Murmurations of Arithmetic L-functions

Andrew V. Sutherland
Massachusetts Institute of Technology

May 17, 2023

Simons Collaboration in Arithmetic Geometry, Number Theory, and Computation

Arithmetic statistics of Frobenius traces of elliptic curves over \mathbb{Q}

Three conjectures from the 1960s and 1970s (the first is now a theorem):

1. Sato-Tate: The sequence $x_{p}:=a_{p}(E) / \sqrt{p}$ is equidistributed with respect to the pushforward of the Haar measure of the Sato-Tate group of E (typically $\operatorname{SU}(2)$).
2. Birch and Swinnerton-Dyer:

$$
\lim _{x \rightarrow \infty} \frac{\log x}{2 \sqrt{x}} \sum_{p \leq x} \frac{a_{p}(E)}{\sqrt{p}}=\frac{1}{2}-r_{\mathrm{an}}(E)
$$

3. Lang-Trotter: For every nonzero $t \in \mathbb{Z}$ there is a real number $C_{E, t}$ for which

$$
\#\left\{p \leq x: a_{p}(E)=t\right\} \sim C_{E, t} \frac{\sqrt{x}}{\log x}
$$

These depend only on $L_{E}(s)=\sum a_{n} n^{-s}$ and generalize to other L-functions.

Example: Elkies' curve of rank ≥ 28 ($=28$ under GRH).

a1 histogram of $y^{\wedge} 2+x y+y=x^{\wedge} 3-x^{\wedge} 2-20067762415575526585033208209338542750930230312178956502 x$ +34481611795030556467032985690390720374855944359319180361266008296291939448732243429 for $p<=2^{\wedge} 10$

172 data points in 13 buckets, $z 1=0.023$, out of range data has area 0.250

Example: Elkies' curve of rank ≥ 28 ($=28$ under GRH).

a1 histogram of $y^{\wedge} 2+x y+y=x^{\wedge} 3-x^{\wedge} 2-20067762415575526585033208209338542750930230312178956502 x$ +34481611795030556467032985690390720374855944359319180361266008296291939448732243429 for $p<=2^{\wedge} 40$

41203088796 data points in 202985 buckets

How rank effects trace distributions

One formulation of the BSD conjecture implies that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\log x} \sum_{p \leq x} \frac{a_{p}(E) \log p}{p}=-r+\frac{1}{2} \tag{1}
\end{equation*}
$$

and sums of this form (Mestre-Nagao sums) are often used as a tool when searching for elliptic curves of large rank (which necessarily have large conductor N). ${ }^{1}{ }^{2}$

Theorem (Kim-Murty 2023)
If the limit on the LHS of (1) exists then it equals the RHS with r the analytic rank, and the L-function of E satisfies the Riemann hypothesis.

[^0]

Murmurations of elliptic curves

In their 2022 preprint Murmurations of elliptic curves, Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver, and Alexey Pozdnyakov observed a curious fluctuation in average Frobenius traces of elliptic curves in a given conductor interval depending on the rank.

Murmurations of elliptic curves

Elliptic curve L-functions of conductor $N \in(M, 2 M]$ for $M=2^{12}, 2^{13}, \ldots, 2^{17}, 250000$. The x-axis range is $[0,2 M]$. A blue/red (or purple) dot at (p, \bar{a}_{p}) shows the average \bar{a}_{p} of $a_{p}(E)$ (or $w_{p}(E) a_{p}(E)$) over even/odd rank (or all) E / \mathbb{Q} with $N_{E} \in(M, 2 M]$.

$w(E)^{*}$ a_p averages of $530887 / 537808$ root number $w(E)=+1 /-1$ elliptic curves E / Q of conductor $250000<N<=500000$ for $p<500000$

Ordering by naive height

Elliptic curves with $h t(E):=\max \left(4|A|^{3}, 27|B|^{2}\right)$ in $(M, 2 M]$ for $M=2^{16}, \ldots, 2^{25}$.
The x-axis range is $[0,2 M]$. A blue/red (or purple) dot at $\left(p, \bar{a}_{p}\right)$ shows the average \bar{a}_{p} of $a_{p}(E)$ (or $w_{p}(E) a_{p}(E)$) over even/odd rank (or all) E / \mathbb{Q} with $h t(E) \in(M, 2 M]$.

Ordering by j-invariant

Elliptic curves with $h t(j(E))^{2}$ in $(M, 2 M]$ for $M=2^{10}, \ldots, 2^{19}$.
The x-axis range is $[0,2 M]$. A blue/red (or purple) dot at $\left(p, \bar{a}_{p}\right)$ shows the average \bar{a}_{p} of $a_{p}(E)$ (or $w_{p}(E) a_{p}(E)$) over even/odd rank (or all) E / \mathbb{Q} with $h t(j(E)) \in(M, 2 M]$.

Ordering by minimal discriminant

Elliptic curves with minimal discriminant $\Delta(E)$ in $(M, 2 M]$ for $M=2^{16}, \ldots, 2^{25}$.
The x-axis range is $[0,2 M]$. A blue/red (or purple) dot at $\left(p, \bar{a}_{p}\right)$ shows the average \bar{a}_{p} of $a_{p}(E)$ (or $w_{p}(E) a_{p}(E)$) over even/odd rank (or all) E / \mathbb{Q} with $\Delta((E)) \in(M, 2 M]$.

Ordering by minimal discriminant

Elliptic curves with minimal discriminant $\Delta(E)$ in $(M, 2 M]$ for $M=2^{16}, \ldots, 2^{25}$.
The x-axis range is $[0,2 M]$. A blue/red (or purple) dot at (p, \bar{a}_{p}) shows the average \bar{a}_{p} of $a_{p}(E)$ (or $w_{p}(E) a_{p}(E)$) over even/odd rank (or all) E / \mathbb{Q} with $\Delta((E)) \in(M, 2 M]$.

Ordering by naive height (redux)

Elliptic curves with $h t(E):=\max \left(4|A|^{3}, 27|B|^{2}\right)$ in $(M, 2 M]$ for $M=2^{16}, \ldots, 2^{25}$.
The x-axis range is $[0,2 M]$. A blue/red (or purple) dot at (p, \bar{a}_{p}) shows the average \bar{a}_{p} of $a_{p}(E)$ (or $w_{p}(E) a_{p}(E)$) over even/odd rank (or all) E / \mathbb{Q} with $h t(E) \in(M, 2 M]$.

Ordering by conductor in the Stein-Watkins database (SWDB)

Elliptic curves in the SWDB of conductor $N \in(M, 2 M]$ for $M=2^{12}, \ldots, 2^{25}$. The x-axis range is $[0,2 M]$. A blue/red (or purple) dot at (p, \bar{a}_{p}) shows the average \bar{a}_{p} of $a_{p}(E)$ (or $\left.w_{p}(E) a_{p}(E)\right)$ over even/odd rank (or all) E / \mathbb{Q} with $N_{E} \in(M, 2 M]$.

$w(E)^{*}$ a_p averages of $17630665 / 17639675$ root number $w(E)=+1 /-1$ elliptic curves E / Q in the Stein-Watkins database of conductor $2^{\wedge} 25<N<=2^{\wedge} 26$ for $p<2^{\wedge} 26$

Arithmetic L-functions

An L-function is said to be analytic if it satisfies the properties that every good L-function should (analytic continuation, functional equation, Euler product, temperedness, central character); see Farmer-Pitale-Ryan-Schmidt 2018 for details.

We that an analytic L-function $L(s)=\sum a_{n} n^{-s}$ is arithmetic if there is an integer w for which $a_{n} n^{w / 2} \in \mathcal{O}_{K}$ for some number field K. The least such w is the motivic weight.
L-functions of abelian varieties have motivic weight $w=1$. L-functions of weight- k modular forms have motivic weight $w=k-1$.

In what follows we consider families of arithmetic L-functions that are Galois closed, meaning that if we average Dirichlet coefficients a_{p} over L-functions of a given conductor we get integers. We also assume that analytic rank is Galois-invariant.

When averaging a_{p} 's in motivic weight $w>1$ we normalize via: $a_{p} \mapsto a_{p} / p^{(w-1) / 2}$.

Newforms for $\Gamma_{0}(N)$ of weight $k=2,4,6$ with rational coefficients.

$\mathrm{w}(\mathrm{E}) * \mathrm{*}^{\mathrm{p}} \mathrm{p} / \mathrm{p} \wedge 2$ averages of 259/304 root number $\mathrm{w}(\mathrm{E})=+1 /-1$ weight 6 newforms for Gamma_ $\mathrm{O}(\mathrm{N})$ of level $2 \wedge 10<\mathrm{N}<-2^{\wedge} 11$ and dimension $\mathrm{g}<-1$ for $\mathrm{p}<2^{\wedge} 11$

Newforms for $\Gamma_{0}(N)$ of weight $k=2,4,6$.

Newforms for $\Gamma_{0}(N)$ of weight $k=2,4,6$ and varying dimension.

$W(E) * a _p$ averages of $2516453 / 2194726$ root number $w(E)=+1 /-1$ weight 2 newforms for Gamma_ 0 (N) of level $2 \wedge 13<N<-2 \wedge 14$ and dimension $g<-1024$ for $p<2 \wedge 14$

$W(E) * a_{-} p$ averages of $460843 / 422296$ root number $w(E)-+1 /-1$ weight 4 newforms for Gamma_ $0(N)$ of level $2 \wedge 11<N<-2 \wedge 12$ and dimension $g<-1024$ for $p<2 \wedge 12$

L-functions of genus 2 curves over \mathbb{Q} with Sato-Tate group USp(4).

Recently constructed database of more than 5 million genus 2 curves X / \mathbb{Q} of conductor at most 2^{20} includes $1,440,894$ isogeny classes with ST group USp(4). Conductor in $(M, 2 M]$ for $M=2^{12}, \ldots, 2^{19}$ with x-axis range $[0, M]$.

Coming soon to the LMFDB.

L-functions of genus 2 curves over \mathbb{Q}, Sato-Tate group $N(S U(2) \times \mathrm{SU}(2))$.

These are primitive L-functions arising from Hilbert or Bianchi modular forms.
Conductor in $(M, 2 M]$ for $M=2^{12}, \ldots, 2^{19}$ with x-axis range $[0, M]$.

$w(E)^{*}$ a_p averages of $3326 / 3748$ root number $w(E)=+1 /-1$ genus 2 curves X / Q with $S T(X)=N(S U(2) \times S U(2))$ of conductor $2 \wedge 19<N<=2^{\wedge} 20$ for $p<2 \wedge 19$

L-functions of products of E / \mathbb{Q}, Sato-Tate group $S U(2) \times S U(2)$.

Conductor in $(M, 2 M]$ for $M=2^{12}, \ldots, 2^{17}$ with x-axis range $[0, M]$.

$w(E)^{*}$ a_p averages of $1092101 / 1128578$ root number $w(E)=+1 /-1$ products of elliptic curves E / Q with conductor $2^{\wedge} 17<N<=2^{\wedge} 18$ for $p<2^{\wedge} 18$

L-functions of genus 3 curves over \mathbb{Q} with Sato-Tate group USp(6).

Recently constructed database of genus 3 curves X / \mathbb{Q} of conductor at most 2^{20} includes 59,214 isogeny classes of hyperelliptic curves with ST group USp(6). Conductor in $\left(M, 2 M\right.$] for $M=2^{12}, \ldots, 2^{19}$ with x-axis range $[0, M]$.

Coming soon to the LMFDB.

Higher moments $\left(w_{p}(E) a_{p}(E)\right.$ and $\left.w_{p}(E) a_{p}(E)^{3} / p\right)$

$w(E) * a_{1} p^{\wedge} 3 / p$ averages of $530887 / 537808$ root number $w(E)=+1 /-1$ elliptic curves E / Q of conductor $250000<N<=500000$ for $p<500000$

Higher moments $\left(w_{p}(E) a_{p}(E)^{5} / p^{2}\right)$

Local averaging

Rather than averaging a_{p} 's for L-functions with conductor in an interval, we may instead compute local averages of a_{p} for each L-function in our family with p / N varying over some interval, and then average these local averages.

For example, we may divide the interval $[0,1]$ into n intervals $\left(x, x+\frac{1}{n}\right]$, with $x=0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}$. For each L-function in our family we compute a_{p} for all primes $p \leq N$, and then for $x=0, \frac{1}{n}, \ldots, \frac{n-1}{n}$ we compute the average $\alpha_{x}(E)$ of $a_{p}(E)$ for

$$
\frac{p}{N} \in\left(x, x+\frac{1}{n}\right]
$$

yielding a vector of n real numbers. We then average these vectors over all L-functions in our family of a given root number or rank, up to an increasing bound $X \rightarrow \infty$.

With this setup, we do not need to order by conductor, but the order matters.

Local averaging: elliptic curves ordered by conductor

Elliptic curve L-functions of conductor $N \leq M$ for $M=2^{12}, 2^{13}, \ldots, 2^{17}, 2^{18}$. The x-axis range is $[0,1]$. A blue/red (or purple) dot at $\left(x, \bar{\alpha}_{x}\right)$ shows the average $\bar{\alpha}_{x}$ of $\alpha_{x}(E)$ (or $\left.w_{p}(E) \alpha_{x}(E)\right)$ over even/odd rank (or all) E / \mathbb{Q} with $N_{E} \leq M$.

Local averaging: elliptic curves ordered by naive height

Elliptic curves with $h t(E):=\max \left(4|A|^{3}, 27|B|^{2}\right) \leq M$ for $M=2^{18}, \ldots, 2^{27}$.
The x-axis range is $[0,1]$. A blue/red (or purple) dot at $\left(x, \bar{\alpha}_{x}\right)$ shows the average $\bar{\alpha}_{x}$ of $\alpha_{x}(E)$ (or $w_{p}(E) \alpha_{x}(E)$) over even/odd rank (or all) E / \mathbb{Q} with $h t(E) \leq M$.

Local averaging: elliptic curves ordered by conductor vs height

Local averaging: elliptic curves ordered by conductor vs height (rank)

Local averaging: newforms for $\Gamma_{0}(N)$ of weight $k=2,4,6$

Local averaging: newforms for $\Gamma_{0}(N)$ of weight $k=2,4,6$

Local averaging: genus $2 \mathrm{USp}(4)$ L-functions

Local averaging: $\operatorname{SU}(2)$ and $\operatorname{USp}(4)$ L-functions (rank)

Local averaging: genus $2 \mathrm{SU}(2) \times \mathrm{SU}(2)$ and $N(\mathrm{SU}(2) \times \mathrm{SU}(2))$ L-functions

Local averaging: genus $2 N(S U(2) \times S U(2))$ L-functions

Abelian surfaces with Sato-Tate group $N(S U(2) \times S U(2))$ have L-functions that correspond to a Hilbert or Bianchi modular form.

Local averaging: twists of 11a1

Local averaging also allows us to consider thinner families of L-functions.
For example, consider the L-functions of quadratic twists of a fixed elliptic curve E / \mathbb{Q}. The conductor grows like X^{2} and the naive height grows like X^{6}.

[^0]: ${ }^{1}$ See Sarnak's 2007 letter to Mazur.
 ${ }^{2}$ See the preprint of Kazalicki-Vlah for some recent machine-learning work on this topic.

