large k,

$$\mathsf{MPZ}[\varpi, \delta] \Rightarrow \mathsf{DHL}[k, 2].^{\dagger}$$

2 MPZ[
$$\varpi, \delta$$
] holds for all $\varpi, \delta \leq 1/1168$.

*Zhang imposes an additional constraint on *a* that can be eliminated.
 [†]A similar (weaker) implication was proved earlier by Motohashi and Pintz (2006).

Zhang's result

Using $\varpi = \delta = 1/1168$, Zhang proved that $\mathsf{DHL}[k,2]$ holds for all

 $k \geq 3.5 \times 10^6.$

For $k = 3.5 \times 10^6$, taking the first *k* primes greater than *k* yields an admissible *k*-tuple of diameter less than 7×10^7 .* It follows that

$$H_1 = \liminf_{n \to \infty} (p_{n+1} - p_n) < 7 \times 10^7.$$

Yitang Zhang

*In fact, less than 6×10^7 .

The Polymath project

Goals of Polymath8a:

- Improve Zhang's bound on H_1 ,
- Attempt to better understand and refine Zhang's argument.

Natural sub-projects for addressing the first goal:

- Minimizing H(k) by constructing narrow admissible *k*-tuples.
- **2** Minimizing *k* for which $MPZ(\varpi, \delta)$ implies DHL(k, 2).
- **③** Maximizing ϖ for which MPZ(ϖ , δ) holds.

Questions relevant to the second goal:

- What role do the Weil conjectures play?
- 2 Can the hypotheses in $MPZ(\varpi, \delta)$ be usefully modified?

Polymath8 web page.

Polymath 8a results

$arpi,\delta$	k	H	
$arpi = \delta = 1/1168$	3 500 000	70 000 000	Zhang's paper
$arpi = \delta = 1/1168$	3 500 000	55 233 504	Optimize $H = H(k)$
$arpi = \delta = 1/1168$	341 640	4 597 926	Optimize $k = k(\varpi, \delta)$
$arpi = \delta = 1/$ 1168	34 429	386 344	Make $k\propto arpi^{-3/2}$
$828\varpi + 172\delta < 1$	22 949	248 816	Allow $\varpi \neq \delta$
$280\varpi + 80\delta < 3$	873	6712	Strengthen $MPZ(\varpi, \delta)$
$280\varpi + 80\delta < 3$	720	5414	Make k less sensitive to δ
$600\varpi + 180\delta < 7$	632	4680	Further optimize $arpi,\delta$

Using only the Riemann hypothesis for curves:

A detailed timeline of improvements can be found here.

Optimized GPY Theorem

In the GPY Theorem (and Zhang's result), we have $k \propto \varpi^{-2}$. This can be improved to $k \propto \varpi^{-3/2}$.

Theorem (D.H.J. Polymath 2013)

Let $k \geq 2$ and $0 < \varpi < 1/4$ and $0 < \delta < 1/4 + \varpi$ satisfy

$$(1+4\varpi)(1-\kappa) > \frac{j_{k-2}^2}{k(k-1)},$$

where j_k is the first positive zero of the Bessel function J_k of the first kind and $\kappa = \kappa(\varpi, \delta, k)$ is an explicit error term.

Then MPZ[ϖ, δ] \Rightarrow DHL[k, 2]. Moreover, EH[$1/2 + 2\varpi$] \Rightarrow DHL[k, 2] with $\kappa = 0.*$

We have
$$j_n = n + c n^{1/3} + O(n^{-1/3}),$$
 so $rac{j_{k-2}^2}{k(k-1)} \sim 1 + 2ck^{-2/3}.$

*The second statement was independently proved by Farkas, Pintz, and Revesz.

Dense divisibility

For each $i \in \mathbb{Z}_{\geq 0}$ and $y \in \mathbb{R}_{\geq 1}$, we define *i*-tuply *y*-dense divisibility:

- Every natural number n is 0-tuply y-densely divisible.
- In is *i*-tuply *y*-densely divisible if for all *j*, *k* ≥ 0 with *j* + *k* = *i* − 1 and 1 ≤ *R* ≤ *yn* we can write *n* = *qr* for some *j*-tuply *y*-densely divisible *q* and *k*-tuply *y*-densely divisible *r* with $\frac{1}{y}R \le r \le R$.

This can be viewed as a generalization of *y*-smoothness:

n is *y*-smooth \iff *n* is *i*-tuply *y*-densely divisible for all *i*. But for any fixed *i* and *y*, the largest prime that may divide an *i*-tuply *y*-densely divisible integer *n* is unbounded.

Example (*i*-tuply 5-densely divisible but not 5-smooth $n \le 100$)

i-tuply but not (i + 1)-tuply 5-densely divisible non-5-smooth integers:

- i = 1: 14, 21, 33, 35, 39, 44, 52, 55, 65, 66, 68, 76, 78, 85, 88, 95, 98.
- i = 2: 28, 42, 63, 70, 99.
- i = 3: 56, 84.

A stronger form of $MPZ[\varpi, \delta]$

Let MPZ^(*i*)[ϖ , δ] denote MPZ[ϖ , δ] with the x^{δ} -smoothness constraint on the modulus q replaced by *i*-tuply x^{δ} -divisibility.

Then $MPZ^{(i)}[\varpi, \delta] \Rightarrow MPZ[\varpi, \delta] \Rightarrow DHL[k, 2]$ for each $i \ge 0$.

But this implication can be proved directly in a way that makes k essentially independent of δ ; this lets us increase ϖ and decrease k.

Theorem (D.H.J. Polymath 2013)

(i) $\mathsf{MPZ}^{(4)}[\varpi, \delta]$ holds for all $\varpi, \delta > 0$ satisfying $600\varpi + 180\delta < 7$. (ii) $\mathsf{MPZ}^{(2)}[\varpi, \delta]$ holds for all $\varpi, \delta > 0$ satisfying $168\varpi + 48\delta < 1$. The proof of (ii) does not require any of Deligne's results.

The Maynard-Tao approach

Recall that in the GPY method we require weights $w_n \ge 0$ that satisfy

$$\sum_{x < n \le 2x} w_n \big(\Theta(n + \mathcal{H}) - m \log(3x) \big) > 0$$

for sufficiently large x. GPY achieved this using weights of the form

$$w_n \coloneqq \left(\sum_{\substack{d \mid \prod_i (n+h_i) \\ d < x^{\theta/2}}} \lambda_d\right)^2, \qquad \lambda_d \coloneqq \mu(d) f(d).$$

Maynard (and independently, Tao) instead use weights of the form

$$w_n \coloneqq \left(\sum_{\substack{d_i|n+h_i\\\prod d_i < x^{\theta/2}}} \lambda_{d_1,\dots,d_k}\right)^2, \qquad \lambda_{d_1,\dots,d_k} \coloneqq \left(\prod \mu(d_i)\right) f(d_1,\dots,d_k).$$

where f is defined in terms of a smooth F that we are free to choose.

A variational problem

Let $F: [0,1]^k \to \mathbb{R}$ denote a nonzero square-integrable function with support in the simplex $\mathcal{R}_k := \{(x_1, \ldots, x_k) \in [0,1]^k : \sum_i x_i \leq 1\}.$

$$I(F) \coloneqq \int_0^1 \cdots \int_0^1 F(t_1, \dots, t_k)^2 dt_1 \dots dt_k,$$

$$J(F) \coloneqq \sum_{i=1}^k \int_0^1 \cdots \int_0^1 \left(\int_0^1 F(t_1, \dots, t_k) dt_i \right)^2 dt_1 \dots dt_{i-1} dt_{i+1} \dots dt_k,$$

$$\rho(F) \coloneqq \frac{J(F)}{I(F)}, \qquad M_k \coloneqq \sup_F \rho(F)$$

Theorem (Maynard 2013)

For any $0 < \theta < 1$, if $EH[\theta]$ and $M_k > \frac{2m}{\theta}$, then DHL[k, m+1].

Explicitly bounding M_k

To prove $M_k > \frac{2m}{\theta}$, it suffices to exhibit an *F* with $\rho(F) > \frac{2m}{\theta}$.

Maynard considers functions F defined by a polynomial of the form

$$P \coloneqq \sum_{a+2b \le d} c_{a,b} (1-P_1)^a P_2^b,$$

where $P_1 := \sum_i t_i$, $P_2 := \sum_i t_i^2$, with support restricted to \mathcal{R}_k .

The function $\rho(F)$ is then a ratio of quadratic forms in the $c_{a,b}$ that are completely determined by our choice of k and d.

If **I** and **J** are the matrices of these forms (which are real, symmetric, and positive definite), we want to choose *k* and *d* so that $\mathbf{I}^{1}\mathbf{J}$ has an eigenvalue $\lambda > 4m$.

The corresponding eigenvector then determines the coefficients $c_{a,b}$.

Example: With k = 5 and d = 3 we can explicitly compute

$\mathbf{I} = \frac{1}{1995840}$	16632 3960 2772 495 792 297	3960 1100 495 110 110 33	2772 495 792 110 297 132	495 110 110 20 33 12	792 110 297 33 132 66	297 33 132 12 66 36	,	
$\mathbf{J} = \frac{1}{11975040}$	166320 35640 35640 5610 11880 4950	35640 8184 7260 1218 2376 990) 356 726 891 128 330 148	50 .0 57 50	5610 1218 1287 203 450 195	11880 2376 3300 450 1320 630	4950 990 1485 195 630 315	,

with row/column indexes ordered as $c_{0,0}, c_{0,1}, c_{1,0}, c_{1,1}, c_{2,0}, c_{3,0}$. The largest eigenvalue of $\mathbf{I}^{\mathbf{1}}\mathbf{J}$ is ≈ 2.0027 . An approximate eigenvector is

$$\mathbf{a} = [0, 5, -15, 70, 49, 0],$$
 for which $\frac{\mathbf{a}^{\mathsf{T}} \mathbf{J} \mathbf{a}}{\mathbf{a}^{\mathsf{T}} \mathbf{I} \mathbf{a}} = \frac{1417255}{708216} > 2.$

It follows that $\rho(F) = \frac{J(F)}{I(F)} = \frac{\mathbf{a}^{\intercal} \mathbf{J} \mathbf{a}}{\mathbf{a}^{\intercal} \mathbf{I} \mathbf{a}} = \frac{1417255}{708216} > 2$ for the function *F* defined by

$$P = 5P_2 - 15(1 - P_1) + 70(1 - P_1)P_2 + 49(1 - P_1)^2.$$

Thus $M_5 > 2$; under EH we get DHL[5, 2] and $H_1 \le 12$, using $\{0, 4, 6, 10, 12\}$. Taking k = 105 and d = 11 gives $M_{105} > 4$, DHL[105, 2], $H_1 \le 600$ (unconditionally).

Maynard's results

Theorem (Maynard 2013)

We have $M_5 > 2$, $M_{105} > 4$, and $M_k > \log k - 2 \log \log k - 2$ for all sufficiently large k.* These bounds imply

- $H_1 \leq 12$ under EH,
- **2** $H_1 \leq 600$,
- **3** $H_m \le m^3 e^{4m+5}$ for all $m \ge 1$.

The bound $H_1 \leq 600$ relies only on Bombieri-Vinogradov. In fact, for any $\theta > 0$ we have $\mathsf{EH}[\theta] \Rightarrow H_1 < \infty$.

James Maynard

 $k \ge 200$ is sufficiently large (D.H.J. Polymath).

Dickson's conjecture

Conjecture (Dickson 1904)

Every admissible *k*-tuple has infinitely many translates composed entirely of primes (Dickson *k*-tuples).

The Maynard-Tao theorem implies that for each $k \ge 2$ a positive proportion of admissible *k*-tuples are Dickson *k*-tuples.

Dickson's conjecture

Conjecture (Dickson 1904)

Every admissible *k*-tuple has infinitely many translates composed entirely of primes (Dickson *k*-tuples).

The Maynard-Tao theorem implies that for each $k \ge 2$ a positive proportion of admissible *k*-tuples are Dickson *k*-tuples.

More precisely, there is a constant c = c(k) > 0 such that for all sufficiently large *x* the proportion of *k*-tuples in [1, x] that are Dickson *k*-tuples is greater than *c*. Proof:

- Let m = k 1 and $K = m^3 e^{4m+5}$. Then every admissible *K*-tuple contains at least one Dickson *k*-tuple.
- 2 Let $S = \{n \in [1, x] : n \perp p \text{ for } p \leq K\}$. Every *K*-tuple in *S* is admissible.
- 3 There are at least $\binom{\#S}{K} / \binom{\#S-k}{K-k} = \binom{\#S}{k} / \binom{K}{k}$ Dickson *k*-tuples in *S*. The proportion of *k*-tuples in [0, x] that lie in *S* is $\gg (\log K)^{-k}$.

The Polymath project (Polymath8b)

Goals:

- Improve Maynard's bounds on H_1 and asymptotics for H_m .
- **2** Get explicit bounds on H_m for m = 2, 3, 4, ...

Natural sub-projects:

- Constructing narrow admissible k-tuples for large k.
- 2 Explicit lower bounds on M_k .
- Siguring out how to replace $EH[\frac{1}{2} + 2\varpi]$ with $MPZ[\varpi, \delta]$.

Key questions:

- Maynard uses F of a specific form to bound M_k , would more complicated choices for F work better?
- To what extent can Zhang's work and the Polymath8a results be combined with the Maynard-Tao approach?

Polymath8b results

Bounds that do not use Zhang or Polymath8a results:

k	M_k	т	H_m		
105	4	1	600	Maynard's paper	
102	4	1	576	Optimized Maynard	
54	4	1	270	More general F	
50	4	1	246	ϵ -enlarged simplex	
3	2	1	6	under GEH	
51	4	2	252	under GEH	
5511	6	3	52 1 1 6	under EH	
41 588	8	4	474 266	under EH	
309 661	10	5	4 137 854	under EH	

We also prove

$$\frac{k}{k-1}\log k - c < M_k \leq \frac{k}{k-1}\log k,$$

for an effective constant $c \approx 3$.

Sieving an ϵ -enlarged simplex

Fix $\epsilon \in (0, 1)$ and let $F: [0, 1 + \epsilon)^k \to \mathbb{R}$ denote a square-integrable function with support in $(1 + \epsilon)\mathcal{R}_k$. Define

$$J_{1-\epsilon}(F) \coloneqq \sum_{i=1}^{k} \int_{(1-\epsilon)\mathcal{R}_{k-1}} \left(\int_{0}^{1+\epsilon} F(t_1,\ldots,t_k) dt_i \right)^2 dt_1 \ldots dt_{i-1} dt_{i+1} \ldots dt_k,$$
$$M_{k,\epsilon} \coloneqq \sup_F \frac{J_{1-\epsilon}(F)}{I(F)}.$$

Theorem (D.H.J. Polymath 2014)

Assume either $\mathsf{EH}[\theta]$ with $1 + \epsilon < \frac{1}{\theta}$ or $\mathsf{GEH}[\theta]$ with $\epsilon < \frac{1}{k-1}$. Then $M_{k,\epsilon} > \frac{2m}{\theta}$ implies $\mathsf{DHL}[k, m+1]$.

 $M_{50,1/25} > 4$ proves $H_1 \le 246$ and $M_{4,0.168} > 2$ gives $H_1 \le 8$ under GEH. To get $H_1 \le 6$ under GEH we prove a specific result for k = 3.

Polymath8b results

Bounds that incorporate Polymath8a results:

$\overline{\omega}, \delta$	k	т	H_m
$600\varpi + 180\delta < 7$	35 4 10	2	398 130
$600\varpi + 180\delta < 7$	1 649 821	3	24 797 814
$600\varpi + 180\delta < 7$	75 845 707	4	1 431 556 072
$600\varpi + 180\delta < 7$	3 473 995 908	5	80 550 202 480

For comparison, if we only use Bombieri-Vinogradov we get $H_2 < 474266$ rather than $H_2 < 398130$ (but H_1 is not improved).

We also prove $H_m \ll m e^{(4 - \frac{28}{157})m}$.

*Sharper bounds on H_m are listed on the Polymath8 web page, that use $1080\varpi + 330\delta < 13$, but this constraint has not been rigorously verified.

Sieving a truncated simplex

Fix positive $\varpi, \delta < 1/4$ such that $MPZ[\varpi, \delta]$ holds. For $\alpha > 0$, define $M_k^{[\alpha]} := \sup_F \rho(F)$, with the supremum over nonzero square-integrable functions with support in $[0, \alpha]^k \cap \mathcal{R}_k$.

Theorem (D.H.J. Polymath 2014)

Assume MPZ[ϖ, δ]. Then DHL[k, m + 1] holds whenever

$$M_k^{\left[\frac{\delta}{1/4+\varpi}\right]} > \frac{m}{1/4+\varpi}$$

Example

 $H_2 \leq 398\,130$ is proved using an admissible 35410-tuple and showing

$$M_{35410}^{\left[\frac{\delta}{1/4+\varpi}\right]} > \frac{2}{1/4+\varpi},$$

for some $\delta, \varpi > 0$ with $600\varpi + 180\delta < 7$ (which implies $MPZ[\varpi, \delta]$).

June/July 2015

Volume 62, Number 6

Memories of Mary Ellen Rudin page 617

Mathematics and Teaching page 630

Professional Development in Teaching for Mathematics Graduate Students page 638

Chicago Meeting page 718

About the cover: Polyface of PolyMath (see page 659)