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Elliptic curves and their L-functions
Let E/Q be an elliptic curve, say E : y2 = x3 + Ax + B with A,B ∈ Z.
For primes p - ∆(E ) := −16(4A3 + 27B2) this equation defines an elliptic curve E/Fp.
For all such primes p we have the trace of Frobenius ap(E ) := p + 1−#E (Fp) ∈ Z.

One can also define ap(E ) for p|∆(E ), and then construct the L-function

L(E , s) :=
∏
p

(1− app−s + χ(p)p1−2s)−1 =
∑

ann−s

where χ(p) = 0 for p|N(E ) and χ(p) = 1 otherwise and N(E )|∆(E ) is the conductor.

But in fact the ap for p - ∆(E ) determine L(E , s) (via strong multiplicity one), and also
the conductor and root number w(E ) = ±1, which appear in the functional equation

Λ(E , s) = w(E )N(E )1−sΛ(E , 2− s)

where Λ(s) := ΓC(s)L(E , s). The L-function L(E , s) determines the isogeny class of E .



Arithmetic statistics of Frobenius traces of elliptic curves over Q

Three conjectures from the 1960s and 1970s (the first is now a theorem):

1. Sato–Tate: The sequence xp := ap(E )/√p is equidistributed with respect to the
pushforward of the Haar measure of the Sato-Tate group of E (typically SU(2)).

2. Birch and Swinnerton-Dyer:

lim
x→∞

log x
2
√
x
∑
p≤x

ap(E )
√p = 1

2 − r(E ).

3. Lang–Trotter: For every nonzero t ∈ Z there is a real number CE ,t for which

#{p ≤ x : ap(E ) = t} ∼ CE ,t

√
x

log x .

These conjectures depend only on L(E , s) and generalize to other L-functions.



Example: Elkies’ curve of rank ≥ 28 (= 28 under GRH).
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How rank effects trace distributions

One formulation of the BSD conjecture implies that

lim
x→∞

1
log x

∑
p≤x

ap(E ) log p
p = −r + 1

2 , (1)

and sums of this form (Mestre-Nagao sums) are often used as a tool when searching
for elliptic curves of large rank (which necessarily have large conductor N).1 2

Theorem (Kim-Murty 2023)
If the limit on the LHS of (1) exists then it equals the RHS with r the analytic rank,
and the L-function of E satisfies the Riemann hypothesis.

1See Sarnak’s 2007 letter to Mazur.
2See the recent paper of Kazalicki-Vlah for some recent machine-learning work on this topic.

https://arxiv.org/abs/2105.10805
https://publications.ias.edu/sites/default/files/MazurLtrMay08.PDF
https://rdcu.be/df9td
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Murmurations of elliptic curves
In their 2022 preprint Murmurations of elliptic curves, Yang-Hui He, Kyu-Hwan Lee,
Thomas Oliver, and Alexey Pozdnyakov observed a curious fluctuation in average
Frobenius traces of elliptic curves in a given conductor interval depending on the rank.

https://arxiv.org/abs/2204.10140


Murmurations of elliptic curves
Elliptic curve L-functions of conductor N ∈ (M, 2M] for M = 211, 212, . . . , 217, 250000.
The x -axis range is [0, 2M]. A blue/red or purple dot at (p, āp or m̄p) shows the
average of ap or mp := w(E )ap(E ) over even/odd or all E/Q with NE ∈ (M, 2M].
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Bias cancellation

There is a negative bias in āp that is parity-independent and disappears in m̄p.
This is especially noticeable at primes p ≡ 1 mod 24 and p ≡ � mod 5, 7.
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Moving averages

Moving average line plots of m̄p for 8 individual and all E/Q with NE ∈ (M, 2M],
using subintervals of size

√
M for p ≤ 2M, with M = 217.

147455.b2, 163839.a1, 180222.be2, 196606.b1, 212990.l1, 229374.a1, 245758.a1, 262143.d1

https://www.lmfdb.org/EllipticCurve/Q/\color {mplsalmon}147455.b2
https://www.lmfdb.org/EllipticCurve/Q/\color {mplskyblue}163839.a1
https://www.lmfdb.org/EllipticCurve/Q/\color {mpldeepskyblue}180222.be2
https://www.lmfdb.org/EllipticCurve/Q/\color {mpltomato}196606.b1
https://www.lmfdb.org/EllipticCurve/Q/\color {mpldodgerblue}212990.l1
https://www.lmfdb.org/EllipticCurve/Q/\color {mplslateblue}229374.a1
https://www.lmfdb.org/EllipticCurve/Q/\color {mplroyalblue}245758.a1
https://www.lmfdb.org/EllipticCurve/Q/\color {mplcrimson}262143.d1


Ordering by naive height
Elliptic curves with ht(E ) := max(4|A|3, 27B2) in (M, 2M] for M = 216, . . . , 225.
The x -axis range is [0, 2M]. A blue/red or purple dot at (p, āp or m̄p) shows the
average of ap or mp over even/odd or all E/Q with NE ∈ (M, 2M].
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Ordering by j-invariant
Elliptic curves with ht(j(E ))12/5 in (M, 2M] for M = 214, . . . , 224.
The x -axis range is [0, 2M]. A blue/red or purple dot at (p, āp or m̄p) shows the
average of ap or mp over even/odd or all E/Q with NE ∈ (M, 2M].
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Ordering by minimal discriminant
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average of ap or mp over even/odd or all E/Q with NE ∈ (M, 2M].
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Ordering by naive height (redux)
Elliptic curves with ht(E ) := max(4|A|3, 27B2) in (M, 2M] for M = 216, . . . , 225.
The x -axis range is [0, 2M]. A blue/red or purple dot at (p, āp or m̄p) shows the
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Ordering by conductor in the Stein-Watkins database (SWDB)
Elliptic curves in the SWDB of conductor N ∈ (M, 2M] for M = 212, . . . , 225.
The x -axis range is [0, 2M]. A blue/red or purple dot at (p, āp or m̄p) shows the
average of ap or mp over even/odd or all E/Q with NE ∈ (M, 2M].
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Arithmetic L-functions
We call an L-function is analytic if it has the properties every good L-function should:
analytic continuation, functional equation, Euler product, temperedness, central
character; see FPRS18; it is analytically normalized if its central value is at s = 1/2.

An analytically normalized L-function Lan(s) =
∑

ann−s is arithmetic if annω/2 ∈ OK
for some number field K and ω ∈ Z≥0. The least such ω is the motivic weight.
Its arithmetic normalization L(s) := Lan(s + ω/2) has coefficients in OK and satisfies

Λ(s) = N1−sw Λ̄(1 + ω − s).

L-functions of abelian varieties have motivic weight ω = 1.
L-functions of weight-k holomorphic cuspforms have motivic weight ω = k − 1.

We consider Galois-closed families of self-dual arithmetically normalized L-functions.
In any such family the values of ap and mp are integers and w = ±1.

When averaging ap’s in motivic weight ω > 1 we normalize them via ap 7→ ap/p(ω−1)/2.
This ensures that we always have |ap| = O(√p), as with elliptic curves.

https://www.ams.org/journals/bull/2019-56-02/S0273-0979-2018-01646-7/


Newforms for Γ0(N) of weight k = 2, 4, 6 with rational coefficients.
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Newforms for Γ0(N) of weight k = 2, 4, 6, 8.
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Newforms for Γ0(N) of weight k = 2.



Newforms for Γ0(N) of weight k = 4.



Newforms for Γ0(N) of weight k = 6.



Newforms for Γ0(N) of weight k = 8.



Newforms for Γ0(N) of weight k = 10.



Newforms for Γ0(N) of weight k = 12.



Zubrilina’s theorem

Theorem (Zubrilina 2023)
Let f =

∑
n≥1 anqn ∈ Snew

k (N) denote a newform of weight k ≥ 2 for Γ0(N) with root
number ε(f ). Let X ,Y ,P →∞ with P prime, Y = (1 + o(1))X 1−δY , P � X 1+δP , for
some δY , δP > 0 with 2δP < δY < 1. As a function of y := P/X we have

ζ(2)π
XY

∑
N∈[X ,X+Y ]
N⊥P �-free

∑
f

ε(f )aP(f )
P(k/2−1) = A√y + (−1)k/2−1 ∑

1≤r≤2√y
c(r)

√
4y − r2 Uk−2

(
r

2√y

)

− πyδk=2 + Oε(X−δ
′+ε)

where Un is the Chebyshev polynomial defined by Un(cos x) = sin(nx + x)/ sin x,
δ′ := max(δY /2− δp, (δY + 1)/9− δP), c(r) := B

∏
p|r (1 + p2/(p4 − 2p2 − p + 1)),

where A = 1.450032 . . . and B = 0.731311 . . . are explicit constants.
For every δP < 2/9 one can choose δY so that δ′ > 0.



Zubrilina’s theorem



Newforms for Γ0(N) of weight k = 2 with square root normalization.



Newforms for Γ0(N) of weight k = 4 with square root normalization.



Murmurations of elliptic curves with squareroot normalization
Elliptic curve L-functions of conductor N ∈ (M, 2M] for M = 211, 212, . . . , 217, 250000.
The x -axis range is [0, 2M]. A blue/red or purple dot at (√p, āp or m̄p) shows the
average of ap or mp := w(E )ap(E ) over even/odd or all E/Q with NE ∈ (M, 2M].
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Murmurations in the weight aspect

Theorem (Bober, Booker, Lee, Lowry–Duda 2023)
Assume GRH for the L-functions of Dirichlet characters and modular forms.
Let E ⊂ R>0 be a compact interval with |E | > 0, let δ ∈ {0, 1} and K ,H, ε ∈ R>0,
with K 5

6 +ε < H < K 1−ε as K →∞, and put N :=
(

expψ(K/2)
2π

)2
. We have

∑
k≡2δ mod 4
|k−K |≤H

∑
f
∑

p/N∈E
ap(f ) log p

pk/2−1∑
k≡2δ mod 4
|k−K |≤H

∑
f
∑

p/N∈E log p = (−1)δ
(
ν(E )
|E | + oE ,ε(1)

)
, where

ν(E ) := 1
ζ(2)

∑∗

r ,q∈Z>0
gcd(r ,q)=1
(r/q)−2∈E

µ(q)2

ϕ(q)2σ(q)

(q
r

)4
= 1

2
∑
t∈Z

∏
p-t

p2 − p − 1
p2 − p ·

∫
E

√
x cos

(2πt√
x

)
dx ,

and the ∗ indicates that values of (r/q)−2 at endpoints of E have weight 1
2 .



Murmurations in the weight aspect

Also see [Iwaniec-Luo-Sarnak 2000] Low lying zeros of families of L-functions,
where they consider ap averages over p on the scale of Nϑ, for ϑ < 1 and ϑ > 1.
They observe a phase transition at ϑ = 1, which is the murmuration regime.

http://www.numdam.org/item/?id=PMIHES_2000__91__55_0


L-functions of genus 2 curves over Q with Sato-Tate group USp(4).
Recently constructed database of more than 5 million genus 2 curves X/Q of conductor
at most 220 includes 1,440,894 isogeny classes with Sato–Tate group USp(4).
Conductor of L(X , s) in (M, 2M] for M = 212, . . . , 219 with x -axis range [0,M/2].

Coming soon to the LMFDB.

https://www.lmfdb.org
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Trace distributions of genus 2 curves



L-functions of genus 2 curves over Q, Sato-Tate group N(SU(2)× SU(2)).
These are primitive L-functions arising from Hilbert or Bianchi modular forms.
Conductor of L(X , s) in (M, 2M] for M = 212, . . . , 219 with x -axis range [0,M/2].
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L-functions of products of E/Q, Sato-Tate group SU(2)× SU(2).
Conductor of L(X , s) in (M, 2M] for M = 212, . . . , 217 with x -axis range [0,M/2].
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L-functions of genus 3 curves over Q with Sato-Tate group USp(6).
Recently constructed database of genus 3 curves X/Q of conductor at most 107

includes 59,214 isogeny classes of hyperelliptic curves with ST group USp(6).
Conductor of L(X , s) in (M, 2M] for M = 216, . . . , 222 with x -axis range [0,M/2].

Coming soon to the LMFDB.

https://www.lmfdb.org
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Thank you

Animations available at https://math.mit.edu/~drew/murmurations.html.

https://math.mit.edu/~drew/murmurations.html

